
3D Photography using Context-aware Layered Depth Inpainting

Meng-Li Shih12

shihsml@gapp.nthu.edu.tw

Shih-Yang Su1

shihyang@vt.edu

Johannes Kopf3

jkopf@fb.com

Jia-Bin Huang1

jbhuang@vt.edu

1Virginia Tech 2National Tsing Hua University 3Facebook
https://shihmengli.github.io/3D-Photo-Inpainting

(a) Depth-warping (holes) (b) Depth-warping (stretching) (c) Facebook 3D photo (d) Our result

Figure 1. 3D photography from a single RGB-D image. Naı̈ve methods either produce holes (a) or stretch content (b) at disocclusions.

Color and depth inpainting using diffusion is better, but provides a too smooth appearance (c). Our approach is capable of synthesizing

new color/depth texture and structures, leading to more photorealistic novel views (d).

Abstract

We propose a method for converting a single RGB-D in-

put image into a 3D photo — a multi-layer representation

for novel view synthesis that contains hallucinated color

and depth structures in regions occluded in the original

view. We use a Layered Depth Image with explicit pixel

connectivity as underlying representation, and present a

learning-based inpainting model that synthesizes new lo-

cal color-and-depth content into the occluded region in a

spatial context-aware manner. The resulting 3D photos

can be efficiently rendered with motion parallax using stan-

dard graphics engines. We validate the effectiveness of our

method on a wide range of challenging everyday scenes and

show less artifacts compared with the state of the arts.

1. Introduction

3D photography—capturing views of the world with a

camera and using image-based rendering techniques for

novel view synthesis—is a fascinating way to record and re-

produce visual perception. It provides a dramatically more

immersive experience than old 2D photography: almost

lifelike in Virtual Reality, and even to some degree on nor-

mal flat displays when displayed with parallax.

Classic image-based reconstruction and rendering tech-

niques, however, require elaborate capture setups involving

many images with large baselines [17, 59, 26, 45, 19, 12],

and/or special hardware (e.g., Lytro Immerge, Facebook

Manifold camera1).

Recently, we have seen work to make capture for 3D

photography more effortless by using cell phone cameras

and lowering baseline requirements [17, 18]. In the most

extreme cases, novel techniques such as Facebook 3D Pho-

tos2 now just require capturing a single snapshot with a dual

lens camera phone, which essentially provides an RGB-D

(color and depth) input image.

In this work we are interested in rendering novel views

from such an RGB-D input. The most salient features in

rendered novel views are the disocclusions due to parallax:

naı̈ve depth-based warping techniques either produce gaps

here (Figure 1a) or stretched content (1b). Recent methods

try to provide better extrapolations.

Stereo magnification [72] and recent variants [52, 39]

use a fronto-parallel multi-plane representation (MPI),

which is synthesized from the small-baseline dual camera

stereo input. However, MPI produces artifacts on sloped

surfaces. Besides, the excessive redundancy in the multi-

1https://facebook360.fb.com/2018/05/01/

red-facebook-6dof-camera/
2https://facebook360.fb.com/2018/10/11/

3d-photos-now-rolling-out-on-facebook-and-in-vr/

8028



plane representation makes it memory and storage ineffi-

cient and costly to render.

Facebook 3D Photos use a layered depth image (LDI)

representation [48], which is more compact due to its spar-

sity, and can be converted into a light-weight mesh repre-

sentation for rendering. The color and depth in occluded

regions are synthesized using heuristics that are optimized

for fast runtime on mobile devices. In particular it uses a

isotropic diffusion algorithm for inpainting colors, which

produces overly smooth results and is unable to extrapolate

texture and structures (Figure 1c).

Several recent learning-based methods also use similar

multi-layer image representations [7, 56]. However, these

methods use “rigid” layer structures, in the sense that every

pixel in the image has the same (fixed and predetermined)

number of layers. At every pixel, they store the nearest sur-

face in the first layer, the second-nearest in the next layer,

etc. This is problematic, because across depth discontinu-

ities the content within a layer changes abruptly, which de-

stroys locality in receptive fields of convolution kernels.

In this work we present a new learning-based method

that generates a 3D photo from an RGB-D input. The depth

can either come from dual camera cell phone stereo, or

be estimated from a single RGB image [30, 28, 13]. We

use the LDI representation (similar to Facebook 3D Pho-

tos) because it is compact and allows us to handle situa-

tions of arbitrary depth-complexity. Unlike the “rigid” layer

structures described above, we explicitly store connectivity

across pixels in our representation. However, as a result it

is more difficult to apply a global CNN to the problem, be-

cause our topology is more complex than a standard tensor.

Instead, we break the problem into many local inpainting

sub-problems, which we solve iteratively. Each problem is

locally like an image, so we can apply standard CNN.We

use an inpainting model that is conditioned on spatially-

adaptive context regions, which are extracted from the lo-

cal connectivity of the LDI. After synthesis we fuse the in-

painted regions back into the LDI, leading to a recursive

algorithm that proceeds until all depth edges are treated.

The result of our algorithm are 3D photos with synthe-

sized texture and structures in occluded regions (Figure 1d).

Unlike most previous approaches we do not require prede-

termining a fixed number of layers. Instead our algorithm

adapts by design to the local depth-complexity of the input

and generates a varying number of layers across the image.

We have validated our approach on a wide variety of photos

captured in different situations.

2. Related Work

Representation for novel view synthesis. Different types

of representations have been explored for novel view syn-

thesis, including light fields [15, 29, 2], multi-plane im-

ages [72, 52, 39], and layered depth images [48, 55, 7, 56,

17, 18, 6, 42]. Light fields enable photorealistic rendering

of novel views, but generally require many input images

to achieve good results. The multi-plane image represen-

tation [72, 52, 39] stores multiple layers of RGB-α images

at fixed depths. The main advantage of this representation

is its ability to capture semi-reflective or semi-transparent

surfaces. However, due to the fixed depth discretization,

sloped surfaces often do not reproduce well, unless an ex-

cessive number of planes is used. Many variants of layered

depth image representations have been used over time. Rep-

resentations with a fixed number of layers everywhere have

recently been used [7, 56], but they do not preserve local-

ity well, as described in the previous section. Other recent

work [17, 18] extends the original work of Shade et al. [48]

to explicitly store connectivity information. This represen-

tation can locally adapt to any depth-complexity and can be

easily converted into a textured mesh for efficient rendering.

Our work uses this representation as well.

Image-based rendering. Image-based rendering tech-

niques enable photorealistic synthesis of novel views from

a collection of posed images. These methods work best

when the images have sufficiently large baselines (so that

multi-view stereo algorithms can work well) or are captured

with depth sensors. Recent advances include learning-based

blending [19], soft 3D reconstruction [45], handling reflec-

tion [49, 26], relighting [63], and reconstructing mirror and

glass surfaces [59]. Our focus in this work lies in novel view

synthesis from one single image.

Learning-based view synthesis. CNN-based methods

have been applied to synthesizing novel views from sparse

light field data [23] or two or more posed images [12, 19, 4].

Several recent methods explore view synthesis from a single

image. These methods, however, often focus on a specific

domain [53, 60], synthetic 3D scenes/objects [73, 43, 54,

6, 7, 11], hallucinating only one specific view [61, 68], or

assuming piecewise planar scenes [32, 34].

Many of these learning-based view synthesis methods

require running a forward pass of the pre-trained network

to synthesize the image of a given viewpoint. This makes

these approaches less applicable to display on resource-

constrained devices. Our representation, on the other hand,

can be easily converted into a textured mesh and efficiently

rendered with standard graphics engines.

Image inpainting. The task of image inpainting aims to

fill missing regions in images with plausible content. In-

spired by the success of texture synthesis [9, 8], example-

based methods complete the missing regions by transferring

the contents from the known regions of the image, either

through non-parametric patch-based synthesis [58, 1, 5, 20]

or solving a Markov Random Field model using belief

propagation [25] or graph cut [46, 27, 16]. Driven by

the progress of convolutional neural networks, CNN-based

methods have received considerable attention due to their

ability to predict semantically meaningful contents that are

not available in the known regions [44, 51, 21, 65, 66]. Re-

cent efforts include designing CNN architectures to better

handle holes with irregular shapes [33, 67, 64] and two-

8029



stage methods with structure-content disentanglement, e.g.,

predicting structure (e.g., contour/edges in the missing re-

gions) and followed by content completion conditioned on

the predicted structures [41, 62, 47].

Our inpainting model builds upon the recent two-stage

approaches [41, 62, 47] but with two key differences. First,

unlike existing image inpainting algorithms where the hole

and the available contexts are static (e.g., the known re-

gions in the entire input image), we apply the inpainting

locally around each depth discontinuity with adaptive hole

and context regions. Second, in addition to inpaint the color

image, we also inpaint the depth values as well as the depth

discontinuity in the missing regions.

Depth inpainting. Depth inpainting has applications

in filling missing depth values where commodity-grade

depth cameras fail (e.g., transparent/reflective/distant sur-

faces) [35, 70, 36] or performing image editing tasks such

as object removal on stereo images [57, 40]. The goal of

these algorithms, however, is to inpaint the depth of the vis-

ible surfaces. In contrast, our focus is on recovering the

depth of the hidden surface.

CNN-based single depth estimation. CNN-based meth-

ods have recently demonstrated promising results on esti-

mating depth from a single image. Due to the difficulty

of collecting labeled datasets, earlier approaches often fo-

cus on specific visual domains such as indoor scenes [10]

or street view [14, 71]. While the accuracy of these ap-

proaches is not yet competitive with multi-view stereo algo-

rithms, this line of research is particularly promising due to

the availability of larger and more diverse training datasets

from relative depth annotations [3], multi-view stereo [30],

3D movies [28] and synthetic data [42].

For cases where only one single color image is available,

we obtain the depth estimate through a pre-trained depth

estimation model [30, 28]. Removing the dependency on

stereo or multiple images as input makes our method more

widely applicable to all the existing photos.

3. Method

Layered depth image. Our method takes as input an RGB-

D image (i.e., an aligned color-and-depth image pair) and

generates a Layered Depth Image (LDI, [48]) with inpainted

color and depth in parts that were occluded in the input.

An LDI is similar to a regular 4-connected image, ex-

cept at every position in the pixel lattice it can hold any

number of pixels, from zero to many. Each LDI pixel stores

a color and a depth value. Unlike the original LDI work

[48], we explicitly represent the local connectivity of pix-

els: each pixel stores pointers to either zero or at most one

direct neighbor in each of the four cardinal directions (left,

right, top, bottom). LDI pixels are 4-connected like normal

image pixels within smooth regions, but do not have neigh-

bors across depth discontinuities.

LDIs are a useful representation for 3D photography, be-

cause (1) they naturally handle an arbitrary number of lay-

ers, i.e., can adapt to depth-complex situations as necessary,

and (2) they are sparse, i.e., memory and storage efficient

and can be converted into a light-weight textured mesh rep-

resentation that renders fast.

The quality of the depth input to our method does not

need to be perfect, as long as discontinuities are reasonably

well aligned in the color and depth channels. In practice, we

have successfully used our method with inputs from dual

camera cell phones as well as with estimated depth maps

from learning-based methods [30, 28].

Method overview. Given an input RGB-D image, our

method proceeds as follows. We first initialize a trivial

LDI, which uses a single layer everywhere and is fully 4-

connected. In a pre-process we detect major depth discon-

tinuities and group them into simple connected depth edges

(Section 3.1). These form the basic units for our main al-

gorithm below. In the core part of our algorithm, we iter-

atively select a depth edge for inpainting. We then discon-

nect the LDI pixels across the edge and only consider the

background pixels of the edge for inpainting. We extract a

local context region from the “known” side of the edge, and

generate a synthesis region on the “unknown” side (Sec-

tion 3.2). The synthesis region is a contiguous 2D region

of new pixels, whose color and depth values we generate

from the given context using a learning-based method (Sec-

tion 3.3). Once inpainted, we merge the synthesized pixels

back into the LDI (Section 3.4). Our method iteratively pro-

ceeds in this manner until all depth edges have been treated.

3.1. Image preprocessing

The only input to our method is a single RGB-D image.

Every step of the algorithm below proceeds fully automati-

cally. We normalize the depth channel, by mapping the min

and max disparity values (i.e., 1 / depth) to 0 and 1, respec-

tively. All parameters related to spatial dimensions below

are tuned for images with 1024 pixels along the longer di-

mension, and should be adjusted proportionally for images

of different sizes.

We start by lifting the image onto an LDI, i.e., creating

a single layer everywhere and connecting every LDI pixel

to its four cardinal neighbors. Since our goal is to inpaint

the occluded parts of the scene, we need to find depth dis-

continuities since these are the places where we need to ex-

tend the existing content. In most depth maps produced by

stereo methods (dual camera cell phones) or depth estima-

tion networks, discontinuities are blurred across multiple

pixels (Figure 2c), making it difficult to precisely localize

them. We, therefore, sharpen the depth maps using a bi-

lateral median filter [37] (Figure 2d), using a 7×7 window

size, and σspatial = 4.0, σintensity = 0.5.

After sharpening the depth map, we find discontinuities

by thresholding the disparity difference between neighbor-

ing pixels. This results in many spurious responses, such

as isolated speckles and short segments dangling off longer

8030



(a) Color (b) Raw / filtered depth

(c) Raw

(d) Filtered (e) Raw discontinuities (f) Linked depth edges

Figure 2. Preprocessing. Preprocessing of the color and depth input (a-b). We use a bilateral median filter to sharpen the input depth

maps (c-d), detect raw discontinuities using disparity thresholds (e), and clean up spurious threshold responses and link discontinuities into

connected depth edges (f). These linked depth edges form the basic unit for our inpainting process.

(a) Initial LDI

(fully connected)

(b) Cut across discontinuity (c) Context / synthesis

regions

(d) Inpainted

Figure 3. Conceptual illustration of the LDI inpainting algorithm. (a) The initial LDI is fully connected. A depth edge (discontinuity)

is marked in gray. (b) We first cut the LDI pixel connections across the depth, forming a foreground silhouette (green) and a background

silhouette (red). (c) For the background silhouette we spawn a context region (blue) and a synthesis region (red) of new LDI pixels. (d)

The synthesized pixels have been merged into the LDI.

Figure 4. Context/synthesis regions. Context regions (blue) and

synthesis regions (red) for three example connected depth edges

(black) from Figure 2(f).

edges (Figure 2e). We clean this up as follows: First, we

create a binary map by labeling depth discontinuities as 1

(and others as 0). Next, we use connected component anal-

ysis to merge adjacent discontinuities into a collection of

“linked depth edges”. To avoid merging edges at junctions,

we separate them based on the local connectivity of the

LDI. Finally, we remove short segments (< 10 pixels), in-

cluding both isolated and dangling ones. We determine the

threshold 10 by conducting five-fold cross-validation with

LPIPS [69] metric on 50 samples randomly selected from

RealEstate10K training set. The final edges (Figures 2f)

form the basic unit of our iterative inpainting procedure,

which is described in the following sections.

Input context/synthesis w/o dilation w/ dilation

Figure 5. Handling imperfect depth edges. As the detected depth

edges may not align well around occlusion boundaries, we dilate

the synthesis region by 5 pixels. This strategy helps reduce arti-

facts in the inpainted regions.

3.2. Context and synthesis regions

Our inpainting algorithm operates on one of the previ-

ously computed depth edges at a time. Given one of these

edges (Figure 3a), the goal is to synthesize new color and

depth content in the adjacent occluded region. We start by

disconnecting the LDI pixels across the discontinuity (Fig-

ure 3b). We call the pixels that became disconnected (i.e.,

are now missing a neighbor) silhouette pixels. We see in

Figure 3b that a foreground silhouette (marked green) and a

background silhouette (marked red) forms. Only the back-

ground silhouette requires inpainting. We are interested in

extending its surrounding content into the occluded region.

We start by generating a synthesis region, a contiguous

region of new pixels (Figure 3c, red pixels). These are es-

sentially just 2D pixel coordinates at this point. We ini-

tialize the color and depth values in the synthesis region

8031



using a simple iterative flood-fill like algorithm. It starts by

stepping from all silhouette pixels one step in the direction

where they are disconnected. These pixels form the initial

synthesis region. We then iteratively expand (for 40 itera-

tions) all pixels of the region by stepping left/right/up/down

and adding any pixels that have not been visited before. For

each iteration, we expand the context and synthesis regions

alternately and thus a pixel only belong to either one of the

two regions Additionally, we do not step back across the

silhouette, so the synthesis region remains strictly in the oc-

cluded part of the image. Figure 4 shows a few examples.

We describe our learning-based technique for inpaint-

ing the synthesis region in the next section. Similar tech-

niques [33, 41] were previously used for filling holes in im-

ages. One important difference to our work is that these im-

age holes were always fully surrounded by known content,

which constrained the synthesis. In our case, however, the

inpainting is performed on a connected layer of an LDI pix-

els, and it should only be constrained by surrounding pixels

that are directly connected to it. Any other region in the

LDI, for example on other foreground or background layer,

is entirely irrelevant for this synthesis unit, and should not

constrain or influence it in any way.

We achieve this behavior by explicitly defining a con-

text region (Figure 3c, blue region) for the synthesis. Our

inpainting networks only considers the content in the con-

text region and does not see any other parts of the LDI. The

context region is generated using a similar flood-fill like al-

gorithm. One difference, however, is that this algorithm se-

lects actual LDI pixels and follows their connection links,

so the context region expansion halts at silhouettes. We run

this algorithm for 100 iterations, as we found that synthe-

sis performs better with slightly larger context regions. In

practice, the silhouette pixels may not align well with the

actual occluding boundaries due to imperfect depth estima-

tion. To tackle this issue, we dilate the synthesis region near

the depth edge by 5 pixels (the context region erodes corre-

spondingly). Figure 5 shows the effect of this heuristic.

3.3. Context­aware color and depth inpainting

Model. Given the context and synthesis regions, our next

goal is to synthesize color and depth values. Even though

we perform the synthesis on an LDI, the extracted context

and synthesis regions are locally like images, so we can use

standard network architectures designed for images. Specif-

ically, we build our color and depth inpainting models upon

image inpainting methods in [41, 33, 62].

One straightforward approach is to inpaint the color im-

age and depth map independently. The inpainted depth

map, however, may not be well-aligned with respect to the

inpainted color. To address this issue, we design our color

and depth inpainting network similar to [41, 62]: we break

down the inpainting tasks into three sub-networks: (1) edge

inpainting network, (2) color inpainting network, and (3)

depth inpainting network (Figure 6). First, given the con-

text edges as input, we use the edge inpainting network to

predict the depth edges in the synthesis regions, producing

the inpainted edges. Performing this step first helps infer

the structure (in terms of depth edges) that can be used for

constraining the content prediction (the color and depth val-

ues). We take the concatenated inpainted edges and context

color as input and use the color inpainting network to pro-

duce inpainted color. We perform the depth inpainting simi-

larly. Figure 7 shows an example of how the edge-guided

inpainting is able to extend the depth structures accurately

and alleviate the color/depth misalignment issue.

Multi-layer inpainting. In depth-complex scenarios, ap-

plying our inpainting model once is not sufficient as we can

still see the hole through the discontinuity created by the in-

painted depth edges. We thus apply our inpainting model

until no further inpainted depth edges are generated. Fig-

ure 8 shows an example of the effects. Here, applying our

inpainting model once fills in missing layers. However, sev-

eral holes are still visible when viewed at a certain view-

point (Figure 8b). Applying the inpainting model one more

time fixes the artifacts.

Training data generation. For training, our proposed

model can be simply trained on any image dataset with-

out the need of annotated data. Here, we choose to use

MSCOCO dataset [31] for its wide diversity in object types

and scenes. To generate the training data for the inpainting

model, we create a synthetic dataset as follows. First, we

apply the pre-trained MegaDepth [30] on the COCO dataset

to obtain pseudo ground truth depth maps. We extract con-

text/synthesis regions (as described in Section 3.2) to form a

pool of these regions. We then randomly sample and place

these context-synthesis regions on different images in the

COCO dataset. We thus can obtain the ground truth content

(RGB-D) from the simulated occluded region.

3.4. Converting to 3D textured mesh

We form the 3D textured mesh by integrating all the

inpainted depth and color values back into the original

LDI. Using mesh representations for rendering allows us

to quickly render novel views, without the need to perform

per-view inference step. Consequently, the 3D representa-

tion produced by our algorithm can easily be rendered using

standard graphics engines on edge devices.

4. Experimental Results

In this section, we start with describing implementation

details (Section 4.1). We then show visual comparisons

with the state-of-the-art novel view synthesis methods (Sec-

tion 4.2). We refer to the readers to supplementary material

for extensive results and comparisons. Next, we follow the

evaluation protocol in [72] and report the quantitative com-

parisons on the RealEstate10K dataset (Section 4.3). We

present an ablation study to justify our model design (Sec-

tion 4.4). Finally, we show that our method works well with

8032



Figure 6. Context-aware color and depth inpainting. Given the color, depth, the extracted and linked depth edges as inputs, we randomly

select one of the edges as a subproblem. We start with inpainting the depth edge in the synthesis region (red) using an edge inpainting

network. We then concatenate the inpainted depth edges with the context color together and apply a color inpainting network to produce

the inpainted color. Similarly, we concatenate the inpainted depth edges with the context depth and apply a depth inpainting network to

produce the inpainted depth.

Zoom-in Diffusion w/o edge w/ edge
Figure 7. Effect of depth inpainting. Edge-guided depth inpaint-

ing produces more accurate structure inpainting, particularly for

depth-complex regions (e.g., T-junctions). Blue box: synthesized

novel view.

(a) None (b) Once (c) Twice

Figure 8. Multi-layer inpainting.

depth maps from different sources (Section 4.5).Additional

details and visual comparisons can be found in our supple-

mentary material.

4.1. Implementation details

Training the inpainting model. For the edge-generator,

we follow the hyper-parameters in [41]. Specifically, we

train the edge-generator model using the ADAM opti-

mizer [24] with β = 0.9 and an initial learning rate of

0.0001. We train both the edge and depth generator model

using the context-synthesis regions dataset on the MS-

COCO dataset for 5 epochs. We train the depth generator

and color image generator for 5 and 10 epochs, respectively.

Inpainting model architecture. For the edge inpaint-

ing network, we adopt the architecture provided by [41].

For the depth and color inpainting networks, we use a stan-

dard U-Net architecture with partial covolution [33]. Due

to the space limitation, we leave additional implementation

details (specific network architecture, the training loss and

the weights for each network) to the supplementary mate-

rial. We will make the source code and pre-trained model

publicly available to foster future work.

Training data. We use the 118k images from COCO

2017 set for training. We select at most 3 pairs of regions

from each image to form the context-synthesis pool. During

training, we sample one pair of regions for each image, and

resize it by a factor between [1.0,1.3].

4.2. Visual comparisons

Comparisons with methods with MPI representations.

We compare our proposed model against MPI-based ap-

proaches on RealEstate10K dataset. We use DPSNet [22]

to obtain the input depth maps for our method. We ren-

der the novel views of MPI-based methods using the pre-

trained weights provided by the authors. Figure 9 shows

two challenging examples with complex depth structures.

Our method synthesizes plausible structures around depth

boundaries; on the other hand, stereo magnification and

PB-MPI produce artifacts around depth discontinuities.

LLFF [38] suffers from ghosting effects when extrapolat-

ing new views.

8033



Reference Frame Zoom-in StereoMag [72]PB-MPI [52] LLFF [39] XView [4] Ours

Figure 9. Visual comparison with MPI-based methods. Our method inpaints plausible structure and color in the occluded region.

Facebook 3D Photo results

Our results

Figure 10. Visual comparison to Facebook 3D Photos. Our approach fills plausible textures and structures at disocclusions.

Comparisons with Facebook 3D photo. Here, we aim to

evaluate the capability of our method on photos taken in the

wild. We extract the color images and the corresponding

depth maps estimated from an iPhone X (with dual cam-

era lens). We use the same set of RGB-D inputs for both

Facebook 3D photo and our algorithm. Figure 10 shows

the view synthesis result in comparison with Facebook 3D

photo. The diffused color and depth values by the facebook

3D photo algorithm work well when small or thin occluded

regions are revealed at novel views. These artifacts, how-

ever, become clearly visible with larger occluded regions.

On the other hand, our results in general fills in the synthe-

sis regions with visually plausible contents and structures.

8034



Table 1. Quantitative comparison on the RealEstate10K dataset.

Methods SSIM ↑ PSNR ↑ LPIPS ↓

Stereo-Mag [72] 0.8906 26.71 0.0826

PB-MPI [52] 0.8773 25.51 0.0902

LLFF [39] 0.8062 23.17 0.1323

Xview [4] 0.8628 24.75 0.0822

Ours 0.8887 27.29 0.0724

Table 2. Using depth edge as guidance improves the results.

Blue: results in disocculded regions.

Methods SSIM ↑ PSNR ↑ LPIPS ↓

Diffusion 0.8665 (0.6237) 25.95 (18.91) 0.084

Inpaint w/o edge 0.8665 (0.6247) 25.96 (18.94) 0.084

Inpaint w/ edge (Ours) 0.8666 (0.6265) 25.97 (18.98) 0.083

Table 3. Using color inpainting model gives better perceptual

quality. Our dilation heuristic further boosts the performance.

Blue: results in disocculded regions.

Methods SSIM ↑ PSNR ↑ LPIPS ↓

Diffusion 0.8661 (0.6215) 25.90 (18.78) 0.088

Inpaint w/o dilation 0.8643 (0.5573) 25.56 (17.14) 0.085

Inpaint w/ dilation (Ours) 0.8666 (0.6265) 25.97 (18.98) 0.083

4.3. Quantitative comparisons

We evaluate how well our model can extrapolate views

compared to MPI-based methods [52, 72, 4, 39]. We ran-

domly sample 1500 video sequences from RealEstate10K

to generate testing triplets. For each triplet, we set t = 10 for

target view, so that all the methods need to extrapolate be-

yond the source (t = 0) and reference (t = 4) frame. We use

DPSNet [22] to generate the input depth maps required for

our model. We quantify the performance of each model us-

ing SSIM and PSNR metrics between the synthesized target

views and the ground truth. As these metrics do not capture

the perceptual quality of the synthesized view, we include

LPIPS [69] metric to quantify how well does the generated

view align with human perception. For PB-MPI, we set the

number of depth layers to 64 as it yields the best result.

We report the evaluation results in Table 1. Our proposed

method performs competitively on SSIM and PSNR. In ad-

dition, our synthesis views exhibit better perceptual quality,

as reflected in the superior LPIPS score.

4.4. Ablation study

We conduct ablation studies to see how each of our pro-

posed components contribute to the final performance. We

first verify the effectiveness of edge-guided depth inpaint-

ing. We sample 130 triplets from our testing sequences,

evaluate the inpainted color on both the entire image and

disoccluded regions, and report the numbers in Table 2. The

results show that our proposed edge-guided inpainting leads

to minor improvement in numerical metrics. Next, we ex-

Input

(a) Disocclusion

(c) w/o Dilation

(b) Diffusion

(d) w/ Dilation
Figure 11. Color inpainting leads to better visual quality.

Input MegaDepth MiDas Kinect
Figure 12. Our method works with various sources of depth

map. We show the depth estimates on the top-left of novel views.

amine the efficacy of our color inpainting model following

the same procedure described above. We present the per-

formance in both entire image and occluded regions in Ta-

ble 3. We observe that our proposed model yields better

perceptual quality. Figure 11 shows an example.

4.5. Handling different depth maps

We test our method using depth maps generated us-

ing different approaches (Figure 12). We select images

from SUNRGBD [50] dataset, and obtain the corresponding

depth maps from three different sources: 1) depth estimated

with MegaDepth [30], 2) MiDas [28] and 3) Kinect depth

sensor. We present the resulting 3D photos in Figure 12.

The results show that our method can handle depth maps

from different sources reasonably well.

5. Conclusions

In this paper, we present an algorithm for creating com-

pelling 3D photography from a single RGB-D image. Our

core technical novelty lies in creating a completed layered

depth image representation through context-aware color and

depth inpainting. We validate our method on a wide vari-

ety of everyday scenes. Our experimental results show that

our algorithm produces considerably fewer visual artifacts

when compared with the state-of-the-art novel view synthe-

sis techniques. We believe that such technology can bring

3D photography to a broader community, allowing people

to easily capture scenes for immersive viewing.

Acknowledgement. This project is supported in part

by NSF (#1755785) and MOST-108-2634-F-007-006 and

MOST-109-2634-F-007-016.

8035



References

[1] Connelly Barnes, Eli Shechtman, Adam Finkelstein, and

Dan B Goldman. Patchmatch: A randomized correspon-

dence algorithm for structural image editing. In ACM Trans-

actions on Graphics, volume 28, page 24, 2009. 2

[2] Chris Buehler, Michael Bosse, Leonard McMillan, Steven

Gortler, and Michael Cohen. Unstructured lumigraph ren-

dering. In Proceedings of the 28th annual conference on

Computer graphics and interactive techniques, 2001. 2

[3] Weifeng Chen, Zhao Fu, Dawei Yang, and Jia Deng. Single-

image depth perception in the wild. In NeurIPS, 2016. 3

[4] Inchang Choi, Orazio Gallo, Alejandro Troccoli, Min H

Kim, and Jan Kautz. Extreme view synthesis. In ICCV,

2019. 2, 7, 8

[5] Soheil Darabi, Eli Shechtman, Connelly Barnes, Dan B

Goldman, and Pradeep Sen. Image melding: Combining in-

consistent images using patch-based synthesis. ACM Trans-

actions on Graphics, 31(4):82–1, 2012. 2

[6] Helisa Dhamo, Nassir Navab, and Federico Tombari. Object-

driven multi-layer scene decomposition from a single image.

In ICCV, 2019. 2

[7] Helisa Dhamo, Keisuke Tateno, Iro Laina, Nassir Navab, and

Federico Tombari. Peeking behind objects: Layered depth

prediction from a single image. In ECCV, 2018. 2

[8] Alexei A Efros and William T Freeman. Image quilting for

texture synthesis and transfer. In Proceedings of the 28th an-

nual conference on Computer graphics and interactive tech-

niques, pages 341–346, 2001. 2

[9] Alexei A Efros and Thomas K Leung. Texture synthesis by

non-parametric sampling. In ICCV, 1999. 2

[10] David Eigen and Rob Fergus. Predicting depth, surface nor-

mals and semantic labels with a common multi-scale convo-

lutional architecture. In ICCV, 2015. 3

[11] SM Ali Eslami, Danilo Jimenez Rezende, Frederic Besse,

Fabio Viola, Ari S Morcos, Marta Garnelo, Avraham Ru-

derman, Andrei A Rusu, Ivo Danihelka, Karol Gregor,

et al. Neural scene representation and rendering. Science,

360(6394):1204–1210, 2018. 2

[12] John Flynn, Ivan Neulander, James Philbin, and Noah

Snavely. Deepstereo: Learning to predict new views from

the world’s imagery. In CVPR, 2016. 1, 2

[13] Clément Godard, Oisin Mac Aodha, Michael Firman, and

Gabriel J Brostow. Digging into self-supervised monocular

depth estimation. In ICCV, pages 3828–3838, 2019. 2

[14] Clément Godard, Oisin Mac Aodha, and Gabriel J Bros-

tow. Unsupervised monocular depth estimation with left-

right consistency. In CVPR, 2017. 3

[15] Steven J Gortler, Radek Grzeszczuk, Richard Szeliski, and

Michael F Cohen. The lumigraph. In SIGGRAPH, vol-

ume 96, pages 43–54, 1996. 2

[16] Kaiming He and Jian Sun. Image completion approaches

using the statistics of similar patches. TPAMI, 36(12):2423–

2435, 2014. 2

[17] Peter Hedman, Suhib Alsisan, Richard Szeliski, and Jo-

hannes Kopf. Casual 3d photography. ACM Transactions

on Graphics, 36(6):234, 2017. 1, 2

[18] Peter Hedman and Johannes Kopf. Instant 3d photography.

ACM Transactions on Graphics, 37(4):101, 2018. 1, 2

[19] Peter Hedman, Julien Philip, True Price, Jan-Michael Frahm,

George Drettakis, and Gabriel Brostow. Deep blending for

free-viewpoint image-based rendering. ACM Transactions

on Graphics, page 257, 2018. 1, 2

[20] Jia-Bin Huang, Sing Bing Kang, Narendra Ahuja, and Jo-

hannes Kopf. Image completion using planar structure guid-

ance. ACM Transactions on graphics, 33(4):129, 2014. 2

[21] Satoshi Iizuka, Edgar Simo-Serra, and Hiroshi Ishikawa.

Globally and locally consistent image completion. TOG,

36(4):107, 2017. 2

[22] Sunghoon Im, Hae-Gon Jeon, Steve Lin, and In So Kweon.

Dpsnet: End-to-end deep plane sweep stereo. 2019. 6, 8

[23] Nima Khademi Kalantari, Ting-Chun Wang, and Ravi Ra-

mamoorthi. Learning-based view synthesis for light field

cameras. ACM Transactions on Graphics, 35(6):193, 2016.

2

[24] Diederik P Kingma and Jimmy Ba. Adam: A method for

stochastic optimization. In ICLR, 2015. 6

[25] Nikos Komodakis and Georgios Tziritas. Image completion

using efficient belief propagation via priority scheduling and

dynamic pruning. TIP, 16(11):2649–2661, 2007. 2

[26] Johannes Kopf, Fabian Langguth, Daniel Scharstein,

Richard Szeliski, and Michael Goesele. Image-based render-

ing in the gradient domain. ACM Transactions on Graphics,

32(6):199, 2013. 1, 2

[27] Vivek Kwatra, Arno Schödl, Irfan Essa, Greg Turk, and

Aaron Bobick. Graphcut textures: image and video syn-

thesis using graph cuts. ACM Transactions on Graphics,

22(3):277–286, 2003. 2

[28] Katrin Lasinger, René Ranftl, Konrad Schindler, and Vladlen

Koltun. Towards robust monocular depth estimation: Mixing

datasets for zero-shot cross-dataset transfer. arXiv preprint

arXiv:1907.01341, 2019. 2, 3, 8

[29] Marc Levoy and Pat Hanrahan. Light field rendering. In Pro-

ceedings of the 23rd annual conference on Computer graph-

ics and interactive techniques, pages 31–42, 1996. 2

[30] Zhengqi Li and Noah Snavely. Megadepth: Learning single-

view depth prediction from internet photos. In CVPR, 2018.

2, 3, 5, 8

[31] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays,

Pietro Perona, Deva Ramanan, Piotr Dollár, and C Lawrence

Zitnick. Microsoft coco: Common objects in context. In

ECCV, 2014. 5

[32] Chen Liu, Jimei Yang, Duygu Ceylan, Ersin Yumer, and Ya-

sutaka Furukawa. Planenet: Piece-wise planar reconstruc-

tion from a single rgb image. In CVPR, 2018. 2

[33] Guilin Liu, Fitsum A Reda, Kevin J Shih, Ting-Chun Wang,

Andrew Tao, and Bryan Catanzaro. Image inpainting for ir-

regular holes using partial convolutions. In ECCV, 2018. 2,

5, 6

[34] Miaomiao Liu, Xuming He, and Mathieu Salzmann.

Geometry-aware deep network for single-image novel view

synthesis. In CVPR, 2018. 2

[35] Wei Liu, Xiaogang Chen, Jie Yang, and Qiang Wu. Robust

color guided depth map restoration. TIP, 26(1):315–327,

2017. 3

[36] Si Lu, Xiaofeng Ren, and Feng Liu. Depth enhancement via

low-rank matrix completion. In CVPR, 2014. 3

8036



[37] Ziyang Ma, Kaiming He, Yichen Wei, Jian Sun, and En-

hua Wu. Constant time weighted median filtering for stereo

matching and beyond. Proceedings of the 2013 IEEE In-

ternational Conference on Computer Vision, pages 49–56,

2013. 3

[38] Leonard McMillan and Gary Bishop. Plenoptic modeling:

An image-based rendering system. In Proceedings of the

22nd annual conference on Computer graphics and interac-

tive techniques, pages 39–46. ACM, 1995. 6

[39] Ben Mildenhall, Pratul P. Srinivasan, Rodrigo Ortiz-Cayon,

Nima Khademi Kalantari, Ravi Ramamoorthi, Ren Ng, and

Abhishek Kar. Local light field fusion: Practical view syn-

thesis with prescriptive sampling guidelines. ACM Transac-

tions on Graphics (TOG), 38(4), July 2019. 1, 2, 7, 8

[40] Tai-Jiang Mu, Ju-Hong Wang, Song-Pei Du, and Shi-Min

Hu. Stereoscopic image completion and depth recovery. The

Visual Computer, 30(6-8):833–843, 2014. 3

[41] Kamyar Nazeri, Eric Ng, Tony Joseph, Faisal Qureshi, and

Mehran Ebrahimi. Edgeconnect: Generative image inpaint-

ing with adversarial edge learning. arXiv preprint, 2019. 3,

5, 6

[42] Simon Niklaus, Long Mai, Jimei Yang, and Feng Liu. 3d

ken burns effect from a single image. ACM Transactions on

Graphics (TOG), 38(6), Nov. 2019. 2, 3

[43] Eunbyung Park, Jimei Yang, Ersin Yumer, Duygu Ceylan,

and Alexander C Berg. Transformation-grounded image

generation network for novel 3d view synthesis. In CVPR,

2017. 2

[44] Deepak Pathak, Philipp Krahenbuhl, Jeff Donahue, Trevor

Darrell, and Alexei A Efros. Context encoders: Feature

learning by inpainting. In CVPR, 2016. 2

[45] Eric Penner and Li Zhang. Soft 3d reconstruction for

view synthesis. ACM Transactions on Graphics (TOG),

36(6):235, 2017. 1, 2

[46] Yael Pritch, Eitam Kav-Venaki, and Shmuel Peleg. Shift-

map image editing. In CVPR, pages 151–158. IEEE, 2009.

2

[47] Yurui Ren, Xiaoming Yu, Ruonan Zhang, Thomas H Li,

Shan Liu, and Ge Li. Structureflow: Image inpainting via

structure-aware appearance flow. In ICCV, 2019. 3

[48] Jonathan Shade, Steven Gortler, Li-wei He, and Richard

Szeliski. Layered depth images. In Proceedings of the

25th annual conference on Computer graphics and interac-

tive techniques, pages 231–242. ACM, 1998. 2, 3

[49] Sudipta N Sinha, Johannes Kopf, Michael Goesele, Daniel

Scharstein, and Richard Szeliski. Image-based rendering

for scenes with reflections. ACM Transactions on Graphics,

31(4):100–1, 2012. 2

[50] Shuran Song, Samuel P Lichtenberg, and Jianxiong Xiao.

Sun rgb-d: A rgb-d scene understanding benchmark suite. In

CVPR, 2015. 8

[51] Yuhang Song, Chao Yang, Zhe Lin, Xiaofeng Liu, Qin

Huang, Hao Li, and C-C Jay Kuo. Contextual-based im-

age inpainting: Infer, match, and translate. arXiv preprint

arXiv:1711.08590, 2017. 2

[52] Pratul P Srinivasan, Richard Tucker, Jonathan T Barron,

Ravi Ramamoorthi, Ren Ng, and Noah Snavely. Pushing the

boundaries of view extrapolation with multiplane images. In

CVPR, 2019. 1, 2, 7, 8

[53] Pratul P Srinivasan, Tongzhou Wang, Ashwin Sreelal, Ravi

Ramamoorthi, and Ren Ng. Learning to synthesize a 4d rgbd

light field from a single image. In ICCV, 2017. 2

[54] Shao-Hua Sun, Minyoung Huh, Yuan-Hong Liao, Ning

Zhang, and Joseph J Lim. Multi-view to novel view: Synthe-

sizing novel views with self-learned confidence. In ECCV,

2018. 2

[55] Lech Świrski, Christian Richardt, and Neil A Dodgson. Lay-

ered photo pop-up. In ACM SIGGRAPH 2011 Posters, 2011.

2

[56] Shubham Tulsiani, Richard Tucker, and Noah Snavely.

Layer-structured 3d scene inference via view synthesis. In

ECCV, 2018. 2

[57] Liang Wang, Hailin Jin, Ruigang Yang, and Minglun Gong.

Stereoscopic inpainting: Joint color and depth completion

from stereo images. In CVPR, 2008. 3

[58] Yonatan Wexler, Eli Shechtman, and Michal Irani. Space-

time completion of video. TPAMI, (3):463–476, 2007. 2

[59] Thomas Whelan, Michael Goesele, Steven J Lovegrove, Ju-

lian Straub, Simon Green, Richard Szeliski, Steven Butter-

field, Shobhit Verma, and Richard Newcombe. Reconstruct-

ing scenes with mirror and glass surfaces. ACM Transactions

on Graphics, 37(4):102, 2018. 1, 2

[60] Olivia Wiles, Georgia Gkioxari, Richard Szeliski, and Justin

Johnson. Synsin: End-to-end view synthesis from a single

image. In CVPR, 2020. 2

[61] Junyuan Xie, Ross Girshick, and Ali Farhadi. Deep3d:

Fully automatic 2d-to-3d video conversion with deep con-

volutional neural networks. In ECCV, 2016. 2

[62] Wei Xiong, Zhe Lin, Jimei Yang, Xin Lu, Connelly Barnes,

and Jiebo Luo. Foreground-aware image inpainting. 2019.

3, 5

[63] Zexiang Xu, Sai Bi, Kalyan Sunkavalli, Sunil Hadap, Hao

Su, and Ravi Ramamoorthi. Deep view synthesis from sparse

photometric images. ACM Transactions on Graphics (TOG),

38(4):76, 2019. 2

[64] Zhaoyi Yan, Xiaoming Li, Mu Li, Wangmeng Zuo, and

Shiguang Shan. Shift-net: Image inpainting via deep feature

rearrangement. In ECCV, September 2018. 2

[65] Chao Yang, Xin Lu, Zhe Lin, Eli Shechtman, Oliver Wang,

and Hao Li. High-resolution image inpainting using multi-

scale neural patch synthesis. In CVPR, volume 1, page 3,

2017. 2

[66] Jiahui Yu, Zhe Lin, Jimei Yang, Xiaohui Shen, Xin Lu, and

Thomas S Huang. Generative image inpainting with contex-

tual attention. In CVPR, 2018. 2

[67] Jiahui Yu, Zhe Lin, Jimei Yang, Xiaohui Shen, Xin Lu, and

Thomas S Huang. Free-form image inpainting with gated

convolution. In ICCV, 2019. 2

[68] Qiong Zeng, Wenzheng Chen, Huan Wang, Changhe Tu,

Daniel Cohen-Or, Dani Lischinski, and Baoquan Chen. Hal-

lucinating stereoscopy from a single image. In Computer

Graphics Forum, volume 34, pages 1–12, 2015. 2

[69] Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman,

and Oliver Wang. The unreasonable effectiveness of deep

features as a perceptual metric. In CVPR, 2018. 4, 8

[70] Yinda Zhang and Thomas Funkhouser. Deep depth comple-

tion of a single rgb-d image. In CVPR, 2018. 3

8037



[71] Tinghui Zhou, Matthew Brown, Noah Snavely, and David G

Lowe. Unsupervised learning of depth and ego-motion from

video. In CVPR, volume 2, page 7, 2017. 3

[72] Tinghui Zhou, Richard Tucker, John Flynn, Graham Fyffe,

and Noah Snavely. Stereo magnification: Learning view

synthesis using multiplane images. ACM Transactions on

Graphics, 2018. 1, 2, 5, 7, 8

[73] Tinghui Zhou, Shubham Tulsiani, Weilun Sun, Jitendra Ma-

lik, and Alexei A Efros. View synthesis by appearance flow.

In ECCV, 2016. 2

8038


