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Abstract

In this paper, we propose a graph neural network to

detect objects from a LiDAR point cloud. Towards this

end, we encode the point cloud efficiently in a fixed ra-

dius near-neighbors graph. We design a graph neural net-

work, named Point-GNN, to predict the category and shape

of the object that each vertex in the graph belongs to. In

Point-GNN, we propose an auto-registration mechanism to

reduce translation variance, and also design a box merg-

ing and scoring operation to combine detections from mul-

tiple vertices accurately. Our experiments on the KITTI

benchmark show the proposed approach achieves leading

accuracy using the point cloud alone and can even sur-

pass fusion-based algorithms. Our results demonstrate the

potential of using the graph neural network as a new ap-

proach for 3D object detection. The code is available at

https://github.com/WeijingShi/Point-GNN.

1. Introduction

Understanding the 3D environment is vital in robotic per-

ception. A point cloud that composes a set of points in space

is a widely-used format for 3D sensors such as LiDAR. De-

tecting objects accurately from a point cloud is crucial in

applications such as autonomous driving.

Convolutional neural networks that detect objects from

images rely on the convolution operation. While the con-

volution operation is efficient, it requires a regular grid as

input. Unlike an image, a point cloud is typically sparse and

not spaced evenly on a regular grid. Placing a point cloud on

a regular grid generates an uneven number of points in the

grid cells. Applying the same convolution operation on such

a grid leads to potential information loss in the crowded

cells or wasted computation in the empty cells.

Recent breakthroughs in using neural networks [3] [22]

allow an unordered set of points as input. Studies take

advantage of this type of neural network to extract point

cloud features without mapping the point cloud to a grid.

However, they typically need to sample and group points

Figure 1. Three point cloud representations and their common pro-

cessing methods.

iteratively to create a point set representation. The re-

peated grouping and sampling on a large point cloud can

be computationally costly. Recent 3D detection approaches

[10][21][16] often take a hybrid approach to use a grid and

a set representation in different stages. Although they show

some promising results, such hybrid strategies may suffer

the shortcomings of both representations.

In this work, we propose to use a graph as a compact

representation of a point cloud and design a graph neural

network called Point-GNN to detect objects. We encode

the point cloud natively in a graph by using the points as the

graph vertices. The edges of the graph connect neighbor-

hood points that lie within a fixed radius, which allows fea-

ture information to flow between neighbors. Such a graph

representation adapts to the structure of a point cloud di-

rectly without the need to make it regular. A graph neural

network reuses the graph edges in every layer, and avoids

grouping and sampling the points repeatedly.

Studies [15] [9] [2] [17] have looked into using graph

neural network for the classification and the semantic seg-

mentation of a point cloud. However, little research has

looked into using a graph neural network for the 3D object

detection in a point cloud. Our work demonstrates the fea-

sibility of using a GNN for highly accurate object detection

in a point cloud.

Our proposed graph neural network Point-GNN takes

the point graph as its input. It outputs the category and

bounding boxes of the objects to which each vertex be-

longs. Point-GNN is a one-stage detection method that de-

tects multiple objects in a single shot. To reduce the trans-

lation variance in a graph neural network, we introduce an
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auto-registration mechanism which allows points to align

their coordinates based on their features. We further design

a box merging and scoring operation to combine detection

results from multiple vertices accurately.

We evaluate the proposed method on the KITTI bench-

mark. On the KITTI benchmark, Point-GNN achieves the

state-of-the-art accuracy using the point cloud alone and

even surpasses sensor fusion approaches. Our Point-GNN

shows the potential of a new type 3D object detection ap-

proach using graph neural network, and it can serve as a

good baseline for the future research. We conduct an exten-

sive ablation study on the effectiveness of the components

in Point-GNN.

In summery, the contributions of this paper are:

• We propose a new object detection approach using

graph neural network on the point cloud.

• We design Point-GNN, a graph neural network with an

auto-registration mechanism that detects multiple ob-

jects in a single shot.

• We achieve state-of-the-art 3D object detection accu-

racy in the KITTI benchmark and analyze the effec-

tiveness of each component in depth.

2. Related Work

Prior work in this context can be grouped into three cat-

egories, as shown in Figure 1.

Point cloud in grids. Many recent studies convert a point

cloud to a regular grid to utilize convolutional neural net-

works. [20] projects a point cloud to a 2D Bird’s Eye View

(BEV) image and uses a 2D CNN for object detection. [4]

projects a point cloud to both a BEV image and a Front

View (FV) image before applying a 2D CNN on both. Such

projection induces a quantization error due to the limited

image resolution. Some approaches keep a point cloud in

3D coordinates. [23] represents points in 3D voxels and ap-

plies 3D convolution for object detection. When the resolu-

tion of the voxels grows, the computation cost of 3D CNN

grows cubically, but many voxels are empty due to point

sparsity. Optimizations such as the sparse convolution [19]

reduce the computation cost. Converting a point cloud to a

2D/3D grid suffers from the mismatch between the irregular

distribution of points and the regular structure of the grids.

Point cloud in sets. Deep learning techniques on sets such

as PointNet [3] and DeepSet[22] show neural networks can

extract features from an unordered set of points directly. In

such a method, each point is processed by a multi-layer per-

ceptron (MLP) to obtain a point feature vector. Those fea-

tures are aggregated by an average or max pooling function

to form a global feature vector of the whole set. [14] further

proposes the hierarchical aggregation of point features, and

generates local subsets of points by sampling around some

key points. The features of those subsets are then again

grouped into sets for further feature extraction. Many 3D

object detection approaches take advantage of such neural

networks to process a point cloud without mapping it to a

grid. However, the sampling and grouping of points on a

large scale lead to additional computational costs. Most ob-

ject detection studies only use the neural network on sets

as a part of the pipeline. [13] generates object proposals

from camera images and uses [14] to separate points that be-

long to an object from the background and predict a bound-

ing box. [16] uses [14] as a backbone network to generate

bounding box proposals directly from a point cloud. Then,

it uses a second-stage point network to refine the bound-

ing boxes. Hybrid approaches such as [23] [19] [10] [21]

use [3] to extract features from local point sets and place

the features on a regular grid for the convolutional opera-

tion. Although they reduce the local irregularity of the point

cloud to some degree, they still suffer the mismatch between

a regular grid and the overall point cloud structure.

Point cloud in graphs. Research on graph neural network

[18] seeks to generalize the convolutional neural network to

a graph representation. A GNN iteratively updates its vertex

features by aggregating features along the edges. Although

the aggregation scheme sometimes is similar to that in deep

learning on sets, a GNN allows more complex features to

be determined along the edges. It typically does not need

to sample and group vertices repeatedly. In the computer

vision domain, a few approaches represent the point cloud

as a graph. [15] uses a recurrent GNN for the semantic

segmentation on RGBD data. [9] partitions a point cloud to

simple geometrical shapes and link them into a graph for se-

mantic segmentation. [2] [17] look into classifying a point

cloud using a GNN. So far, few investigations have looked

into designing a graph neural network for object detection,

where an explicit prediction of the object shape is required.

Our work differs from previous work by designing a

GNN for object detection. Instead of converting a point

cloud to a regular gird, such as an image or a voxel, we

use a graph representation to preserve the irregularity of a

point cloud. Unlike the techniques that sample and group

the points into sets repeatedly, we construct the graph once.

The proposed Point-GNN then extracts features of the point

cloud by iteratively updating vertex features on the same

graph. Our work is a single-stage detection method with-

out the need to develop a second-stage refinement neural

networks like those in [4][16][21][11][13].

3. Point-GNN for 3D Object Detection in a

Point Cloud

In this section, we describe the proposed approach to de-

tect 3D objects from a point cloud. As shown in Figure 2,

the overall architecture of our method contains three com-

ponents: (a) graph construction, (b) a GNN of T iterations,
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Figure 2. The architecture of the proposed approach. It has three main components: (a) graph construction from a point cloud, (b) a graph

neural network for object detection, and (c) bounding box merging and scoring.

and (c) bounding box merging and scoring.

3.1. Graph Construction

Formally, we define a point cloud of N points as a set

P = {p1, ..., pN}, where pi = (xi, si) is a point with both

3D coordinates xi ∈ R
3 and the state value si ∈ R

k a k-

length vector that represents the point property. The state

value si can be the reflected laser intensity or the features

which encode the surrounding objects. Given a point cloud

P , we construct a graph G = (P,E) by using P as the ver-

tices and connecting a point to its neighbors within a fixed

radius r, i.e.

E = {(pi, pj) | ‖xi − xj‖2 < r} (1)

The construction of such a graph is the well-known fixed

radius near-neighbors search problem. By using a cell list to

find point pairs that are within a given cut-off distance, we

can efficiently solve the problem with a runtime complexity

of O(cN) where c is the max number of neighbors within

the radius [1].

In practice, a point cloud commonly comprises tens of

thousands of points. Constructing a graph with all the

points as vertices imposes a substantial computational bur-

den. Therefore, we use a voxel downsampled point cloud P̂
for the graph construction. It must be noted that the voxels

here are only used to reduce the density of a point cloud and

they are not used as the representation of the point cloud.

We still use a graph to present the downsampled point cloud.

To preserve the information within the original point cloud,

we encode the dense point cloud in the initial state value si
of the vertex. More specifically, we search the raw points

within a r0 radius of each vertex and use the neural network

on sets to extract their features. We follow [10] [23] and

embed the lidar reflection intensity and the relative coordi-

nates using an MLP and then aggregate them by the Max
function. We use the resulting features as the initial state

value of the vertex. After the graph construction, we pro-

cess the graph with a GNN, as shown in Figure 2b.

3.2. Graph Neural Network with Auto­Registration

A typical graph neural network refines the vertex fea-

tures by aggregating features along the edges. In the

(t+1)th iteration, it updates each vertex feature in the form:

vt+1

i = gt(ρ({etij | (i, j) ∈ E}), vti)

etij = f t(vti , v
t
j)

(2)

where et and vt are the edge and vertex features from the

tth iteration. A function f t(.) computes the edge feature be-

tween two vertices. ρ(.) is a set function which aggregates

the edge features for each vertex. gt(.) takes the aggregated

edge features to update the vertex features. The graph neu-

ral network then outputs the vertex features or repeats the

process in the next iteration.

In the case of object detection, we design the GNN to re-

fine a vertex’s state to include information about the object

where the vertex belongs. Towards this goal, we re-write
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Equation (2) to refine a vertex’s state using its neighbors’

states:

st+1

i = gt(ρ({f t(xj − xi, s
t
j) | (i, j) ∈ E}), sti) (3)

Note that we use the relative coordinates of the neighbors

as input to f t(.) for the edge feature extraction. The rel-

ative coordinates induce translation invariance against the

global shift of the point cloud. However, it is still sensi-

tive to translation within the neighborhood area. When a

small translation is added to a vertex, the local structure of

its neighbors remains similar. But the relative coordinates

of the neighbors are all changed, which increases the input

variance to f t(.). To reduce the translation variance, we

propose aligning neighbors’ coordinates by their structural

features instead of the center vertex coordinates. Because

the center vertex already contains some structural features

from the previous iteration, we can use it to predict an align-

ment offset, and propose an auto-registration mechanism:

∆xi
t = ht(sti)

st+1

i = gt(ρ({f(xj − xi +∆xi
t, stj)}, s

t
i)

(4)

∆xt
i is the coordination offset for the vertices to register

their coordinates. ht(.) calculates the offset using the cen-

ter vertex state value from the previous iteration. By setting

ht(.) to output zero, the GNN can disable the offset if neces-

sary. In that case, the GNN returns to Equation (3). We an-

alyze the effectiveness of this auto-registration mechanism

in Section 4.

As shown in Figure 2b, we model f t(.), gt(.) and ht(.)
using multi-layer perceptrons (MLP ) and add a residual

connection in gt(.). We choose ρ(.) to be Max for its

robustness[3]. A single iteration in the proposed graph net-

work is then given by:

∆xi
t = MLP t

h(s
t
i)

etij = MLP t
f ([xj − xi +∆xi

t, stj ])

st+1

i = MLP t
g(Max({eij |(i, j) ∈ E})) + sti

(5)

where [, ] represents the concatenation operation.

Every iteration t uses a different set of MLP t, which

is not shared among iterations. After T iterations of the

graph neural network, we use the vertex state value to pre-

dict both the category and the bounding box of the object

where the vertex belongs. A classification branch MLPcls

computes a multi-class probability. Finally, a localization

branch MLPloc computes a bounding box for each class.

3.3. Loss

For the object category, the classification branch com-

putes a multi-class probability distribution {pc1 , ..., pcM }
for each vertex. M is the total number of object classes, in-

cluding the Background class. If a vertex is within a bound-

ing box of an object, we assign the object class to the vertex.

If a vertex is outside any bounding boxes, we assign the

background class to it. We use the average cross-entropy

loss as the classification loss.

lcls = −
1

N

N∑

i=1

M∑

j=1

yicj log(p
i
cj
) (6)

where pic and yic are the predicted probability and the one-

hot class label for the i-th vertex respectively.

For the object bounding box, we predict it in the 7

degree-of-freedom format b = (x, y, z, l, h, w, θ), where

(x, y, z) represent the center position of the bounding box,

(l, h, w) represent the box length, height and width respec-

tively, and θ is the yaw angle. We encode the bounding box

with the vertex coordinates (xv, yv, zv) as follows:

δx =
x− xv

lm
, δy =

y − yv
hm

, δz =
z − zv
wm

δl = log(
l

lm
), δh = log(

h

hm

), δw = log(
w

wm

)

δθ =
θ − θ0
θm

(7)

where lm, hm, wm, θ0, θm are constant scale factors.

The localization branch predicts the encoded bounding

box δb = (δx, δy, δz, δl, δh, δw, δθ) for each class. If a ver-

tex is within a bounding box, we compute the Huber loss [7]

between the ground truth and our prediction. If a vertex is

outside any bounding boxes or it belongs to a class that we

do not need to localize, we set its localization loss as zero.

We then average the localization loss of all the vertices:

lloc =
1

N

N∑

i=1

✶(vi ∈ binterest)
∑

δ∈δbi

lhuber(δ − δgt) (8)

To prevent over-fitting, we add L1 regularization to each

MLP. The total loss is then:

ltotal = αlcls + βlloc + γlreg (9)

where α, β and γ are constant weights to balance each loss.

3.4. Box Merging and Scoring

As multiple vertices can be on the same object, the neu-

ral network can output multiple bounding boxes of the same

object. It is necessary to merge these bounding boxes into

one and also assign a confidence score. Non-maximum sup-

pression (NMS) has been widely used for this purpose. The

common practice is to select the box with the highest clas-

sification score and suppress the other overlapping boxes.

However, the classification score does not always reflect

the localization quality. Notably, a partially occluded ob-

ject can have a strong clue indicating the type of the object

but lacks enough shape information. The standard NMS can

1714



Algorithm 1: NMS with Box Merging and Scoring

Input: B = {b1, ..., bn}, D = {d1, ..., dn}, Th

B is the set of detected bounding boxes.

D is the corresponding detection scores.

Th is an overlapping threshold value.

Green color marks the main modifications.

1 M← {}, Z ← {}
2 while B 6= empty do

3 i←argmax D
4 L← {}
5 for bj in B do

6 if iou(bi, bj) > Th then

7 L←L ∪ bj
8 B←B − bj , D←D − dj
9 end

10 end

11 m←median(L)
12 o← occlusion(m)
13 z← (o+ 1)

∑
bk∈L IoU(m, bk)dk

14 M←M∪m, Z←Z ∪ z

15 end

16 returnM, Z

pick an inaccurate bounding box base on the classification

score alone.

To improve the localization accuracy, we propose to cal-

culate the merged box by considering the entire overlapped

box cluster. More specifically, we consider the median po-

sition and size of the overlapped bounding boxes. We also

compute the confidence score as the sum of the classifi-

cation scores weighted by the Intersection-of-Union (IoU)

factor and an occlusion factor. The occlusion factor repre-

sents the occupied volume ratio. Given a box bi, let li, wi,

hi be its length, width and height, and let vli, v
w
i , vhi be the

unit vectors that indicate their directions respectively. xj

are the coordinates of point pj . The occlusion factor oi is

then:

oi =
1

liwihi

∏

v∈{vl
i
,vw

i
,vh

i
}

max
pj∈bi

(vTxj)− min
pj∈bi

(vTxj) (10)

We modify standard NMS as shown in Algorithm 1. It

returns the merged bounding boxesM and their confidence

score Z . We will study its effectiveness in Section 4.

4. Experiments

4.1. Dataset

We evaluate our design using the widely used KITTI ob-

ject detection benchmark [6]. The KITTI dataset contains

7481 training samples and 7518 testing samples. Each sam-

ple provides both the point cloud and the camera image. We

only use the point cloud in our approach. Since the dataset

only annotates objects that are visible within the image, we

process the point cloud only within the field of view of the

image. The KITTI benchmark evaluates the average pre-

cision (AP) of three types of objects: Car, Pedestrian and

Cyclist. Due to the scale difference, we follow the common

practice [10][23][19][21] and train one network for the Car

and another network for the Pedestrian and Cyclist. For

training, we remove samples that do not contain objects of

interest.

4.2. Implementation Details

We use three iterations (T = 3) in our graph neural net-

work. During training, we limit the maximum number of

input edges per vertex to 256. During inference, we use all

the input edges. All GNN layers perform auto-registration

using a two-layer MLPh of units (64, 3). The MLPcls is

of size (64,#(classes)). For each class, MLPloc is of size

(64, 64, 7).

Car: We set (lm, hm, wm) to the median size of Car bound-

ing boxes (3.88m, 1.5m, 1.63m). We treat a side-view car

with θ ∈ [−π/4, π/4] and a front-view car θ ∈ [π/4, 3π/4]
as two different classes. Therefore, we set θ0 = 0 and

θ0 = π/2 respectively. The scale θm is set as π/2. To-

gether with the Background class and DoNotCare class, 4

classes are predicted. We construct the graph with r = 4m
and r0 = 1m. We set P̂ as a downsampled point cloud

by a voxel size of 0.8 meters in training and 0.4 me-

ters in inference. MLPf and MLPg , are both of sizes

(300, 300). For the initial vertex state, we use an MLP
of (32, 64, 128, 300) for embedding raw points and another

MLP of (300, 300) after the Max aggregation. We set

Th = 0.01 in NMS.

Pedestrian and Cyclist. Again, we set (lm, hm, wm) to the

median bounding box size. We set (0.88m, 1.77m, 0.65m)
for Pedestrian and (1.76m, 1.75m, 0.6m) for Cyclist. Sim-

ilar to what we did with the Car class, we treat front-

view and side-view objects as two different classes. To-

gether with the Background class and the DoNotCare class,

6 classes are predicted. We build the graph using r = 1.6m,

and downsample the point cloud by a voxel size of 0.4 me-

ters in training and 0.2 meters in inference. MLPf and

MLPg are both of sizes (256, 256). For the vertex state

initialization, we set r0 = 0.4m. We use a an MLP
of (32, 64, 128, 256, 512) for embedding and an MLP of

(256, 256) to process the aggregated feature. We set Th =
0.2 in NMS.

We train the proposed GNN end-to-end with a batch size

of 4. The loss weights are α = 0.1, β = 10, γ = 5e − 7.

We use stochastic gradient descent (SGD) with a stair-case

learning-rate decay. For Car, we use an initial learning rate

of 0.125 and a decay rate of 0.1 every 400K steps. We

trained the network for 1400K steps. For Pedestrian and
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Method Modality
Car Pedestrian Cyclist

Easy Moderate Hard Easy Moderate Hard Easy Moderate Hard

UberATG-ContFuse[12] LiDAR + Image 82.54 66.22 64.04 N/A N/A N/A N/A N/A N/A

AVOD-FPN[8] LiDAR + Image 81.94 71.88 66.38 50.80 42.81 40.88 64.00 52.18 46.61

F-PointNet[13] LiDAR + Image 81.20 70.39 62.19 51.21 44.89 40.23 71.96 56.77 50.39

UberATG-MMF[11] LiDAR + Image 86.81 76.75 68.41 N/A N/A N/A N/A N/A N/A

VoxelNet[23] LiDAR 81.97 65.46 62.85 57.86 53.42 48.87 67.17 47.65 45.11

SECOND[19] LiDAR 83.13 73.66 66.20 51.07 42.56 37.29 70.51 53.85 53.85

PointPillars[10] LiDAR 79.05 74.99 68.30 52.08 43.53 41.49 75.78 59.07 52.92

PointRCNN[16] LiDAR 85.94 75.76 68.32 49.43 41.78 38.63 73.93 59.60 53.59

STD[21] LiDAR 86.61 77.63 76.06 53.08 44.24 41.97 78.89 62.53 55.77

Our Point-GNN LiDAR 88.33 79.47 72.29 51.92 43.77 40.14 78.60 63.48 57.08

Table 1. The Average Precision (AP) comparison of 3D object detection on the KITTI test dataset.

Method Modality
Car Pedestrian Cyclist

Easy Moderate Hard Easy Moderate Hard Easy Moderate Hard

UberATG-ContFuse[12] LiDAR + Image 88.81 85.83 77.33 N/A N/A N/A N/A N/A N/A

AVOD-FPN[8] LiDAR + Image 88.53 83.79 77.9 58.75 51.05 47.54 68.06 57.48 50.77

F-PointNet[13] LiDAR + Image 88.70 84 .00 75.33 58.09 50.22 47.20 75.38 61.96 54.68

UberATG-MMF[11] LiDAR + Image 89.49 87.47 79.10 N/A N/A N/A N/A N/A N/A

VoxelNet[23] LiDAR 89.60 84.81 78.57 65.95 61.05 56.98 74.41 52.18 50.49

SECOND[19] LiDAR 88.07 79.37 77.95 55.10 46.27 44.76 73.67 56.04 48.78

PointPillars[10] LiDAR 88.35 86.10 79.83 58.66 50.23 47.19 79.14 62.25 56.00

STD[21] LiDAR 89.66 87.76 86.89 60.99 51.39 45.89 81.04 65.32 57.85

Our Point-GNN LiDAR 93.11 89.17 83.9 55.36 47.07 44.61 81.17 67.28 59.67

Table 2. The Average Precision (AP) comparison of Bird’s Eye View (BEV) object detection on the KITTI test dataset.

Cyclist, we use an learning rate of 0.32 and a decay rate of

0.25 every 400K steps. We trained it for 1000K steps.

4.3. Data Augmentation

To prevent overfitting, we perform data augmentation on

the training data. Unlike many approaches [19][10][16][21]

that use sophisticated techniques to create new ground truth

boxes, we choose a simple scheme of global rotation, global

flipping, box translation and vertex jitter. During train-

ing, we randomly rotate the point cloud by yaw ∆θ ∼
N (0, π/8) and then flip the x-axis by a probability of 0.5.

After that, each box and points within 110% size of the

box randomly shift by (∆x ∼ N (0, 3),∆y = 0,∆z ∼
N (0, 3)). We use a 10% larger box to select the points to

prevent cutting the object. During the translation, we check

and avoid collisions among boxes, or between background

points and boxes. During graph construction, we use a ran-

dom voxel downsample to induce vertex jitter.

4.3.1 Results

We have submitted our results to the KITTI 3D object de-

tection benchmark and the Bird’s Eye View (BEV) object

detection benchmark. In Table 1 and Table 2, we compare

our results with the existing literature. The KITTI dataset

evaluates the Average Precision (AP) on three difficulty lev-

els: Easy, Moderate, and Hard. Our approach achieves the

leading results on the Car detection of Easy and Moderate

level and also the Cyclist detection of Moderate and Hard

level. Remarkably, on the Easy level BEV Car detection,

we surpass the previous state-of-the-art approach by 3.45.

Also, we outperform fusion-based algorithms in all cate-

gories except for Pedestrian detection. In Figure 3, we pro-

vide qualitative detection results on all categories. The re-

sults on both the camera image and the point cloud can be

visualized. It must be noted that our approach uses only

the point cloud data. The camera images are purely used

for visual inspection since the test dataset does not provide

ground truth labels. As shown in Figure 3, our approach still

detects Pedestrian reasonably well despite not achieving the

top score. One likely reason why Pedestrian detection is not

as good as that for Car and Cyclist is that the vertices are not

dense enough to achieve more accurate bounding boxes.

4.4. Ablation Study

For the ablation study, we follow the standard practice

[10][21][5] and split the training samples into a training

split of 3712 samples and a validation split of 3769 sam-

ples. We use the training split to train the network and eval-

uate its accuracy on the validation split. We follow the same

protocol and assess the accuracy by AP1. Unless explicitly

modified for a controlled experiment, the network configu-

1The ablation study uses the KITTI 11-recall-position AP.
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Figure 3. Qualitative results on the KITTI test dataset using Point-GNN. We show the predicted 3D bounding box of Cars (green), Pedes-

trians (red) and Cyclists (blue) on both the image and the point cloud. Best viewed in color.

Box Box Auto BEV AP (Car) 3D AP (Car)

Merge Score Reg. Easy Moderate Hard Easy Moderate Hard

1 - - - 89.11 87.14 86.18 85.46 76.80 74.89

2 - - X 89.03 87.43 86.39 85.58 76.98 75.69

3 X - X 89.33 87.83 86.63 86.59 77.49 76.35

4 - X X 89.60 88.02 86.97 87.40 77.90 76.75

5 X X - 90.03 88.27 87.12 88.16 78.40 77.49

6 X X X 89.82 88.31 87.16 87.89 78.34 77.38

Table 3. Ablation study on the val. split of KITTI data.

ration and training parameters are the same as those in the

previous section. We focus on the detection of Car because

of its dominant presence in the dataset.

Box merging and scoring. In Table 3, we compare the ob-

ject detection accuracy with and without box merging and

scoring. For the test without box merging, we modify line

11 in Algorithm 1. Instead of taking the median bound-

ing box, we directly take the bounding box with the highest

classification score as in standard NMS. For the test with-

out box scoring, we modify lines 12 and 13 in Algorithm 1

to set the highest classification score as the box score. For

the test without box merging or scoring, we modify lines

11, 12, and 13, which essentially leads to standard NMS.

Row 2 of Table 3 shows a baseline implementation that uses

standard NMS with the auto-registration mechanism. As

shown in Row 3 and Row 4 of Table 3, both box merging

and box scoring outperform the baseline. When combined,

as shown in Row 6 of the table, they further outperform the

individual accuracy in every category. Similarly, when not

using auto-registration, box merging and box scoring (Row

5) also achieve higher accuracy than standard NMS (Row

1). These results demonstrate the effectiveness of the box

scoring and merging.

Auto-registration mechanism. Table 3 also shows the ac-

curacy improvement from the auto-registration mechanism.

As shown in Row 2, by using auto-registration alone, we

also surpass the baseline without auto-registration (Row 1)

on every category of 3D detection and the moderate and

hard categories of BEV detection. The performance on the

easy category of BEV detection decreases slightly but re-

mains close. Combining the auto-registration mechanism

with box merging and scoring (Row 6), we achieve higher

accuracy than using the auto-registration alone (Row 2).

However, the combination of all three modules (Row 6)

does not outperform box merging and score (Row 5). We

hypothesize that the regularization likely needs to be tuned

after adding the auto-registration branch.

We further investigate the auto-registration mechanism

by visualizing the offset ∆x in Equation 4. We extract ∆x
from different GNN iterations and add them to the vertex

position. Figure 4 shows the vertices that output detection

results and their positions with added offsets. We observe
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Figure 4. An example from the val. split showing the vertex loca-

tions with added offsets. The blue dot indicates the original posi-

tion of the vertices. The orange, purple, and red dots indicate the

original position with added offsets from the first, the second, and

the third graph neural network iterations. Best viewed in color.

Number of BEV AP (Car) 3D AP (Car)

iterations Easy Moderate Hard Easy Moderate Hard

T = 0 87.24 77.39 75.84 73.90 64.42 59.91

T = 1 89.83 87.67 86.30 88.00 77.89 76.14

T = 2 90.00 88.37 87.22 88.34 78.51 77.67

T = 3 89.82 88.31 87.16 87.89 78.34 77.38

Table 4. Average precision on the KITTI val. split using different

number of Point-GNN iterations.

that the vertex positions with added offsets move towards

the center of vehicles. We see such behaviors regardless

of the original vertex position. In other words, when the

GNN gets deeper, the relative coordinates of the neighbor

vertices depend less on the center vertex position but more

on the property of the point cloud. The offset ∆x cancels

the translation of the center vertex, and thus reduces the sen-

sitivity to the vertex translation. These qualitative results

demonstrate that Equation 4 helps to reduce the translation

variance of vertex positions. For more examples, see Sup-

plementary Material.

Point-GNN iterations. Our Point-GNN refine the vertex

states iteratively. In Table 4, we study the impact of the

number of iterations on the detection accuracy. We train

Point-GNNs with T = 1, T = 2, and compare them with

T = 3, which is the configuration in Section 4.3.1. Addi-

tionally, we train a detector using the initial vertex state di-

rectly without any Point-GNN iteration. As shown in Table

4, the initial vertex state alone achieves the lowest accuracy

since it only has a small receptive field around the vertex.

Without Point-GNN iterations, the local information can-

not flow along the graph edges, and therefore its receptive

field cannot expand. Even with a single Point-GNN itera-

tion T = 1, the accuracy improves significantly. T = 2
has higher accuracy than T = 3, which is likely due to the

training difficulty when the neural network goes deeper.

Running-time analysis. The speed of the detection algo-

rithm is important for real-time applications such as au-

tonomous driving. However, multiple factors affect the run-

ning time, including algorithm architecture, code optimiza-

tion and hardware resource. Furthermore, optimizing the

Number of BEV AP (Car) 3D AP (Car)

scanning line Easy Moderate Hard Easy Moderate Hard

64 89.82 88.31 87.16 87.89 78.34 77.38

32 89.62 79.84 78.77 85.31 69.02 67.68

16 86.56 61.69 60.57 66.67 50.23 48.29

8 49.72 34.05 32.88 26.88 21.00 19.53

Table 5. Average precision on downsampled KITTI val. split.

implementation is not the focus of this work. However,

a breakdown of the current inference time helps with fu-

ture optimization. Our implementation is written in Python

and uses Tensorflow for GPU computation. We measure

the inference time on a desktop with Xeon E5-1630 CPU

and GTX 1070 GPU. The average processing time for one

sample in the validation split is 643ms. Reading the dataset

and running the calibration takes 11.0% time (70ms). Creat-

ing the graph representation consumes 18.9% time (121ms).

The inference of the GNN takes 56.4% time (363ms). Box

merging and scoring take 13.1% time (84ms). See our code

for implementation details.

Robustness on LiDAR sparsity. The KITTI dataset col-

lects point cloud data using a 64-scanning-line LiDAR.

Such a high-density LiDAR usually leads to a high cost.

Therefore, it is of interest to investigate the object detection

performance in a less dense point cloud. To mimic a LiDAR

system with fewer scanning lines, we downsample the scan-

ning lines in the KITTI validation dataset. Because KITTI

gives the point cloud without the scanning line information,

we use k-means to cluster the elevation angles of points into

64 clusters, where each cluster represents a LiDAR scan-

ning line. We then downsample the point cloud to 32, 16, 8

scanning lines by skipping scanning lines in between. Our

test results on the downsampled KITTI validation split are

shown in Table 5. The accuracy for the moderate and hard

levels drops fast with downsampled data, while the detec-

tion for the easy level data maintains a reasonable accuracy

until it is downsampled to 8 scanning lines. This is because

that the easy level objects are mostly close to the LiDAR,

and thus have a dense point cloud even if the number of

scanning lines drops.

5. Conclusion

We have presented a graph neural network, named Point-

GNN, to detect 3D objects from a graph representation

of the point cloud. By using a graph representation, we

encode the point cloud compactly without mapping to a

grid or sampling and grouping repeatedly. Our Point-GNN

achieves the leading accuracy in both the 3D and Bird’s Eye

View object detection of the KITTI benchmark. Our exper-

iments show the proposed auto-registration mechanism re-

duces transition variance, and the box merging and scoring

operation improves the detection accuracy. In the future, we

plan to optimize the inference speed and also fuse the inputs

from other sensors.

1718



References

[1] Jon L. Bentley, Donald F. Stanat, and E.Hollins Williams.

The complexity of finding fixed-radius near neighbors. In-

formation Processing Letters, 6(6):209 – 212, 1977. 3

[2] Yin Bi, Aaron Chadha, Alhabib Abbas, Eirina Bourtsoulatze,

and Yiannis Andreopoulos. Graph-based object classifica-

tion for neuromorphic vision sensing. In The IEEE Inter-

national Conference on Computer Vision (ICCV), October

2019. 1, 2

[3] R. Q. Charles, H. Su, M. Kaichun, and L. J. Guibas. Pointnet:

Deep learning on point sets for 3d classification and segmen-

tation. In 2017 IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), pages 77–85, July 2017. 1, 2,

4

[4] X. Chen, H. Ma, J. Wan, B. Li, and T. Xia. Multi-view 3d

object detection network for autonomous driving. In 2017

IEEE Conference on Computer Vision and Pattern Recogni-

tion (CVPR), pages 6526–6534, July 2017. 2

[5] Yilun Chen, Shu Liu, Xiaoyong Shen, and Jiaya Jia. Fast

point r-cnn. In The IEEE International Conference on Com-

puter Vision (ICCV), October 2019. 6

[6] Andreas Geiger, Philip Lenz, and Raquel Urtasun. Are we

ready for autonomous driving? the kitti vision benchmark

suite. In Conference on Computer Vision and Pattern Recog-

nition (CVPR), 2012. 5

[7] Peter J. Huber. Robust estimation of a location parameter.

Ann. Math. Statist., 35(1):73–101, 03 1964. 4

[8] J. Ku, M. Mozifian, J. Lee, A. Harakeh, and S. L. Waslander.

Joint 3d proposal generation and object detection from view

aggregation. In 2018 IEEE/RSJ International Conference on

Intelligent Robots and Systems (IROS), pages 1–8, Oct 2018.

6

[9] Loic Landrieu and Martin Simonovsky. Large-scale point

cloud semantic segmentation with superpoint graphs. In The

IEEE Conference on Computer Vision and Pattern Recogni-

tion (CVPR), June 2018. 1, 2

[10] Alex H. Lang, Sourabh Vora, Holger Caesar, Lubing Zhou,

Jiong Yang, and Oscar Beijbom. Pointpillars: Fast encoders

for object detection from point clouds. In The IEEE Confer-

ence on Computer Vision and Pattern Recognition (CVPR),

June 2019. 1, 2, 3, 5, 6

[11] Ming Liang, Bin Yang, Yun Chen, Rui Hu, and Raquel Urta-

sun. Multi-task multi-sensor fusion for 3d object detection.

In The IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), June 2019. 2, 6

[12] Ming Liang, Bin Yang, Shenlong Wang, and Raquel Urtasun.

Deep continuous fusion for multi-sensor 3d object detection.

In The European Conference on Computer Vision (ECCV),

September 2018. 6

[13] C. R. Qi, W. Liu, C. Wu, H. Su, and L. J. Guibas. Frus-

tum pointnets for 3d object detection from rgb-d data. In

2018 IEEE/CVF Conference on Computer Vision and Pat-

tern Recognition, pages 918–927, June 2018. 2, 6

[14] Charles R Qi, Li Yi, Hao Su, and Leonidas J Guibas. Point-

net++: Deep hierarchical feature learning on point sets in a

metric space. arXiv preprint arXiv:1706.02413, 2017. 2

[15] X. Qi, R. Liao, J. Jia, S. Fidler, and R. Urtasun. 3d graph

neural networks for rgbd semantic segmentation. In 2017

IEEE International Conference on Computer Vision (ICCV),

pages 5209–5218, Oct 2017. 1, 2

[16] Shaoshuai Shi, Xiaogang Wang, and Hongsheng Li. Pointr-

cnn: 3d object proposal generation and detection from point

cloud. In The IEEE Conference on Computer Vision and Pat-

tern Recognition (CVPR), June 2019. 1, 2, 6

[17] Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E. Sarma,

Michael M. Bronstein, and Justin M. Solomon. Dynamic

graph cnn for learning on point clouds. ACM Transactions

on Graphics (TOG), 2019. 1, 2

[18] Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long,

Chengqi Zhang, and Philip S. Yu. A Comprehensive Sur-

vey on Graph Neural Networks. arXiv e-prints, page

arXiv:1901.00596, Jan 2019. 2

[19] Yan Yan, Yuxing Mao, and Bo Li. Second: Sparsely em-

bedded convolutional detection. Sensors, 18(10), 2018. 2, 5,

6

[20] B. Yang, W. Luo, and R. Urtasun. Pixor: Real-time 3d object

detection from point clouds. In 2018 IEEE/CVF Conference

on Computer Vision and Pattern Recognition, pages 7652–

7660, June 2018. 2

[21] Zetong Yang, Yanan Sun, Shu Liu, Xiaoyong Shen, and Jiaya

Jia. Std: Sparse-to-dense 3d object detector for point cloud.

In The IEEE International Conference on Computer Vision

(ICCV), October 2019. 1, 2, 5, 6

[22] Manzil Zaheer, Satwik Kottur, Siamak Ravanbakhsh, Barn-

abas Poczos, Ruslan R Salakhutdinov, and Alexander J

Smola. Deep sets. In I. Guyon, U. V. Luxburg, S. Bengio,

H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, edi-

tors, Advances in Neural Information Processing Systems 30,

pages 3391–3401. Curran Associates, Inc., 2017. 1, 2

[23] Y. Zhou and O. Tuzel. Voxelnet: End-to-end learning for

point cloud based 3d object detection. In 2018 IEEE/CVF

Conference on Computer Vision and Pattern Recognition,

pages 4490–4499, June 2018. 2, 3, 5, 6

1719


