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Abstract

Deep learning models have achieved great success in su-
pervised shape descriptor learning for 3D shape retrieval,
classification, and correspondence. However, the unsuper-
vised shape descriptor calculated via deep learning is less
studied than that of supervised ones due to the design chal-
lenges of unsupervised neural network architecture. This
paper proposes a novel probabilistic framework for the
learning of unsupervised deep shape descriptors with point
distribution learning. In our approach, we firstly associate
each point with a Gaussian, and the point clouds are mod-
eled as the distribution of the points. We then use deep
neural networks (DNNs) to model a maximum likelihood
estimation process that is traditionally solved with an it-
erative Expectation-Maximization (EM) process. Our key
novelty is that “training” these DNNs with unsupervised
self-correspondence L2 distance loss will elegantly reveal
the statically significant deep shape descriptor representa-
tion for the distribution of the point clouds. We have con-
ducted experiments over various 3D datasets. Qualitative
and quantitative comparisons demonstrate that our pro-
posed method achieves superior classification performance
over existing unsupervised 3D shape descriptors. In addi-
tion, we verified the following attractive properties of our
shape descriptor through experiments: multi-scale shape
representation, robustness to shape rotation, and robustness
to noise.

1. Introduction

With recent advancements in range sensors and imaging
technologies, 3D geometric data has been applied in a vari-
ety of applications[2, 32, 22, 47, 46]. It is therefore of great
interest to develop methods that can automatically analyze
a large amount of 3D geometric data for different tasks (e.g.
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Figure 1. The illustration of our proposed unsupervised descriptor
learning method with 3D-GAN [37]. Comparing with 3D-GAN,
Our proposed method does not require the generator and the dis-
criminator while our framework extracts the shape descriptor only
using a decoder.

3D object recognition, classification, correspondence and
retrieval) [4, 5, 3, 10, 41, 39, 37, 14, 18, 40, 38, 9]. To that
end, a lot of efforts have been made, many of which focused
on building robust 3D shape representations. However, the
irregular property and the structural variation of 3D objects
(i.e. 3D human models with different poses, 3D car models
with various design patterns) pose great challenges on the
task of learning a high-quality 3D shape descriptor.

The promising performance of Deep Neural Networks
(DNNs) in dealing with 2D images motivates 3D computer
vision researchers to transform the 3D geometric data to
Voxel grids in a regular format so that the 3D data can be fed
to a deep net architecture [38] for further processing. While
the extension of the deep learning to volumetric shapes is
conceptually simple, the computational cost of 3D convolu-
tion severely limits the storage and computational efficiency
in processing 3D geometric data for object recognition [30].
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Given that the most common approaches for descriptor ex-
traction are conducted in supervised learning, generative
models such as 3DGAN [37] treads an uncharted territory
where 3D shape descriptors can be generated in an unsu-
pervised manner. Despite its good performance over vari-
ous tasks, it still relies on 3D convolutional layers where the
geometric information loss is inevitable given the necessity
of the volumetric transformation. It also suffers from the
restriction of its encoder and discriminator structure, since
they are only specialized in feature extraction when faced
with the shape categories encountered during training. A
drop in the performance when processing out-of-category
data is thus expected.

In this paper, we propose a novel zero-shot unsupervised
approach for learning an instance-level 3D shape descrip-
tor. Firstly, we claim that a point cloud instance can be de-
scribed by probability distributions where each point is rep-
resented by a Gaussian. With the aim of obtaining the dis-
tribution of points given a shape instance, in each epoch, we
synthesize a new point cloud instance corresponding to the
input point cloud. To elaborate on the synthesizing process,
each point in the new point cloud is sampled from the 3D
space of a multivariate Gaussian distribution defined with a
fixed standard deviation o around the original point. Here
we denote this process of point cloud synthesis as 3D Gaus-
sian sampling. An encoder-free network is then leveraged
to model a Maximum Likelihood Estimation process where
the network learns to predict the parameters of the distribu-
tion while a shape descriptor is optimized to describe the
geometric information. The L2 distance between the origi-
nal 3D point cloud instance and the predicted instance will
then be calculated to train the general decoder and shape de-
scriptors for all training data. In order to generate the shape
descriptor for any point cloud data, the exact same operation
during the decoder training phase will be performed, except
that the decoder will be fixed using the weights learned dur-
ing the training phase.

Our unsupervised encoder-free model is more versatile
compared to other generative structures in two aspects: 1)
It avoids the design of specific 3D feature encoder for ir-
regular non-grid point cloud; 2) It frees our model from
the limitation of the fixed encoder weights optimized for
categories encountered during training. It enhances feature
learning for unseen out-of-category data. Furthermore, with
our auto-decoder network (mostly MLP structure), com-
pared to complex GAN structures in [19, 37], our approach
is able to generate the 3D shape descriptor efficiently in an
unsupervised manner. Our contributions are summarized as
followed:

e A probabilistic representation that models the point
clouds using Gaussian distributions. The shape de-
scriptor of a point cloud instance can be revealed by
solving the parameters of the distributions via a DNN.

e An unsupervised shape descriptor learning mechanism
from which shape descriptors that are robust to rotation
and noise can be generated.

e A novel multi-scaled shape descriptor fusion technique
that is able to represent an instance in a coarse-to-fine
manner which enhances the performance of our de-
scriptor in various tasks.

2. Related Works
2.1. Hand-Crafted 3D shape Descriptors

3D shape descriptor is a succinct and compact represen-
tation of 3D objects that capture the geometric essence of
a 3D object. Some existing shape descriptors have been
developed to describe the 3D objects [20, 38, 30]. The ear-
lier D2 shape distribution, statistical moments, Fourier de-
scriptor, Light Field Descriptor, Eigenvalue Descriptor have
been proposed to describe the 3D shape, particularly for
rigid 3D objects. The Spin Image [45] was developed based
on the dense collection of 3D points and surface normals.
There are also feature histogram [45] and signatures of his-
togram shape descriptors developed based on the distribu-
tion of a type of statistical geometric properties. The efforts
on robust 3D shape features are further developed by heat
diffusion geometry. A global shape descriptor, named tem-
perature distribution (TD) descriptor, is developed based on
HKS information at a single scale to represent the entire
shape [13]. Hand-crafted shape descriptors are often not
robust enough to deal with structural variations and incom-
pleteness present in 3D real-world models and are often not
able to be generalized to data of different modality.

2.2. Shape feature learning

The bag-of-features (BOF) is first introduced to learn
to extract a frequency histogram of geometric words for
shape retrieval [1 1, 12, 21]. To learn global features, [15]
adopted auto-encoder with the distribution of HKS learns
a deformation-invariant shape descriptor. Recent develop-
ment in deep learning motivates researchers to learn a 3D
shape descriptor from a large-scale dataset using deep neu-
ral networks. However, to feed the 3D geometric data to
neural networks, the 3D geometric data are often trans-
formed into 3D Voxel grids or a collection of 2D projection
images from different views.

The volumetric representation plays an important role in
the computer graphics community since the 1980s. It pro-
vides a uniform, simple and robust description to synthetic
and measured objects and founds the basis of volume graph-
ics [23]. In other words, a voxel is an extension of a pixel,
and the binary volume is an extension of binary image. Re-
cently, many researchers begin to develop 3D CNN on vol-
umetric shapes. [38] voxelized the 3D shape into 3D grids
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Figure 2. The training process. We concatenate a randomly initialized vector z to each point of the sampled instance shape. The L2 point
distance loss between the decoded point set and the original point set will be calculated. During the decoder training phase, the loss will
be back-propagated to update the shape descriptors and decoder simultaneously. During the descriptor generation phase, the loss will only

be used to update the shape descriptors.

and train a generative model for 3D shape recognition us-
ing convolutional deep belief networks. Similarly, [30] pro-
posed a real-time 3D supervised learning architecture on
volumetric 3D shapes. Apart from supervised CNN, [37]
generate 3D objects from a probabilistic space by leverag-
ing advances in volumetric CNNs and GANSs, and the un-
supervised features can be widely used in 3D object recog-
nition. [33] proposed a 3D convolutional auto-encoder for
recognizing 3D shape.

Apart from the direct 3D representation, the 3D shapes
can also be projected to 2D space. [34] proposed a multi-
view CNN for 3D shape recognition by using CNN to ex-
tract visual features from images with different views and
employing max-pooling across views to learn one compact
shape descriptor. The LFD [8] extract features from the
light fields rendered from cameras on a sphere exhaustively
to improve the robustness against rotations. [0] proposed
a coding framework for constructing a compact descriptor
based on a set of 2D views in the format of depth buffer
rendered from each 3D object.

2.3. Variational Auto-encoder

A Variational Auto-encoder (VAE) [24] is another popu-
lar generative framework that learns a probability distribu-
tion P(X) from a set of observations X'. Suppose we have
a random variable X which represents a distribution. The
VAE maps the distribution using an encoder with a prior
distribution of z Py(z), and a decoder Py (X |z) tries to cap-
ture the distribution of X given z. The encoder and decoder
are trained simultaneously to maximize a lower bound on

the log-likelihood of X. After training, Both the encoder
mapping (4 (z|X) and the decoder mapping Py (X |z) are
acquired. Instance generation and shape descriptor acquisi-
tion can then be achieved with the trained models.

2.4. Adversial Networks based methods

[17, 29] have shown the effectiveness of Generative Ad-
versarial Networks (GAN), where a pair of neural networks
jointly learn together by pursuing competing goals, the gen-
erator learns the mapping from a latent space to data distri-
bution, while the discriminator learns to distinguish from
ground truth data and the generated data. [37] extends the
usage of GAN from 2D image to voxelized 3D grid. Its cat-
egory specialized generator learns a mapping from a low-
dimensional probabilistic space to 3D shape while its dis-
criminator provides a powerful 3D shape descriptor. It can
generate shape descriptors without supervision.

3. Methods
3.1. Problem Formulation

Consider M point cloud instances in the Euclidean space
S = {X,;}i=1,2....m where each point cloud instance is a
cluster of N points X; = {13ji}j=1127___N and zj; € R3.

3.2. Point Distribution Representation

In most applications, point clouds are either acquired via
scanning sensors or sampled on the surface of a mesh file.
Point clouds are thus born with a noisy and random nature.
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In pursue of a robust representation, it’s common to repre-
sent a point cloud with probability distributions.

Aimed to simplify our probability distribution represen-
tation in a succinct yet expressive form, the distribution for
a point zj; € R3 can be viewed as a multivariate Gaus-
sian distribution parameterized with mean p;; € R? that
equals to the point coordinate and a constant covariance
021, where I € R3*3 is an identity matrix. The point dis-
tribution is thus symmetric about the corresponding point
coordinate and affected by a refinement parameter o. Its
effect will be covered in Section 3.4.

To describe the distribution of point x;; in an instance
X;, a new point xgl is synthesized by sampling from the
Gaussian distribution centered around the corresponding
original point during each epoch. After a number of epochs,
a point distribution is expected to be well-presented given
adequate samples have been observed. This Gaussian sam-
pling procedure can also be viewed as an effective data aug-
mentation technique which increases the diversity of data
significantly. It is one of the crucial factors that empower
our zero-shot learning model when faced with categories
with few instances. Noted that each point distribution in X;
is independent, the shape distribution of a sampled instance
X/ can then be modeled naturally as the product of point
distributions.

P(x[10) = [[ p(=)il0) (1)

1 2

T—pjq

o

in which p(z;il0) = p(xjilpi) = @rozye
Considered that each point contributes to the geometric in-
formation of the entire point cloud instance, in order to eval-
uate a point cloud, we align the independent point distribu-
tions with the likelihood of an instance. Since our goal is to
acquire a descriptor for an instance, we hope adequate ge-
ometric information can be learned by solving the param-
eters of distributions. Intuitively, such a problem is solved
in a direct approach with Maximum Likelihood Estimation
(MLE).

eoptimal = arg max P(XZ/|9)
6

N )
= argmax Y 1og(p(};19)
§=0

where 6 stands for distribution parameters that include all
mean vectors of point distributions. Traditionally, an iter-
ative optimization method, the Expectation-Maximization
(EM) algorithm is used here. However, the accuracy and
time cost of EM is hard to guarantee given its iterative na-
ture. More importantly, we are unable to connect point dis-
tributions with a descriptor latent distribution from which

the shape descriptors can be obtained. In contrast, we lever-
age DNNs to model such an MLE process in an unsuper-
vised manner.

3.3. Maximum Likelihood Estimation with Deep
Neural Networks

Unlike common approaches in recent proposed genera-
tive models [24, 37] that establishes a mapping from a pos-
sibility distribution to another distribution via encoding and
decoding a hidden latent vector, our approach directly opti-
mizes a hidden latent vector determines the mapping from
a distribution to another distribution without the encoding-
decoding process. It frees us from the restriction of en-
coder weights that are specialized with the training data,
thus guaranteeing a better generalization ability on unseen
data and categories.

In essence, our model reveals the deep shape descrip-
tor parameters through optimizing a latent encoding for
restoration from distribution described by Gaussian sam-
pled points to the original point. In the proposed model,
a point cloud instance can be thought of as a distribution of
distributions. More specifically, the distributions of points
as a whole describe the distribution of shape, and the shape
descriptor of the instance itself is thought of as a sample
from a distribution of all shapes descriptors. For an original
shape X;, a synthesized shape X/ is created by Gaussian
sampling in an iteration. The point coordinates in X are
{x;i}jzl’g)m ~. Each individual shape encountered is as-
signed a descriptor Z;. The prior distribution p(Z;) of the
corresponding shape descriptor Z; is set as a Gaussian with
zero-mean. The posterior distribution of a descriptor Z;
given a synthesized point cloud instance X with the point
distribution parameters 6 can be formulated as:

N
P(Z;|Xi',0) = H il 2, 0) 3)

where p(z’;|Z;,0) describes the independent point proba-
bility distribution of a Gaussian sample x;-i given the shape
descriptor and the original coordinate. As a large number of
synthesized point generated, P(Z;|X/,0) — P(Z;|X;,0)
as X! — X, thus allowing P(Z;| X!, 0) to be approximated
to P(ZZ|X1, 9)

From the perspective of the pipeline, we split the de-
scriptor learning into two major phases, decoder training
phase and descriptor optimizing phase. Shape descriptors
are treated as learnable parameters. Each descriptor is ini-
tialized from a zero-mean Gaussian and concatenated with
point coordinates. The decoder D with weights 6 then
receives the latent-enhanced coordinates and guesses the
mean of the corresponding point distribution as shown in
Figure 2. An unsupervised self-correspondence loss will
be calculated and optimize the learnable variables in the
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Figure 3. Instances are sampled with standard deviation of differ-
ent scales in purpose of generating coarse-to-fine descriptors.

model. During the decoder training phase, we aim to op-
timize the weights 6 of the decoder D.

M N
timal ti 1 . i
goptimal Zoptimal — aromin E E L(Do(x%, Zi), i)
0z ‘T
=0 j=0

“4)

where Z = {Z;};=1,... m. During the shape descriptor op-
timizing phase, all previously learned shape descriptors are
discarded and the learned decoder weights are fixed. In each
iteration, a single instance performs the exact same sam-
pling sequence as in the decoder learning phase. Only the
corresponding shape descriptor of the instance is optimized.

M N

Zoptimal _ argzmiﬂ Z Z ,C(De ($;z7 Zi)» wji) (5)
i=0 j=0

Euclidean Distance is chosen as our loss function in both
phase since it is a more strict evaluation than other similarity
metrics. For A = {a;}}N, and B = {b;} .,

N
L(AB) =Y [laj = bjll2 (6)
=0

3.4. Multi-scale Feature Descriptor

In our setting, the only variable that affects the sampling
process is the standard deviation o. The larger o is, the more
likely the synthesized points are far away from the original
location. To avoid disrupting the geometric information in
an instance or sampling similar point multiple times, we de-
termine a suitable global o value for a dataset by calculat-

ing the mean of the distance between a point and its tenth-
nearest-neighbor. We demonstrate in Table | that our simple
approach improves on state-of-the-art results.

However, it is still difficult for a network to learn shape
features that contain information from local to global scales
using samples synthesized by a single fixed o. If o is set
too small compared to the average distance between points,
the point distributions are “squeezed” into the centroids. A
negligible loss can be achieved by simply predicting the in-
put point coordinates as the mean of point distribution. In
consequence, both the decoder and the shape descriptor are
not effectively optimized. On the other hand, a o that is
set too high disrupts the shape distribution. The delicate
geometric details where the distances between points are
smaller than o are utterly destroyed. The synthesized in-
stances from similar categories will be indistinguishable. In
order to overcome the obstacle, a multi-scale feature fusion
is conducted here to take advantage of shape descriptors
learned under distinctive o settings to represent coarse-to-
fine shape information.

Instead of generating only one descriptor using synthe-
sized data from Gaussian with a fixed standard deviation,
we calculated N sets of shape descriptors {Z;}},, each
generated by data synthesized with a different standard de-
viation o. For each point in the point cloud, the distance
between itself and its tenth-nearest-neighbor is computed
and a histogram is plotted. Empirically, three different sets
of standard deviation {o;}?_; are chosen where o1 equals
to the mean of the lower 20% tenth-neighbor distance, o
equals to the global mean, and oy equals to the average
distance of the upper 80%. Finally, we concatenate the de-
scriptors of an instance as [Z1, Za, Zs3] to form a new shape
descriptor for the corresponding point cloud set. As proved
in the experiment, it achieves the best performance in the
task of classification than other configurations.

4. Experiments

In this section, we first introduce our experimental set-
tings including datasets and detailed network architectures.
Then we prove that our proposed shape descriptors can be
applied to 3D shape recognition tasks, and verify the im-
provements made by the multi-scaled feature representa-
tion. In addition, we demonstrate the reconstruction results
and explore the effects of different o values on the outcome
of the previous experiments. At last, we conduct quantita-
tive experiments to validate the extra properties of our de-
scriptors.

4.1. Experiment settings

Dataset: Two 3D shape datasets [7, 44] are utilized in
our experiments. The ShapeNet dataset contains 15,011
instances in total while ModelNet40 includes 12,311
instances. We follow the training and testing configuration
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Figure 4. Detailed structure of our decoder model

mentioned in the classification experiment of [37]. Our
general decoder is trained only with the seven major
categories of ShapeNet and the testing of classification is
performed on the shape descriptors generated on the full
category of ModelNet40. In order to validate 3D point
cloud reconstruction performance and verify the robustness
of our descriptors to the disturbance of rotation/noise,
training and testing are performed on the ShapeNet dataset.

Architecture: We set the size of all shape descriptors as
128. As shown in Figure 4, a randomly initialized shape de-
scriptor z is concatenated with the coordinate of each point
and sent into a decoder network. The network architecture
of the decoder consists of multiple 1D convolutions and lin-
ear layers. Between each three 1D convolution layers, the
output is concatenated again with the shape descriptor z.
The batch size during training is set as 64. During the de-
scriptor optimization phase, each descriptor should only be
conditioned by the loss of its own rather than an averaged
loss within a batch, which inevitably leads to a batch size
of “one”. Layer Normalization layers are thus chosen over
Batch Normalization in our network structure. As a result,
only instance-level information is leveraged in our process
of descriptor generation and it allows our model to generate
per-instance shape descriptors in an online manner. In com-
parison, recent methods such as [27] require trans-instance
comparisons and the performance relies deeply on the size
of the target dataset. During the decoder training phase, the
model is trained for 300 epochs. During the descriptor op-
timization phase, each descriptor is trained for 100 epochs.

4.2. Unsupervised Shape Descriptor Evaluation

We evaluate our shape descriptor by performing a clas-
sification task. For a direct and accurate comparison, we
follow the same data settings as [37], and our network
is trained with the seven major categories of ShapeNet.

We then evaluate the generated feature descriptors on the
benchmark ModelNet40 by training a simple MLP classi-
fier. There are unsupervised approaches [19, 1, 43] where
the networks are trained using the full 55 categories from
the ShapeNet55 dataset that contains 57,000 shapes in to-
tal. Due to different data settings in the experiment, a direct
comparison based on accuracy might not be most appropri-
ate. Table 1 shows the performance comparison between
our proposed approach and the state-of-the-art supervised
and unsupervised methods. Our unsupervised shape rep-
resentation outperforms the 3DGAN by scoring 84.7% on
ModelNet40. Considered that most of the categories from
ModelNet are completely novel to our model, it demon-
strates a great out-of-category generalization capability.

Supervision Method Accuracy
Supervised MVCNN][35] 90.1%
VoxNet[30] 83.0%
PointNet++[31] 90.7%
SO-Net[25] 90.8%
PointCNN[26] 92.2%
DGCNNI36] 92.2%
Point2Sequence[28] 92.6%
Unsupervised T-L Network[16] 74.4%
VConv-DAE[33] 75.5%
3D-DescripNet[42] 83.8%
3D-GAN[37] 83.3%
Ours 84.7%

Table 1. Classification evaluation on ModelNet40.

4.3. Multi-scaled Representation

To verify the effectiveness of our coarse-to-fine
multi-scaled descriptor, we compare its performance in
classification with the shape descriptors optimized with a
single o value. As is described in Section 3.4, the multi-
scaled descriptor is obtained by concatenating multiple sets
of shape descriptors each trained with a different o value.

Experiment Setup: In this section, we follow the official
split of training and testing set of ShapeNet. However, only
data belongs to the seven major categories are used during
training. On the other hand, the evaluation is performed
on the entire test set that includes the held-out categories.
Three sets of shape descriptors and their corresponding
decoders are trained with different o values. To determine
suitable o values, we evaluate the unit density of point
clouds sampled with 2048 points from the shape instances.
We normalize the point clouds by feature scaling and
calculate the distance from each point to its tenth nearest
neighbor. Given the distance distribution calculated on
ShapeNet, we select three o values 0.04, 0.08, and 0.12,
with ¢ = 0.08 as the average tenth-nearest-neighbor
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Ground Truth

Reconstruction (o = 0.08)

Figure 5. Reconstruction results of shape descriptors with o = 0.08 on instances from ShapeNet

distance of all instances. For each instance, the shape
descriptors optimized using different o settings are then
concatenated.

Results: As is shown in Table 2, the multi-scaled shape
descriptor Z.oncqt outperforms all of the single-valued
shape descriptors. It proves that our shape descriptor can
be enhanced by multi-scale feature fusion with different
o values. It is also worth noticing that Z3 with o = 0.08
achieves the highest accuracy, which indicates that our
approach of selecting the optimal o value fits our feature
learning model well.

Shape Descriptor o Accuracy
Zy 0.04 91.4%
Zy 0.08 94.3%
Zs 0.12 92.9%
Z concat multi-scale 96.2%

Table 2. The classification evaluation of shape descriptors Z1, Za,
Zs3 trained with a single o value, and the multi-scale descriptor
Zconcat Obtained by concatenating 71, Z2, and Z3

4.4. Reconstruction

Our approach allows reconstructing point cloud from its
sampled instance with the corresponding optimized shape
descriptor. We examine the reconstruction results under
different o settings and observe the results on instances
from different categories.

Experiment Setup: The reconstruction experiments are
conducted under the same data settings explained in Sec-
tion 4.3, we perform multiple experiments using instances
sampled in normal distributions with standard deviation o

Ground Truth Reconstruction

o =0.04

o =0.08

Figure 6. Comparison between the shape reconstruction results
with ¢ = 0.04 and o = 0.08 on different categories. The bowl is
a representative of point clouds with lower unit density, while the
lamp represents point clouds with higher unit density.

of 0.04 and 0.08.

Results: As shown in Figure 5, our shape descriptor is
able to achieve great reconstruction performance on out-of-
category instances if o is set to 0.08. In Figure 6, items
with complicated parts are reconstructed well under a rel-
ative small o setting but fails with a large o value. Inter-
estingly, a bowl with few details does not have a satisfying
reconstruction using the same decoder with a small o while
that with a large o is more successful. The relative sen-
sitivity of reconstruction qualities with respect to different
choices of ¢ is the main reason that we introduce the coarse-
to-fine multi-scaled descriptor in Section 3.4.

4.5. Robustness to Rotations

Given that the proposed shape descriptors are learned
from the mapping from the distribution of points to the
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corresponding point origin, our approach is expected to
be more robust to rotations than extracting geometric
information directly from coordinates. This test intends
to demonstrate the prowess of our model for classifying
rotated shapes at different angles.

Experiment Setup: We apply rotation along each axis
from O to 45 degrees and do several experiments at an
interval of 9 degrees. The rotated shape with 45 degrees
along each axis is shown in Figure 7. We adopt the same
data settings as described in Section 4.3. For each level of
rotation, we leveraged the decoder that has been trained on
the seven major categories, and repeat the evaluation on the
rotated shapes from the test set.

Results: The quantitative experimental results are plotted in
Figure 7. As shown in the evaluation, our approach achieves
an impressive level of performance when the rotation an-
gle is within 20 degrees since the accuracy maintains above
93.0%. When the shapes are rotated with 45 degrees, the
accuracy drops by 2.3% from the best performance with no
rotation applied. Since rotation with 45 degrees at each axis
has significantly changed the orientation of shapes, we can
conclude that our model is robust to rotations.

4.6. Resistance to Noise

A good shape descriptor should also maintain consis-
tency in classification performance over shapes perturbed
with a certain amount of noise. In this part, we conduct
experiments on noisy point clouds and assess the noise
resistance quality by classifying shapes at different noise
levels. Our decoder is capable of overcoming the noise
affected data given enough samples with small random
perturbation would not alter the distribution in a significant
way.

Experiment Setup: The experiment is carried out with the
same data settings mentioned in Section 4.3. Descriptors
corresponding to the noise-perturbed test instances are
generated using the same decoder trained with the seven

085 034 0.94
\\04921

0.9 0.891

0.857
0.85

Accuracy

0.8

0.75

0 0.02 0.04 0.06 0.08

Noise Level

Figure 8. Noise-Accuracy plot, noise level stands for the standard
deviation of a Gaussian distribution which is used to generate the
translation vector to be applied on the original instances

major categories. During the process, we perturb the point
clouds by various levels of noise. For each point in the
instance, we randomly move it by a translation vector
that follows a Gaussian distribution with the mean of its
coordinate and the standard deviation of 0.00, 0.02, 0.04,
0.06, and 0.08. We define the noise level as the standard
deviation of the Gaussian distribution.

Results: The quantitative experimental results are plotted in
Figure 8. The performance of our descriptors is relatively
consistent when the standard deviation of the Gaussian that
represents the noise level is less than 0.04. With a greater
level of noise applied to the shape, the categorical informa-
tion is severely damaged and hardly recognizable even by
humans. At this point, the classification becomes less mean-
ingful, so we do not apply o values greater than 0.08. As
shown in Figure 8, we can conclude that our shape descrip-
tor is reasonably resistant to Gaussian noise perturbations.

5. Conclusion

In this paper, we introduced an alternative unsuper-
vised method for calculating instance-level shape descrip-
tors through modeling the Maximum Likelihood Estima-
tion process with an encoder-free network. We proposed
a multi-scaled descriptor fusion technique that can repre-
sent an instance in a coarse-to-fine manner which enhances
the overall performance. In addition, we proved with exper-
iments that our descriptors have outstanding properties of
noise resistance and rotation invariance.
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