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Figure 1: We introduce a new image generative model that is designed and trained to leverage the hierarchical space of deep-

features learned by a pre-trained classification network. Our model provides a unified versatile framework for various image

generation and manipulation tasks, including: (a) generating images with a controllable extent of semantic similarity to a

reference image, obtained by reconstructing images from different layers of a classification model; (b) generating realistic

image samples from unnatural reference image such as line drawings; (c) semantically compositing different images, and (d)

controlling the semantic content of an image by enforcing a new, modified class label.

Abstract

We present a novel GAN-based model that utilizes the

space of deep features learned by a pre-trained classifica-

tion model. Inspired by classical image pyramid represen-

tations, we construct our model as a Semantic Generation

Pyramid – a hierarchical framework which leverages the

continuum of semantic information encapsulated in such

deep features; this ranges from low level information con-

tained in fine features to high level, semantic information

contained in deeper features. More specifically, given a

set of features extracted from a reference image, our model

generates diverse image samples, each with matching fea-

tures at each semantic level of the classification model. We

demonstrate that our model results in a versatile and flex-

∗ indicates equal contributions; first author performed this work as an

intern at Google.

ible framework that can be used in various classic and

novel image generation tasks. These include: generating

images with a controllable extent of semantic similarity to

a reference image, and different manipulation tasks such

as semantically-controlled inpainting and compositing; all

achieved with the same model, with no further training. 1

1. Introduction

Convolutional Neural Networks (CNNs) trained for vi-

sual classification were shown to learn powerful and mean-

ingful feature spaces, encoding rich information ranging

from low level features to high-level semantic content [23].

Such features have been widely utilized by numerous meth-

ods for clustering, perceptual loss [42] and different image

1Project website: https://semantic-pyramid.github.io/
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manipulation tasks [35, 13, 21, 2].

The process of working in feature space typically in-

volves the following stages: an image is fed to a pre-trained

classification network; its feature responses from different

layers are extracted, and optionally manipulated according

to the application at hand. The manipulated features are

then inverted back to an image by solving a reconstruction

optimization problem. However, the problem of inverting

deep features into a realistic image is challenging – there

is no one-to-one mapping between the deep features and

an image, especially when the features are taken from deep

layers. This has been addressed so far mostly by imposing

regularization priors on the reconstructed image, which of-

ten leads to blurry unrealistic reconstructions and limits the

type of features that can be used.

In this paper, to overcome the aforementioned limita-

tions, we take the task of feature inversion to the realm

of Generative Adversarial Networks (GANs). GANs have

made a dramatic leap in modeling the distribution of natural

images and are now capable of generating impressive real-

istic image samples. However, most existing GAN-based

models that use deep features condition the generation only

on objects’ class information [29, 27, 40, 7]. In contrast,

we propose a novel generative model that utilizes the con-

tinuum of semantic information encapsulated in deep fea-

tures; this ranges from low level information contained in

fine features to high level, semantic information contained

in deeper features. By doing so, we bridge the gap between

optimization based methods for feature inversion and gen-

erative adversarial learning.

Inspired by classical image pyramid representations, we

construct our model as a Semantic Generation Pyramid –

a hierarchical GAN-based framework which can leverage

information from different semantic levels of the features.

More specifically, given a set of features extracted from

a reference image, our model can generate diverse image

samples, each with matching features at each semantic level

of the classification model. This allows us to generate im-

ages with a gradual, controllable semantic similarity to a

reference image (see Fig. 1 and Fig. 2).

The hierarchical nature of our model provides a versa-

tile and flexible framework that can be used for a variety

of semantically-aware image generation and manipulation

tasks. Similar to classic image pyramid representations, this

is done by manipulating features at different semantic lev-

els, and controlling the pyramid levels in which features

are fed to our model. We demonstrate this approach in a

number of applications, including semantically-controlled

inpainting, semantic compositing of objects from differ-

ent images, and generating realistic images from grayscale,

line-drawings or paintings. All these tasks are performed

with the same unified framework, without any further opti-

mization or fine tuning.

2. Related Work

Inverting deep features. Inverting deep features back

to images has been mostly studied in the context of in-

terpretability and understanding of visual recognition net-

works. Simonyan et al. [31] formulated the feature inver-

sion problem as an optimization problem where the objec-

tive is to minimize the L2 distance between the mapping

of the image to features (by the pre-trained network) and a

given feature map. They apply back-propagation to mini-

mize this objective – a slow process, which is highly sen-

sitive to initialization. An important observation made by

this process was how reconstructable an image is from var-

ious depths of CNN layers; first several layers are almost

fully invertible, but the ability to reconstruct the input im-

age quickly declines with the depth of the features.

Reconstruction from deeper features has been mostly

tackled by imposing different regularization priors on

the reconstructed image [24, 28, 39]. However, these

optimization-based methods are able to reconstruct only a

single, average image. Because there is no one-to-one map-

ping between deep features and an image, the reconstructed

image is often blurry and unrealistic.

Dosovitskiy & Brox [9] proposed to train a CNN to in-

vert various image descriptors, among which are deep fea-

tures. This approach also impose regularization, yet implic-

itly; the fact that an image was generated by a CNN forms

a strong natural image prior [34, 11]. However, such reg-

ularization also tends to produce blurry unrealistic images

when inverting deeper features.

To overcome this limitation, a GAN-based model for fea-

ture invertion was proposed by [10], yet their model is still

deterministic, i.e., generates only a single possible image

from an input set of features. This often results in visual ar-

tifacts such as distorted unrealistic global structure (see ex-

amples in supplementary material). In contrast, our method

models the distribution of images that match the input fea-

tures, thus allows to generate higher quality, diverse image

samples for a given set of features.

Deep features for image manipulation. Inverting deep

features crossed the line from the field of interpretability

and understanding to image manipulation. A general ap-

proach is to apply some manipulation to semantic features,

and then invert back to pixels to project the manipulation

to a resulting output image. Such manipulation include

Texture-synthesis [12], Style-transfer [13], feature interpo-

lation, demonstrated to apply aging to faces [35] and re-

cently also image retargeting by applying Seam Carving [3]

to semantic features [2]. In all of these works the output

image is reconstructed by some variant of the iterative op-

timization process of [31] that takes time and is sensitive to

initialization. Some solutions to speed up were proposed,

like training a CNN to imitate the mapping of the optimiza-

tion process [21].
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Figure 2: Random image samples from increasing semantic levels. For each input image (top row), we show random

image samples generated by our model when fed with deep features from increasing semantic levels (top to bottom). Our

model generates realistic image samples, where the similarity to the original image is controlled by the level of the input

features — the deeper the features’ level is, the more we can deviate from the original image. For all generation levels, our

model preserves the semantic content of the input image and produces high quality diverse image samples.

Generative Adversarial Networks In our work we make

use of recent advances of Generative Adversarial Networks

(GANs) [14]. There has been huge progress in the qual-

ity of image generation using GANs [30, 29, 27, 40, 7].

Our GAN is based on Self-Attention GAN [40] with slight

modifications. Differently from classical GANs, we per-

form image to image mapping using a conditional GAN

similarly to [19, 36]. There has been some recent impres-

sive work on interpreting and controlling the outcomes of

GANs by either interpreting neurons [5] or by steering the

latent space [20]. Our approach differs due to the use of

semantic features that originate in supervised classification

networks. [18] makes use of classification feature maps to

improve quality of classic generation tasks. They stack a

set of GANs first trained separately to generate features of

different levels and then combine them. We have different

goal and setting of how to make use of the semantic fea-

tures. Further analysis [6] has shown limitations on what

GANs cannot generate. We introduce the application of Re-

painting which allows regenerating selected parts of the im-

age and by that enables keeping wanted parts of an image

as is. To some practical uses, this overcomes the limitations

presented in [6] (such as inability to generate humans).

Classical hierarchical image representations. We draw

inspiration to our method from the classical image process-

ing approach of image pyramids, especially Laplacian pyra-

mids [8, 1]. This method decomposes images to distinct

frequency-bands thus allows frequency aware manipulation

for stitching and fusion of images. reconstruction is fast

and trivial. Our method is a semantic analogous to this ap-

proach. We aim to perform semantic manipulation and get

immediate projection back to the image pixels.

3. Method

Our goal is to design a generative image model that can

fully leverage the feature space learned by a pre-trained

classification network. More specifically, we opt to achieve

the following objectives:

1. Leveraging features from different semantic levels.

Given an input image, the deep features extracted from
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Figure 3: Semantic pyramid image pipeline. (a) The generator works in full mirror-like conjunction with a pre-trained

classification model. Each stage of the classification model has a corresponding block in the generator. (b) Specification of

a single generator block. the feature map is first multiplied by its input mask. The masked feature map then undergoes a

convolution layer and the result is summed with the result of the corresponding generator block.
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Figure 4: Applying spatially varying masks. To gener-

ate only wanted areas of the image, feature maps are mul-

tiplied with masks. White indicates “pass” and black indi-

cates “block”. For training, a random blocked crop is sam-

pled as well as a random “selected layer”. at inference time,

a user can set any shape of the mask and determine the ”se-

lected layer” according to the extent of divergence wanted

w.r.t to original input.

different layers have hierarchical structure – features

extracted from finer layers of the model contain low

level image information, while deeper features can

encode higher level, semantic information [38]. We

would like to benefit from the continuum space of

these features.

2. Flexibility and user controllability. We want to support

various manipulation tasks at test time via editing in

the deep feature space. For example, combining fea-

tures from different images, or from different levels.

The model then have to provide such user controllabil-

ity and adapt to various manipulations for the features.

3. Diversity. We would like our model to learn the space

of possible images that match a given set of input fea-

tures, rather than producing a single image sample.

We next describe how we achieve these objectives via

a unified GAN-based architecture and a dedicated training

scheme.

3.1. Architecture

Our generator works in full conjunction with a a pre-

trained classification model, which we assume is given and

fixed. In practice, we use VGG-16 model [32] trained on

Places365 dataset [43]. More specifically, given an input

image x, we feed it into the classification model and extract

a set of features maps F = {fl} by taking the activation

maps of different layers of the model. That is, fl = C∗
l (x),

where C∗
l dnotes the l-th layer of the classification model.

These features are then fused into our generator as follows.

Our generator’s architecture is loosely based on the

class-conditioned GAN [40]. However, we modify it to

have a mirror structure w.r.t. the classification model, as

illustrated in Fig. 3. More specifically, each residual-block

in our generator corresponds to a single stage in the classi-

fication model (a stage consists of 2-3 conv layers + pool-

ing). This structure forms a semantic generation pyramid,

which at the coarsest level takes a random noise vector, z,

as input. At each of the upper levels, our model can option-

ally receive features, fl, extracted from the corresponding
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Figure 5: Image generation from paintings, line draw-

ings and grayscale images. Our model produces high qual-

ity, diverse image samples even when the input features are

extracted from unnatural images such as painting or line-

drawings, or images that are scarce in the training data such

as grayscale images. In all these cases, our generated image

samples convey realistic image properties that do not exist

in the original input images, including texture, lighting and

colors.

level of the classification model. The flow of the features

from the classification model to our generator is controlled

at each level by an input mask ml. The mask can either pass

the entire feature map (all ones), mask-out the entire feature

map (all zeros) or pass regions from it.

To conclude, the input to the network is: (1) a set of deep

features, F = {fl} computed by feeding an input image, x,

into the classification model and extracting the activation

maps from different layers; (2) a noise vector, z, which al-

lows diversity and learning a distribution rather than a one-

to-one mapping; (3) a set of masks M = {ml}, each for

input feature fl; these masks allows us to control, manip-

ulate and leverage features from different semantic levels.
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Figure 6: Image Re-painting. We use our model to gener-

ate new random samples for desired image regions, marked

in red (second row) over the original images (first row); the

image content in the unmasked regions is persevered. Our

model generates diverse region samples that match the se-

mantic content of the original image, and blends them nat-

urally with the unmasked regions which remain intact.

Thus, the generator can be formulated by G(z,F ,M).
Fig. 3(b) depicts how the feature maps are fused into our

generator. The goal is to combine information both from the

current classification model layer and from previous gener-

ator blocks that originate in the noise vector. At each level,

the feature map fl is first multiplied by its input mask ml.

The masked feature map then undergoes a convolution layer

and the result is summed with the result of the correspond-

ing generator block. In cases where the entire feature map

is masked, nothing is added to the result of the previous

generator block. The mask itself is concatenated as another

channel to allow the proceeding layers awareness and dis-

tinction between masked areas and empty areas.

As in [40], the generator consists of residual-blocks [15].

We used self-attention layers in both the generator and dis-

criminator. The discriminator is the same as [40].

3.2. Training procedure

Our goal is to have a single unified model that can gener-

ate images from any level of our semantic pyramid. In other

words, we want to be able to generate diverse, high quality

image samples from any subset of input features {fi} ⊂ F .
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Source Target Input Result

Figure 7: Semantic Image Composition. Implanting an

object or some image crop inside another image, such that

the implanted object can change in order to fit its surround-

ings but still hold on to its semantic interpretation.

We achieve this through the following training scheme.

At each training iteration, a batch of input images is sam-

pled from the dataset and is being fed to classification model

to compute their features. In our default training step, we

randomly select a pyramid level, and feed to the generator

only the features at that level, while masking out the fea-

tures in all other levels.

However, we also want the ability to generate from a

mixture of semantic levels, keeping some areas of the image

while modifying other areas. We therefore train with spa-

tially varying masks too. At some of the iterations (defined

by a hyper-parameter probability), we incorporate spatially

varying masks. Fig. 4 depicts the masking procedure in

such cases. First, random crop of the image is sampled.

Then, for one randomly selected layer the mask is fully

turned on. For all the other layers, closer to the input image,

the mask is turned on except the sampled crop. This sort of

training is oriented towards tasks of editing different spatial

areas of the image differently.

3.3. Losses

We train all the levels in our pyramid architecture simul-

taneously, where our training loss consists of three terms

given by:
min
G

max
D

Ladv(G,D) + αLrec(G) + βLdiv(G) (1)

The first term Ladv is an adversarial loss. That is, our

generator is trained against a class-conditioned discrimina-

tor D, similar to [40]. We adopt the LSGAN [26] variant of

this optimization problem. Formally,

Ladv(G,D) =

Ex∼pdata(x)[(D(x)− 1)2]+

Ez∼pz(z),F∼pdata(F),M∼pm(M)[D(G(z,F ,M))2]

(2)

Where pz is normal distribution for noise instances, and pm
is the distribution for sampling masks as described above.

The second term Lrec is a semantic reconstruction loss,

which encourages the output image to preserve the feature

information used to generate it. This is similar to perceptual

loss [21, 42]. More specifically, when feeding a generated

image back to the classification model, we want to ensure

that the resulting features will be as close as possible to the

features extracted from the original image. To allow the

model to generate diverse image samples from high level

features, we apply this loss only to the features at levels that

are used for generation (not masked out). Formally,

Lrec =
∑

l∈layers

‖(C∗
l (x)− C∗

l (G(z,F ,M)) ·ml‖1 (3)

Where Cl denotes the l layer of the classification model.

Both the original feature maps and the reconstructed ones

are normalized together so that comparison is agnostic to

global color scaling. Furthermore, to allow more geometric

diversity and not imposing pixel to pixel complete match-

ing, we first apply max-pooling to both original and recon-

structed feature maps, with 2 × 2 windows grid. So we are

effectively only comparing the strongest activation in each

window, allowing slight shifts in locations (which translate

to bigger shifts in image pixels the deeper the feature map

is).

Finally, Ldiv is a diversity loss, based on [25]. Specifi-

cally, each batch is divided into pairs of instances that have

the same input image and masking (but different noise vec-

tors). A regularization is applied such that the L1 distance

between two such generated results should be higher as the

two noise vectors are more distant one from the other.

Ldiv =
‖z1 − z2‖1

‖G(z1,F ,M)−G(z2,F ,M)‖1 + ǫ
(4)

3.4. Implementation details

We use VGG-16 [32]. The inputs to the generator are the

feautres at the end of each stage (after the pooling layer).

We also use the fully-connected layers, FC7 and FC8. To

enable matching between the SA-GAN generator to the

VGG classifier, we did not use FC6. We trained our model

on Places365 dataset [43]. We used the loss as indicated

in Eq. 1 with α = 0.1 and β = 0.1. The probability for

training with missing crops was set to 0.3. We used Ten-

sorflow platform with TFGAN tool. We trained the model

for approximately two days on Dragonfish TPU with 4× 4
topology. We employed some methods from [7] such as

class-embeddings and truncation trick. Optimization was

by Adam optimizer [22] with learning rate of 10−4 for both

the generator and discriminator. Batch size of 1024 and 128

latent space dimensions as in [40].
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Figure 8: Image re-labeling. Given an input image (top

row), with its class label (estimated by the classification net-

work), we generate a new image by feeding to our model

its original mid-level features, yet modifying its class label,

e.g., Valley→Mountain snowy (see Sec. 4). By doing so,

we can change the semantic properties of the image, while

preserving its dominant structures.

4. Experiments and Applications

We tested our model on various natural images taken

from Places365 [43] and downloaded from the Web. Fig. 1

and Fig. 2 show several qualitative results of our generated

images from increasing semantic levels. That is, for each

pyramid level, we feed our generator with features extracted

only from that level. In Fig. 2, we show for each exam-

ple and for each semantic level two different random image

samples, generated both from the same features, but with

different noise instances.

As can be seen, the pyramid level from which the image

is generated determines to which extent it diverges from the

reference image – the fidelity to the reference image de-

creases with the pyramid level, whereas the diversity be-

tween different image samples increases. Nevertheless, for

all generation levels, the semantic content of the original

image is preserved.

Observing our generated images more closely reveals de-

tails about the distribution of images matching to a feature

map at each level. For example, it is apparent that CONV4

layer is agnostic to mild lighting and color modifications but

preserves geometric structures and textures. The fully con-

nected layers are mostly agnostic to geometric global struc-

ture but preserve textures and local structures (e.g., bottom

row of Fig. 2); the global shape of the road, the position of

the island and the architecture of the castles has completely

changed. However, local attributes such as the existence of

small windows, towers remained (even though in different

locations). This aligns with observations made by [17].

Conv1 Conv2 Conv3 Conv4 Conv5 FC7 FC8

2.89 8.67 11.08 17.64 19.59 22.67 29.34

Table 1: FID per semantic level. In each column, we re-

port the estimated FID score when our images are generated

from different semantic levels. As expected, the finer the

level is the lower the FID score is.

4.1. Quantitative Evaluation

We evaluated the quality of our generated images using

two measures; Fréchet Inception Distance (FID) [16] and

“Real/Fake” user study.

For FID, we used 6000 test images randomly sampled

from Places365 [43]. We extracted deep features by feeding

these images to the classification model, and then generated

random image samples from each semantic level separately,

i.e., by inputting to our model only the features extracted

from that level.

Table. 1 reports FID scores measured for our generation

results from each semantic level. As expected, the finer the

features’ level is the lower the FID score. For example,

when generating images from CONV1 features the distri-

bution of generated images almost perfectly aligns with the

real images. As the features’ level increase, our generated

images deviate more from the original images, which is re-

flected by a consistent increase in the FID scores.

For the user study, we used Amazon Mechanical Turk

(AMT), following the protocol of [41, 19]. The following

two tests were given:

1. Paired test: A generated image is presented against its

corresponding reference image (i.e., the features used

for generation are extracted from the reference). The

workers were asked to select the fake one.

2. Unpaired test: A generated image is presented against

some real unrelated image. The workers were asked

asked to determine whether it is fake.

In each trail, images were presented for 1 sec. Each of these

tests was performed by 100 raters, using 75 images ran-

domly sampled from Places365 [43]; to prevent immediate

discrimination between real and fake images, we did not in-

clude images with people in this test (generally, humans are

not synthesized well by GANs [6], as well as by our model

when fed with features from high semantic levels).

Table. 2 reports the confusion rate (percentage of fooled

turkers) separately measured for images generated from

each semantic level. Perfect confusion is 50%. This means,

for example, that the images generated from CONV1 are

almost indistinguishable from real ones. Similarly, About

17%-18% of the images generated from FC8 looked more

genuine than the real ones shown.

4.2. Semantic Pyramid Image Manipulation

The pyramid structure of our model provides a flexible

framework that can be used for various semantically-aware
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Conv1 Conv2 Conv3 Conv4 Conv5 FC7 FC8

Paired 49.6% 42.7% 22.2% 20.9% 16% 19.1% 18%

Unpaired 51.1% 39.1% 27.6% 15.1% 13.3% 21.6% 17.2%

Table 2: AMT Real/Fake user study: We report confusion

rates (% of fooled turkers) for two types of tests: (i) Paired:

generated image against its reference image, and (ii) Un-

paired:generated image, against some real unrelated image.

We report the results for images generated from different

pyramid levels.

image generation and manipulation tasks. Similar to clas-

sic image pyramid representations [8, 1], this can be done

by manipulating features at different semantic levels, and

controlling the pyramid levels in which features are fed to

our model. We next describe how this approach can be ap-

plied for a number of applications. Note that we use the

same model, which was trained once and used at inference

mode for all applications.

Re-painting. We introduce a new application, we name

re-painting, where an image region can be re-generated,

with a controllable semantic similarity to the original image

content. In contrast to traditional in-painting, in which there

is no information in the generated region (e.g., [4, 37, 33]),

we utilize the information available in deep features for that

region. In other words, re-painting allows us to re-sample

the image content in a specific region based on its original

content.

Fig. 6 shows a number of re-painting results. As can

be seen, our model successfully replace the desired regions

with diverse generated region samples, while preserving the

content around it. This enables practical image manipu-

lations such as generating the same hiker at various envi-

ronments (Fig. 6 second column from left), or replacing a

house with various other houses while keeping the same en-

vironment (rightmost column). These results demonstrate

the ability of our network to fuse information from differ-

ent levels at different image regions. Since our training pro-

cedure of the network combines generating from different

semantic levels (different layers of the classifier) within the

same image, our generator can produce plausible images

when some spatial piece of the image is generated from a

more semantic feature-map.

Fig. 4 depicts how re-painting is done at both training

and inference. The feature map matching the semantic level

we want to repaint from is fed to the generator. Then we

mask out the wanted re-painted region from all the feature-

maps that are closer to the input image (the less semantic).

Semantic image composition. The technique introduced

for re-painting can be expanded and used for the challenge

of Semantic Image Composition. Namely, implanting an

object or some image crop inside another image, such that

the implanted object can change in order to fit its surround-

ings but still hold on to its semantic interpretation. Fig. 7

shows such examples. Note how the church changes its

structure and color according to its surroundings. These are

semantic changes as oppose to just matching textures and

lighting; In the top example the church does not just match

by texture, it is transformed to a temple that is more likely

to be found in such surrounding. Composition is done sim-

ilarly to Re-painting; the only difference is that for the cho-

sen most semantic layer we use a naive pasting of the object

on the image. Then we mask out the matching region from

all the feature-maps that are closer to the input image.

Generation from unnatural reference image. Fig. 5

demonstrates the effect of using a reference image which

does not belong to the distribution, i.e. not a a natural RGB

image. Since the generator was trained to output images that

belong to the dataset distribution, we get an image to image

translation. We demonstrate converting paintings to realis-

tic photos, line drawings to images and coloring grayscale

images. For each case we generate a diverse set of possible

results. Differently from [19, 36], there is no exact match-

ing of pixels between the reference image and the output.

Inverting from CONV5 features has some degree of spatial

freedom and allows modifying the structure. As an exam-

ple, the rightmost colorization of the city replaced the tower

with two towers.

Re-labeling. We demonstrate a rather simple application

using our semantic pyramid; we use CONV5 features from

an input image but manually change the class label fed to

the generator. Fig. 8 shows the effect of such manipulation.

Our GAN based on [40] is class conditioned. The condi-

tioning in the generator is enforced through the conditional

batch norm layers as introduced in [40]. This means that

the difference between regular inversion and relabeling in

the generator is carried out by just normalizing activations

to different mean and variance.

5. Discussion and Conclusion

This work proposes a method to bridge the gap between

semantic discriminative models and generative modelling.

We demonstrated how our semantic generation pyramid can

be used as a unified and versatile framework for various im-

age generation and manipulation tasks. Our framework also

allows exploring the sub-space of images matching specific

semantic feature-maps. We believe that projecting seman-

tic modification back to the pixels realistically, is a key

for future work that involves image manipulation or edit-

ing through the semantic domain. We hope this work can

guide and trigger further progress in utilizing semantic in-

formation in generative models.
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