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Abstract

Point clouds are useful in many applications like au-

tonomous driving and robotics as they provide natural 3D

information of the surrounding environments. While there

are extensive research on 3D point clouds, scene under-

standing on 4D point clouds, a series of consecutive 3D

point clouds frames, is an emerging topic and yet under-

investigated. With 4D point clouds (3D point cloud videos),

robotic systems could enhance their robustness by leverag-

ing the temporal information from previous frames. How-

ever, the existing semantic segmentation methods on 4D

point clouds suffer from low precision due to the spatial

and temporal information loss in their network structures.

In this paper, we propose SpSequenceNet to address this

problem. The network is designed based on 3D sparse con-

volution, and it includes two novel modules, a cross-frame

global attention module and a cross-frame local interpola-

tion module, to capture spatial and temporal information

in 4D point clouds. We conduct extensive experiments on

SemanticKITTI, and achieve the state-of-the-art result of

43.1% on mIoU, which is 1.5% higher than the previous

best approach.

1. Introduction

Scene understanding is a basic problem in computer vi-

sion. For autonomous driving cars and robotic systems that

work in the real world, the performance and robustness of

scene understanding is extremely crucial, since wrong deci-

sions may result in fatal accidents. Researchers are trying

to use more information to improve the performance and

robustness. 3D point clouds, collected by Lidar or Depth

cameras, provide more natural geometry information than

2D images. Further more, auto-driving cars and robots al-

ways work continuously within a period of time, thus the
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(a) Frame t = 0.

(b) Frame t = 1.

Figure 1: Two-frame samples of normal camera video

and point cloud sequence. In each frame, the first row is

collected with the normal front camera, and the second row

is a projection of the annotated LiDAR point cloud. The

point cloud is 360◦ around the car captured by the LiDAR

sensors, which has broader perception fields than the nor-

mal camera video.

environments change continuously. Under this constraint,

the systems could utilize temporal information from previ-

ous timestamps as hints and restrictions.

Semantic segmentation is a fundamental task in scene

understanding. On 2D images, the task is a per pixel clas-

sification problem that assign corresponding categories to

every pixel in the image. Inspired by the FCN [13], great

acchievements have been made in this area, such as Deeplab
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V3+[3], RefineNet [12] and PSPNet [27]. Also, many tasks

are developed based on image semantic segmentation, such

as point cloud segmentation, video segmentation and etc.

Our work combines point cloud semantic segmentation and

video semantic segmentation to improve the performance of

scene understanding. 4D semantic segmentation is a more

challenging task since both spatial and temporal informa-

tion are involved.

The 4D datasets have rich real-world information. Se-

manticKITTI [2] (Figure 1) is one of the biggest 4D point

cloud datasets, containing about 44,000 point cloud frames

in total. The SemanticKITTI baseline method simplify the

4D semantic segmentation setting into a 3D one, where they

combine multi point cloud frames into one point cloud, and

apply the 3D segmentation method on the transitioned 3D

point cloud. It causes temporal and spatial information loss

during the combination of multiple point clouds frames. To

resolve this problem, we propose SpSequenceNet to manip-

ulate the 4D point cloud data in the 3D cube style, which

reduces the spatial information loss. Meanwhile, we design

a cross-frame global attention module and a novel cross-

frame local interpolation module to extract the temporal

features from different frames. We evaluate our network

on SemanticKITTI [2]. The main contributions are:

• We design a network SpSequenceNet to directly cap-

ture spatial and temporal information from 4D point

clouds (3D point cloud video) for semantic segmenta-

tion.

• We introduce the Cross-frame Global Attention (CGA)

module to generate a global mask from previous point

cloud frame and use the generated mask for the current

point cloud frame segmentation.

• We propose the Cross-frame Local Interpolation (CLI)

to fuse the information between two point cloud

frames. It combines the temporal and spatial informa-

tion together and improves the semantic segmentation

quality.

• We achieve a new state-of-the-art result on Se-

manticKITTI [2], which is 1.5% higher than the ex-

isting methods.

2. Related work

Currently, there are few research works on 4D semantic

segmentation. 4D semantic segmentation requires the net-

work to extract both spatial information and temporal infor-

mation. Thus, we separate the 4D semantic segmentation

task into two sub tasks, i.e. spatial perception in 3D seman-

tic segmentation and temporal perception, which is a novel

area to explore. We will cover these two related parts in the

following sections.

2.1. 3D Semantic Segmentation

A point cloud is collected by the depth sensors to re-

flect the objects’ shape in the real world. The predica-

ment in mining the semantics from point clouds is the

sparsity and disorder of point cloud data. In previous re-

searches, traditional 3D convolution [20] use a dense cal-

culation and the complexity reaches O(n3). The sparsity

of point cloud leads to high computation consumption and

high resource waste for 3D convolution.Therefore, many

works are done on point cloud processing and there are

still many divergences on the utilization of point cloud

data. Generally, there are three major ways for processing

point cloud, namely projection-based method, PointNet-

like method, and 3D convolution.

First, projection-based methods are the extension of the

2D semantic segmentation [24, 25, 23]. These methods per-

form projections, usually spherical projections, to transform

the 3D points onto a surface. Then, they apply an image se-

mantic segmentation network on the projected surface. The

projection-based methods reach the real-time requirement

(SqueezeSeg[24] reaches 13.5ms/per frame) while the final

performance of projection-based methods is typically lower

than other methods.

PointNet-like methods are developed from the novel

structure PointNet [15]. This series of methods manipu-

late raw point cloud data directly, and treat the coordinate

and RGB feature of the points as the input features. Then,

the network applies a shared MLP on each point individu-

ally to generate the predictions. The performance is limited

as it drops the local spatial relationship. PointNet++ [16]

restricts a small region to extract the the local spatial rela-

tionship. PointCNN [11] redefines a convolution operation

with MLP and neighbor weights to get a flexible local spa-

tial information. KPConv [21] apply a more flexible neigh-

bour mechanism and get the state-of-the-art performance in

PointNet-like methods. Pointwise CNN [9] uses the kernel

weights with voxel bins to combine the local information.

KPConv [21] is followed by the PointCNN and PCNN and

acchieve the state-of-the-art performance in PointNet-like

methods.

The last method is the 3D convolution network. As

stated in the beginning of this section, the computation con-

sumption of 3D convolution is high. The major researches

in this area focus on effectiveness. In OctNet [17], an oc-

tree structure is enrolled to represent 3D space, and guide

the network on convolutions. Many works [18, 6] are de-

veloped based on this method. They arrange point cloud

data into cubes and index them with Octree, Kdtree and etc

so the convolution can be easily performed using this index.

Furthermore, sparse 3D convolution based methods [8, 4]

execute the 3D convolutions only along the active voxels in

the inputs. Sparse 3D convolution can accelerate the convo-

lution operations and share the knowledge base with dense
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Figure 2: Sparse sequence network structure. The input data is the point cloud frames Pt−1 and Pt. The output is the

semantic label for Pt. In addition, we use colors to represent the different functions. The yellow blocks are the basic neural

network blocks, which is a 3D residual network. Grey blocks are the Cross-frame Global Attention (CGA) modules, which

is designed to fuse the comprehensive information from the last frame. The red blocks is the Cross-frame Local Interpolation

(CLI) module, which is proposed to combine the local information from previous frames and current frames. The Blue blocks

are the decoder modules for segmentation outputs respectively.

convolutions.

2.2. 4D Temporal Feature Extraction

4D temporal feature extraction focuses on min-

ing the information in a time series. One re-

cent research is Minkowski Convolutional Neural Net-

works(MinkowskiNet) [4]. It generalizes convolution func-

tion from 2D to 4D so that the theory of deep neural net-

work is shared no matter the number of dimensions. The

4D MinkowskiNet lacks scalability since the computation

consumption increase rapidly with the increases of points

and frames.

There are some other researches on the 4D temporal fea-

ture extraction aside from semantic segmentation. In ST-

CNN [28], a 3D U-Net and a 1-D encoder for time infor-

mation are enrolled to auto-encode brain fMRI images. ST-

CNN locates sight on the auto-encoder with a 4D temporal

feature, which cannot be generalized to semantic segmenta-

tion tasks. OpenPose [10] focuses on a task to track human

pose with the 4D point clouds. It uses 4D volumetric data

to detect human hands’ position in real-time with human

detection and 2-D regression. PointFlowNet [1] is based on

the pointNet-like method and fuses two features from frame

t and t−1 to infer the motion of each point. Then, different

losses are designed to extract the ego motion.

Overall, there are few methods which directly manipu-

late 4D point clouds on segmentation tasks. Therefore, we

also explore some ideas from video semantic segmentation

methods. MaskTrack and the network modulation [14, 26]

use the the information and prediction from last frame to

guide the current prediction.

3. Sparse Sequence Network

We show our proposed model structure in Figure 2. Gen-

erally, the problem setting of the 4D point cloud segmen-

tation is similar to the normal 3D semantic segmentation.

We built up the dataset based on the sensors, which are two

sources, i.e. RGB-D camera (r, g, b) and LiDAR (r) Note

that we take the coordinates (x, y, z) of each point and the

point features fi,t as the model inputs, whose dimension is

shaped as (X,Y, Z, 3) (RGB-D) or (X,Y, Z, 1) (LiDAR).

The group of point clouds with n frames Pt, t ∈ n is com-

posed of pi,t = {xi,t, yi,t, zi,t}, i ∈ mt. In our setting,

we use a voxel method, and all the points are projected

into a 3D tensor. As a result, (x, y, z) will be projected to

(x′, y′, z′), which represents the point position in the cube.

We set the fi,t as the value of each voxel. Our goal is to
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Figure 3: A simple example for Cross-frame Global At-

tention (CGA). There is a sample point in the current frame

to show the process of the CGA.

predict the label li,t of each pi,t when t is given. In our pro-

posed framework, we use two frames, Pt−1 and Pt, to do

the predictions.

3.1. Network Architecture Overview

Our network is based on 3D convolution, which utilizes

the voxel method. We predict the label pi,t with the inputs

Pt and Pt−1, which are two 3D tensors.

The design of the proposed network follows the style

of U-net, implemented by Submanifold Sparse Convolu-

tion Network (SSCN) [7]. To balance the speed and per-

formance of training and inference, we made some modifi-

cations to the backbone network. Specifically, in the orig-

inal version of SSCN, there are seven encoder blocks with

skip paths to the deconvolution blocks, which forms a sym-

metrical structure.However, there are some drawbacks in

the symmetrical desing, such as the limited representation

abilities and the massive wastes of computation. There-

fore, we reduce the number of skip paths. Besides, we add

some blocks into the encoder, which is aimed to increase

the expression ability and adjust the network. The decoder

is streamlined, which contains the reduction of skip paths.

After the construction of our model, the next step is to

build up our blocks to fuse the information from different

frames. In the encoder phase, our network receives Pt and

Pt−1 with two different branches. It is described in the Fig-

ure 2. To construct better fused features, we define the in-

formation with two parts, global information and local in-

formation. Firstly, the cross-frame global attention mod-

ule is designed for global information. In general, there

are several cross-frame global attention modules in differ-

ent phases. The cross-frame global attention module selects

the features so that the backbone network can pay more at-

Figure 4: The structure of Cross-frame Global Attention

(CGA) in our network.

tention to the key features. Secondly, cross-frame local in-

terpolation focuses on local information, which is applied

to fuse the information from both Pt−1 and Pt at the end of

encoder.

3.2. Cross­frame Global Attention

As stated above, we extract the temporal global seman-

tics with our Cross-frame Global Attention (CGA) mod-

ule. We show a simple explanation of the cross-frame

global attention module in Figure 3. Inspired by the self-

attention mechanism, we design the cross-frame global at-

tention module to generate a mask for current frame Pt. The

mask concludes the appearance information on the features

of Pt−1. To highlight the crucial part of features Ft and in-

hibit irrelevant features, cross-frame global attention mod-

ule uses the appearance information from t− 1 to guide the

model.

The global semantics are distributed to each level of the

features. We select layers which are involved in the skip

path and apply the cross-frame global attention. It reduces

the computation complexity and brings precision improve-

ment. Firstly, an adapter turns all feature vectors fi,t−1 into

f ′

i,t−1
and applies a global average pooling on f ′

i,t−1
:

vj =

∑mt−1

i (gj(fi,j,t−1))

mt−1

. (1)

Here, mt−1 is the total number of points from the previous

frame Pt−1. gj is a specific adapter function in the net-

work and it is required to turn the features into a suitable

one for attention. In our network, the adapter consists of

two (1,1,1) 3D convolution layer, when a 3D ReLU layer
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Figure 5: The structure of Cross-frame Local Interpola-

tion (CLI) in our network. The process happens at every

points in the current point cloud frame.

and a 3D batch normalization are in the middle of them.

The global information is obtained by the average pooling.

Then, we generate channel-wise attention maps aj , which

can be formulated as:

aj = hθ(vj) =
1

1 + e−θT vj
. (2)

When aj is determined, the output features F ′

t can be ob-

tained by F ′

t = aj ∗ Ft, where Ft is the input features of

current point cloud frame. With cross-frame global atten-

tion, some channels in the features is set to zero. Therefore,

it reduces the value in ft, and keep the value of parts with

high values in f ′

t . Pt−1 plays a role as a tutor. It teaches the

network to focus on the true important part in Pt. A brief

structure of this function is available in Figure 4.

3.3. Cross­frame Local Interpolation

At the end of the encoder phase, we design a cross-frame

local interpolation (CLI) module to combine the informa-

tion locally and capture the temporal information between

two point cloud frames. Optic flow methods [22, 29] use

the nearest pixel from two different frames to generate local

optic flow and achieve significant performance. Inspired by

these methods, cross-frame local interpolation is designed

to extract partial difference between point clouds Pt−1 and

Pt. The basic idea of cross-frame local interpolation is

shown in Figure 5, which is to seek the k nearest neigh-

bors pi′,t−1 of pi,t, and generate a new local feature to help

the model fuse the temporal information. At the same time,

cross-frame local interpolation summarizes the area of near-

est points and fuses the spatial information with the feature

of selected points.

Firstly, distance metrics Dt−1,t is calculated as follow-

ing:

Dt−1,t =
Ct · C

T
t + Ct−1 · C

T
t−1

− 2Ct·

γ
, (3)

where C is the metric which consists of the points coor-

dinates. γ is a hyper-parameter for re-scaling the distance

to a approximating scale [0, 1]. It is based on the shape

of input data. We set γ as 32 when the shape of input is

32 × 32 × 32. Dt−1,t is an approximate Euclid distance

matrix, which subsides the square operation to speed up the

calculation. Based on Dt−1,t, the top k nearest fj,t−1 is

obtained, representing the area features. The weight wi,t−1

for each point is

wi,t−1 = (α−min(di,j,t,t−1, α)) ∗ β, (4)

where α and β are handcrafted parameters to adjust wi,t−1.

Note that α has an influence on the weights of distance. A

low value of α makes network only considers the adjoining

pi,t−1 as the valid features. β modifies the range of final

features to avoid gradient vanishing. In the experiment, we

define α and β as 0.5 and 2. di,j,t,t−1 is the distance of

position i,j in Dt−1,t. The min operation confirms no neg-

ative weight. wi,t−1 is a weight for neighbour point pi,t−1.

Because of the point cloud’s sparsity, the possibility of k

nearest neighbours containing the points from another ob-

ject remains high, while wi,t−1 reduces this effect of fea-

tures.The CLI features Li,t−1 are calculated by:

Li,t−1 =

k∑

i

fi,t−1 ∗ wi,t−1. (5)

Based on Li,t−1, we concatenate Li,t−1 and feature fi,t
from current frames, and use a residual block to extract out-

put features as Figure 5. We believe the network is capable

to learn the relation between Li,t−1 and fi,t and improve

the segmentation quality.

4. Experiments

This section is divided into several parts. We first in-

troduce the SemanticKITTI [2] dataset, the method and the

experiment results. Then, we compare the results from dif-

ferent versions of the system. At last, we give some further

discussions.
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TangentConv [19] 34.1 84.9 2.0 18.2 21.1 18.5 1.6 0.0 0.0 83.9 38.3 64.0 15.3 85.8 49.1 79.5 43.2 56.7 36.4 31.2 40.3 1.1 6.4 1.9 30.1 42.2

DarkNet53Seg 41.6 84.1 30.4 32.9 20.0 20.7 7.5 0.0 0.0 91.6 64.9 75.3 27.5 85.2 56.5 78.4 50.7 64.8 38.1 53.3 61.5 14.1 15.2 0.2 28.9 37.8

Backbone 41.9 89.9 20.6 23.3 23.4 24.6 3.5 0.0 0.0 89.8 59.9 73.5 29.6 90.2 65.0 82.3 63.6 64.1 50.9 49.6 66.1 40.7 21.6 7.5 7.5 1.0

Backbone+CGA 42.6 89.6 27.5 23.8 26.5 23.3 7.5 0.0 0.0 89.5 58.2 73.2 28.0 91.0 66.2 83.0 63.8 65.3 43.6 47.5 61.7 35.7 25.8 31.0 3.2 0.4

Backbone+CGA+CLI 43.1 88.5 24.0 26.2 29.2 22.7 6.3 0.0 0.0 90.1 57.6 73.9 27.1 91.2 66.8 84.0 66.0 65.7 50.8 48.7 53.2 41.2 26.2 36.2 2.3 0.1

Table 1: Our results on the SemanticKITTI. All the models were trained on the training set of SemanticKITTI, and evalu-

ated on the testing set of SemanticKITTI. The performances of two state-of-the-art methods, TangentConv and DarkNet53Seg

are from [2]. The evaluation metric for each column is mIoU. In the table, we list our three proposed methods. Our back-

bone network reaches 41.9% mIoU. The model in the fourth row is the backbone network with cross-frame global attention

module. Cross-frame global attention module achieves a 0.7% improvement for the vanilla backbone network. The last row

is the result from our proposed network SpSequenceNet, which apply the cross-frame local interpolation on the model in the

fourth row. The network achieves +1.5% improvement with the DarkNet53Seg.

4.1. Dataset

We use the SemanticKITTI dataset, which is based on

the data from the odometry task of KITTI [5]. In the Se-

manticKITTI paper [2], they built up a tool to manually

annotate the semantic data on each frame. There are 22

3D point cloud videos, which contain 43,551 frames in to-

tal. In the experiment, the dataset is split into train (19,130

frames), validation (4,071), and test (20,351). In each

scan, data is a series of points collected by LiDAR. The

coordinates of points are related to the LiDAR’s position.

The test set is used for the final evaluations on their web-

site1. The challenge in SemanticKITTI contains two parts,

i.e. single-frame semantic segmentation and multi-frame

semantic segmentation. Single-frame semantic segmenta-

tion is for the single-frame task, which contains 19 classes.

Multi-frame semantic segmentation contains 6 more target

categories than the single-frame task to distinguish between

moving objects and stationary ones for several categories,

including car, trunk, other-vehicle, person, bicyclist, motor-

cyclist. As mentioned before, our job is to predict the label

at time t with the additional information from t−1, t−2....
We evaluate our model on 25 classes for the multi-frame

semantic segmentation task.

4.2. Implementation Details

In the pre-possessing phase, we turn the coordinate sys-

tem of previous frame Pt−1 into that of the current frame Pt.

Then, we apply a random rotation and scale on both Pt and

Pt−1 with the same random seeds, so that Pt and Pt−1 are

confirmed to be in the same coordinate system. Next, We

use 0.05m as a unit to turn the coordinate of points Pt−1 and

Pt into the voxel format. The maximum scale of coordinate

in the dataset is around 150m, and the input cube in our

1https://competitions.codalab.org/competitions/

20331

network consists of 2048× 2048× 2048 voxels. When the

unit is set as 0.05m, the input cube is capable of containing

enough points. As a result, setting the unit to be 0.05m can

achieve the best trade-off between computation and perfor-

mance. Note that when t = 0, it is a special case for current

point cloud frame Pt, which means it does not have a previ-

ous frame Pt−1. We simply build a cube with one point at

(0, 0, 0) and Ft−1 is filled with 0. When the input is ready,

we train SpSequenceNet with Adam optimizer and set the

batch size as 14, which requires about 10GB GPU mem-

ory. The maximum number of the epoch is 40. We train

the model with one Nvidia RTX 2080Ti. Each model takes

about five days for training. In the inference phase, we ap-

ply the same process except data augmentation on the test

data. In some cases, it is impossible to put all the points in

the cube. The labels of these points are set as ignored label

because the percentage of these points is below 1%, and the

cost of covering these points is high.

4.3. Main Results

Baselines. The results are listed in Table 1. Baselines in

SemanticKITTI are TangentConv [19] and DarkNet53Seg.

They adjusted the coordinate system from Pt−4 to Pt−1 and

combined all the frames into one point cloud as the input.

TangentConv is a PointNet-like method, and DarkNet53Seg

is a projection-based method.

Backbone Network. Backbone Network removes all the

additional functions, and the input is just current point cloud

frame Pt. The result is close to the best baseline Dark-

Net53Seg in SemanticKITTIs and is 7.9% higher than Tan-

gentConv [19].

Backbone + CGA. Here we adopt the backbone network

and the cross-frame global attention. The input is based on

two point cloud frames Pt and Pt−1. Compared to the back-

bone network, the performance has a 0.7% improvement on
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mIoU

backbone 41.9

backbone+CGA 42.6

backbone+CGA+CLI-1 42.0

backbone+CGA+CLI-3 43.1

Table 2: Comparison between different top k for Cross-

frame Local Interpolation (CLI). The performance for

top 3 CLI achieves a 0.5% improvement for the backbone

network with cross-frame global attention, but top 1 CLI

causes a performance decrease.

mIoU.

Backbone + CGA + CLI. The structure is shown in Fig-

ure 2. The network contains the backbone network, the

cross-frame global attention and the cross-frame local in-

terpolation, which uses top 3 nearest neighbour to gener-

ate the area features. Our network achieves +1.5% mIoU

with the DarkNet53Seg and achieves +1.2% mIoU with the

backbone network.

In summary, compared with other advanced methods in

the Table 1, our proposed methods are more sensitive with

the movements of small objects and large static objects,

while insensitive about the moving large objects. This phe-

nomenon is caused by the characteristics of our proposed

method. Specifically, in the proposed network, it detects

the shifts of the features in the same voxel system between

t − 1 and t. When the object is moving, there are signifi-

cant changes in the area of the small objects, while the large

object areas do not change much.

4.4. Result Comparisons

Discussion of the methods in SemanticKITTI. The pro-

cessing method for point cloud combination consume more

resources than expected. Since the computation costs are

highly related to the scope of the points, in our experiments,

the batch size is forced to be set lower than 10. At the same

time, the training time reaches over 6 hours per epoch when

the reasonable minimum number of training epochs is 30,

which spends about 8 days for the training process. It makes

the training duration unacceptable. Therefore, we do not

use this method on our backbone.

The effectiveness of the SpSequenceNet. We show a vi-

sualization for comparisons in Figure 6. For the backbone

network, we can compare Figure 6b with Figure 6c and ob-

serve that the area in the red box of Figure 6b is untidiness.

To be specific, Figure 6b represents vanilla backbone net-

work. In Figure 6c, the previously mentioned area is more

unitary. Therefore, cross-frame global attention and cross-

frame local interpolation improve the smoothness of the re-

sults.

Cross-frame global attention. As shown in Table 1, the

Single mIoU Move mIoU

Backbone 54.4 -

Backbone+CGA+CLI-3+Multi-head 56.0 39.9

Backbone+CGA+CLI-3+Reorganized 57.l 37.9

Table 3: Single-Frame Task and Motion Status Segmen-

tation. The second column is single mIoU, which is the per-

formance of the single-frame semantic segmentation task.

The third column is the performance of the motion status

segmentation.

improvement of cross-frame global attention is of great sig-

nificance. Specifically, cross-frame global attention en-

hances the performance of the vanilla backbone in some

classes, because it helps the backbone track better on the

small objects.

Top k cross-frame local interpolation. We choose K near-

est neighbours from last frame Pt−1 for point pi,t of current

frame to generate the features of the cross-frame local inter-

polation. We train the model with the top 1, 3, and 5 nearest

neighbours for the cross-frame local interpolation, which is

named as top k CLI in the following part. For top 1 CLI and

top 3 CLI, we submit the results to the SemanticKITTI for

testing. The result shows that top 1 CLI causes the decrease

in mIoU, which is in line with expectations. The precision

of top 1 CLI in Table 1 is even poorer than backbone+CGA.

For the points on the boundaries, the possibility of the near-

est point with the same correct label is low, resulting in a 6%

drop. At the same time, the result of the top 3 CLI reaches

state-of-the-art. Finally, the result of the top 5 CLI is not

shown here, since the performance on validation is similar

to the top 3 CLI in every epoch. The performance of top 5

CLI is similar to top 3 CLI. Consequently, it is unnecessary

to submit for the test results. According to the increase of

computation consumption, 3 nearest neighbor is suitable for

cross-frame local interpolation.

4.5. Single­Frame and Motion Status Experiment

We design an experiment to verify the effectiveness of

our methods on the 4D point cloud semantic segmentation.

The task of SemanticKITTI is to predict the semantics and

the motion status for several specific objects. For objects

within the same class, the gradients from moving and static

objects may affect each other and degrade the training re-

sults. Therefore, the performance on the single-frame task

can better reflect the overall performance of the networks.

For better illustration, we compare the segmentation perfor-

mance of motion status in different settings.

Accordingly, we train a backbone network for the single-

frame task as a baseline. Then, Backbone+CGA+CLI-3

model is modified with a multi-head prediction in the end

of the decoding phase, which is called multi-head method.

One prediction head is for the single-frame task, and the

4580



(a) Semantic Annotation from Frame t

(b) Backbone Netork Result.

(c) Backbone + CGA + CLI Result.

Figure 6: Visual examples for different version networks. Figure 6a is the ground truth for Pt and Pt−1. Figure 6b is

the result from the backbone network when Figure 6c is the result from our proposed network. The result in the third row is

better that that in the second row after comparing the top-left blue area of ground truth and our results.

other is for the object motion status. The input ground

truth is also modified as single-frame and motion status

ground truth, which can enhance the gradients from mo-

tion status. Finally, the multi-frame prediction of original

SpSequenceNet, which is mentioned in Section 4.4 is re-

organized to two outputs, the single-frame prediction and

the motion status. We combine the moving objects and

the static objects to generate a single-frame prediction, and

extract the motion status from the moving objects and the

static objects. The outputs of reorganized prediction is

called reorganized prediction in Table 3.

The results are listed in Table 3. First of all, our network

has the ability to improve the semantic segmentation. The

mIoU improvement reaches 1.6% for multi-head network

and 2.7% for reorganized prediction, compared to the per-

formance of the backbone network, 54.4% on mIoU. After-

wards, compared to the reorganized prediction, multi-head

network has a 2% improvement in the motion status, but

there is a 1.1% decrease for single-frame task, which indi-

cates it is harmful to the object representation ability if the

model directly incorporates the motion status into the train-

ing objects.

5. Conclusion

In this paper, we propose a novel structure, SpSe-

quenceNet, to fuse the spatial and temporal information

from 4D point clouds. In the SpSequenceNet, we design

two modules, cross-frame global attention and cross-frame

local interpolation to improve the performance. Cross-

frame global attention is an attention layer generated from

the global features of the last frames, and highlights the key

features of each point from current frames. Cross-frame

local interpolation uses the features from the nearest last

frames. With the experiments, we have shown the effective-

ness of the whole model SpSequenceNet and its building

components, cross-frame global attention and cross-frame

local interpolation. Overall, our proposed method has sig-

nificantly outperformed the state-of-the-art methods for 4D

point cloud segmentation, and we believe our method can

be effectively applied in other general 4D point cloud se-

mantic segmentation tasks.
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