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Abstract

Object recognition requires a generalization capability

to avoid overfitting, especially when the samples are ex-

tremely few. Generalization from limited samples, usually

studied under the umbrella of meta-learning, equips learn-

ing techniques with the ability to adapt quickly in dynamical

environments and proves to be an essential aspect of lifelong

learning. In this paper, we provide a framework for few-shot

learning by introducing dynamic classifiers that are con-

structed from few samples. A subspace method is exploited

as the central block of a dynamic classifier. We will empiri-

cally show that such modelling leads to robustness against

perturbations (e.g., outliers) and yields competitive results

on the task of supervised and semi-supervised few-shot clas-

sification. We also develop a discriminative form which can

boost the accuracy even further. Our code is available at

https://github.com/chrysts/dsn_fewshot.

1. Introduction

Various studies show that many deep learning techniques

in computer vision, speech recognition and natural language

understanding, to name but a few, will fail to produce reli-

able models that generalize well if limited annotations are

available. Apart from the labor associated with annotating

data, precise annotation can become ill-posed in some cases.

One prime example of such a difficulty is object detection la-

beling which requires annotating bounding boxes of objects

as explained in [1]. In some other cases, labeling process

may require expert knowledge (e.g. sign language recogni-

tion [2]).

In contrast to the current trend in deep learning, humans

can learn new objects from only a few examples. This in turn

provides humans with lifelong learning abilities. Inspired

by such learning abilities, several approaches are developed

to study learning from limited samples [3–12]. This type

of learning, known as Few-Shot Learning (FSL), has been

tackled by a diverse set of ideas, from embedding learning [4,
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Figure 1: The accuracy of prototype and subspace classi-

fiers evaluated with few (2-5) images. The feature extractor

is ResNet-34 trained on the ImageNet. A prototype is an

average pooling of few images within the same class and a

subspace is the class specific basis vectors. The prototypes

and subspaces are constructed directly from the generated

features without additional learnable parameters.

13, 14], to adaptation techniques [7, 8] and even generative

models [3, 15].

In this work, we first formulate FSL as a two-stage learn-

ing paradigm, namely, 1. learning a universal feature ex-

tractor followed by 2. learning to generate a classifier dy-

namically from limited data. We will demonstrate that many

state-of-the-art FSL techniques fit nicely into such a learning

paradigm. Furthermore, we will show that viewing the FSL

as the above paradigm will be beneficial and provide us with

tools to formalize FSL.

Once we establish the two-stage learning paradigm, we

will turn our attention to how one can reliably generate a

classifier from limited data. Aside from limited annotation,

we will show that a requirement in many challenging FSL

problems is to learn the classifier from high-dimensional data.

This ultimately boils down to learning a symmetric function1

1A symmetric function is a function that has the same value given the

arguments regardless of their order.
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from high-dimensional data. To this end, we make another

contribution and propose to construct the symmetric function

using subspaces which have a long history in modeling visual

data [16–19]. This differs in large from previous studies

where the symmetric function is realized through a form of

pooling (e.g., averaging as in [20]).

As a motivating example, we compare and contrast the

state-of-the-art prototypical networks [20] against our pro-

posed subspace method using the CUB dataset [21]. To

this end, for the universal feature extractor, we used the

ResNet-34 trained on ImageNet [22]. We considered four

FSL problems with various shots (two to five to be specific)

and report the accuracy of the prototypical networks and

our subspace method in Fig. 1. As will detail out shortly,

in prototypical networks, one constructs low-shot classifiers

by averaging all the samples within each class. Aside from

being a natural choice, averaging is supported by 1. In [23],

it is shown that all symmetric functions over a set X can be

written as ρ(
∑

x∈X φ(x)) for suitable transformations ρ and

φ. 2. In [11], authors note that the average of samples within

a class is highly correlated with the parameters of classifiers

learned by the softmax, hence one hopes that averaging re-

flects the true parameters of a class in FSL as well. Neverthe-

less, we observe that our subspace solution consistently and

comfortably outperforms the prototypical networks. This

compelling result along our thorough set of experiments on

supervised and semi-supervised FSL (see for example Ta-

ble 1 and 5) suggest that in few-shot regimes, there exists

better ways to build classifiers from limited observations

with subspace-based ones being our recommendation.

Contributions. In summary, we make the following con-

tributions in this work:

i. Few-shot learning solutions are formulated within a

framework of generating dynamic classifiers.

ii. We propose an extension of existing dynamic clas-

sifiers by using subspaces. We rely on a well-

established concept stating that a second-order

method generalizes better for classification tasks.

iii. We also introduce a discriminative formulation where

maximum discrimination between subspaces is en-

couraged during training. This solution boosts the

performance even further.

iv. We show that our method can make use of unlabeled

data and hence it lends itself to the problem of semi-

supervised few-shot learning and transductive setting.

The robustness of such a variant is assessed in our

experiments.

2. Related Work

In this section, we review the literature on few-shot learn-

ing and subspace methods for classification tasks. Few-

shot learning was originally introduced to imitate the human

learning ability. Some of the early works use generative mod-

els and similarity learning to capture the variation within

parts and geometric configurations of objects [3, 15, 24].

These works use hand-crafted features to perform few-shot

classification. Constellation model proposed in [15] takes

into account the object parts for inference. The geometric

structure of these parts helps discriminate between different

objects. Furthermore, Torralba et al. [24] exploit similar

features on visual objects but the model does not exploit the

geometric structure. Another non-deep solution is the work

by Lake et al. [3] which uses a set of primitives (strokes) to

model few-shot classification. The above few-shot classifica-

tion methods are not trained end-to-end and the given tasks

are non-episodic.

The deep learning has been very successful in learning

discriminative features from images. Santoro et al. [25] and

Vinyals et al. [4] attempted to solve few-shot classification

with end-to-end deep neural networks. In majority of cases,

the network, trained from episodes, aims to infer the under-

lying discriminative model of specific tasks from limited

data. Meta-learning can also be used to obtain fast adaptive

networks. A prominent idea is to learn initial values for the

parameters (weights) of the neural network. With proper ini-

tialization, one can expect the network to adapt to different

tasks using backpropagation from limited samples. Sachin et

al. [8] uses long-short term memory (LSTM) to embed the

gradients w.r.t. a given task to train the network. MAML [7]

does not use LSTM to encode the gradients but it can still

perform meta-learning, usually with a better performance.

As an extension, MAML++ [26] uses an importance scheme

to weigh the loss during the gradient updates. MetaNets [27]

is another fast adaptive network with a mix of so-called fast

and fixed weights. The fast weights change through back-

propagation while the fixed-weights do not change. Thus,

one can see this method as an optimization applied to se-

lected weights only.

FSL based on metric-learning is the closest direction to

our work. Matching networks [4] and Siamese networks [13]

learn sample-wise metric, meaning that distances to samples

are used to determine the label of the query. In prototypical

networks [20], Snell et al. extended the idea from samples

to class-wise metric. The descriptors from all the samples

of a specific class are grouped and considered as the class

prototypes. The prototypes are subsequently used for in-

ference. Learning a non-linear relationship between class

representations and queries can be modeled by neural net-

works as shown for example in Relation Networks [14]. The

underlying metric is learnt to preserve small distances be-

tween feature vectors sharing the same class label. Qiao et
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Figure 2: Various classifiers for few-shot classification. (a) Matching networks create pairwise classifiers. (b) Prototypical

networks create mean classifiers based on the sample in the same class. (c) Relation networks produce non-linear classifiers.

(d) Our proposed method creates classifiers using subspaces.

al. [11] observed that the activation of a network is corre-

lated with weights of its classifier (final layer) and advocates

that prototype made of the activation is sufficient for classifi-

cation. Other works use feature attention modules [28, 29]

to modulate features for few-shot learning [30, 31].

Several recent works target few-shot semi-supervised

learning (FS-SSL). Garcia et al. [32] exploit graph neural

networks for semi-supervised setting where unlabeled data

is connected with the labeled data via Graph Neural Net-

works (GNN). Then, the features extracted from GNN are

employed to classify the query. Another protocol for FS-SSL

proposed by Ren et al. [33] shows that unlabeled images help

samples from the support set to increase the performance

of few-shot classification. The method proposed in [33]

is based on the prototypical networks [20] with prototypes

refined by the use of unlabeled images.

3. Problem Setting

We start by defining the terminology used in few-shot

learning. A few of samples are trained for every iteration

in meta-learning fashion. To obtain a trained model, so-

called episodes are used to sample the data. An episode

Ti consists of two sets, the support set S and the query

set Q. This learning paradigm depicts how machine can

improve their ability given fragmented data in each iter-

ation. Specifically, the deep embeddings learn with lim-

ited amount of labels and inputs per episode. This learn-

ing paradigm is well-known as N -way K-shot classifica-

tion (e.g., 20-way 1-shot and 5-way 5-shot). We introduce

our notations for the (N -way, K-shot) few-shot learning.

Each episode or task Ti is composed of the support set

S = {(x1,1, c1,1), (x1,2, c1,2), · · · , (xN,K , cN,K)} and the

query set Q = {q1, · · · , qN×M}, where xi,j denotes the

j-th sample from class i and ci,j ∈ {1, · · · , N}. In the semi-

supervised setting, there exist additionally an unlabeled set

R = {r1, .., rU} within an episode.

A related problem is semi-supervised few-shot learn-

ing where unlabeled data is provided to the model. In the

literature, various configurations are considered for semi-

supervised few-shot learning e.g., [32–34]. In this work, we

follow the challenging protocol in [33] where the so-called

distractors are introduced. Thus, an episode includes the

support set S, query set Q, and unlabeled setR. The support

(labeled) S and query Q sets are configured as in few-shot

learning. Additionally, an unlabeled set R is provided to

assist the classification task within an episode. In the un-

labeled set, there are samples from two different sources:

the support classes and the distractor classes. As the name

implies, samples from distractor classes are irrelevant to the

classification task and represent classes outside the support

set.

4. Proposed Method

4.1. Preliminary

We consider a few-shot learning problem in two stages:

the feature extractor and the dynamic classifier. Let fΘ :
X → R

D be a mapping from the input space X to a D-

dimensional representation realized by a neural network

and Xc = {xc,1, · · · ,xc,K} be a class-specific set. We

formulate the problem of few-shot learning as generating

dynamic classifiers. To this end, the final layer of a neural

network along the softmax layer implements:

p(c|q) =
exp(W⊤

c fΘ(q))
∑

c′ exp(W
⊤
c′fΘ(q))

=
exp(dc(q))

∑

c′ exp(dc′(q))
, (1)

where W c is a weight of class c. Then, the problem of FSL

can be understood as how W can be generated once a new

task is provided. To showcase this setup, we discuss the pair-

wise classifier, the prototype, and the non-linear classifier

below.

Pair-Wise Classifier. It is possible to build a classifier di-

rectly from samples by calculating the similarity between

them as shown in Fig. 2 (a). One seminal work using this
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Figure 3: The overall pipeline of our approach. The subspace classifier replaces a classifier with a single vector per class.

Discriminative method is then applied to maximize the margin between subspaces.

classifier is Matching Networks [4]. The samples are embed-

ded through LSTMs and attention modules. However, this

method does not poses an invariance w.r.t. the order of input

images which affects the accuracy. The classifier weight W c

is substituted with a function g(·) (e.g. LSTMs) to encode

the samples. Then the class specific samples are summarized

and a cosine similarity used for prediction.

Prototype Classifier. Based on the observation for few-shot

classification in [11], the parameters from the last fully-

connected layer and prototypes correlate. Thus, the classifier

is generated from the prototypes. By introducing a simple

multi-layer perceptron, the average of feature vectors from

the final activation layer is used to perform few-shot classifi-

cation. This observation is also confirmed by prototypical

networks [20] that learn directly feature embeddings. Some

of the following works also use prototypes as dynamic clas-

sifiers such as [35, 36]. Thus, the W c is substituted with
1

K

∑

xi∈Xc
fΘ(xi). Furthermore, this approach preserves

the symmetric property (invariance to order of images) be-

cause the average operation is performed to generate the

classifier. The illustration is depicted in Fig. 2 (b).

Non-Linear Binary Classifier. This approach exploits the

non-linearity of the decision boundaries. Relational net-

works use a non-linear binary classifier to calculate the simi-

larity as shown in Fig 2 (c). Let z = (fΘ(xi), fΘ(q)) and

M ∈ R
2D is the learnable classifier (comparator). We can

redefine Eq. 1 as p(c|q) = σ(z⊤M), where σ is a non-

linear function (e.g., sigmoid). Even though this classifier

does not use a softmax function, it follows the principle of

a generating classifier that learns a comparison of datapoint

pairs.

4.2. Subspaces for Few­Shot Classification

We propose to model points by subspaces {Zi}
N
i=1

. Each

subspace Zi has a basis represented by R
D×n ∋ Bi =

[b1, · · · , bn];n ≤ D, with B⊤
i Bi = In. Our goal is to

learn the feature extractor Θ to generate subspaces, ie., the

function in a way that the resulting space is suitable for

subspace classifiers.

A basis for the subspace representing class c can be ob-

tained by a matrix decomposition e.g., singular value de-

composition (SVD). We emphasize that more involved tech-

niques to obtain robust subspaces can potentially improve

the algorithm. Nevertheless, our goal is to assess whether

the concept of subspace modeling for few-shot learning is

well justified, thus we opt for truncated SVD in our imple-

mentation.

4.3. Subspace Classifiers

High-order information is preferred than low-order to

improve the capability of the classifier. A subspace method

can form a robust classifier. Below, we describe how to create

a subspace and classify based on it. A new set of samples

encoded by Θ can be expressed as X̃c = [fΘ,(xc,1) −
µc, · · · , fΘ(xc,K)− µc], where µc =

1

K

∑

xi∈Xc
fΘ(xi).

One of the classification methods on a subspace is to find the

closest distance between the datapoint to its projection onto

the subspace. To this end, a class-specific projection matrix

P c is calculated from X̃c. Now a query qj can be projected

onto P c and the classification based on the shortest distance

from the query to its projection onto P c (in original space)

is performed. Our general subspace classifier is defined as:

dc(q) = −‖(I−M c)(fΘ(q)− µc)‖
2, (2)

where M j = P cP
⊤
c and µc can be interpreted as the offset

between a point and the subspace.Thus, P c is a truncated

matrix of a matrix Bc with orthogonal basis for the lin-

ear subspace spanning Xc = {fΘ(xi); yi = c} (hence,

B⊤
c Bc = I).

We define the probability of the query assigned to class c

using a softmax function as:

pc,q = p(c|q) =
exp

(

dc(q)
)

∑

c′ exp
(

dc′(q)
) . (3)

Now, we can minimize the negative log of Eq. 3 and

update Θ. To train the whole framework, backpropagation

through SVD is required which is available in modern deep

learning packages such as PyTorch [37]. Hereafter, we call

our proposed method as deep subspace networks (DSN).
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4.4. Discriminative Deep Subspace Networks

Our goal in this part is to enhance DSN by learning rep-

resentations that lead to more discriminative subspaces. In

doing so, we make use of the Grassmannian geometry [38]

and propose to maximize the distance between subspaces

during training. This can be achieved with ease using the

projection metric on Grassmannian which enjoys several

useful properties (see [39]). To be more specific, given the

basis of two subspaces P 3 and P j , the projection metric is

defined as:

δ2p (P i,P j) =
∥

∥

∥
P iP

⊤
i −P jP

⊤
j

∥

∥

∥

2

F
= 2n− 2‖P⊤

i P j‖
2

F .

(4)

Maximizing the projection metric is achieved by minimizing

‖P⊤
i P j‖

2

F , yielding the following loss:

−
1

NM

∑

c

log(pc,q) + λ
∑

i 6=j

‖P⊤
i P j‖

2

F . (5)

Algorithm 1 explains the steps of training DSN. Our overall

pipeline is depicted in Fig. 3

Algorithm 1 Train Deep Subspace Networks

Input: Each episode Ti with S and Q

1: Θ0 ← random initialization

2: for t in {T1, ..., TNT
} do

3: for k in {1, ..., N} do

4: X̃c ← Sc

5: Calculate the average of the class

6: Calculate mean refinement (MR) using Eq. 6

7: Subtract X̃c with an offset

8: [U ,Σ,V⊤]← Decompose(X̃c)
9: P c ← Truncate U1,...,n

10: for q in Q do

11: Compute dc(q) using Eq. 2

12: end for

13: end for

14: Compute final loss Lt using Eq. 5

15: Update Θ using ∇Lt

16: end for

4.5. DSN for Semi­Supervised Few­Shot Learning

In what follows, we extend the model developed in § 4.2

to address semi-supervised few-shot learning. In doing so,

we need to take advantage of the unlabeled data to fit better

subspaces to our data. We achieve this by refining the center

of each class (mean-refinement) according to

µ̃c =
Kµc +

∑

i mifΘ(ri)

K +
∑

i mi

, (6)

where,

mi =
exp(−‖fΘ(ri)− µc)‖

2)
∑

c′ exp(−‖fΘ(ri)− µc′)‖
2)

, (7)

where mi is the soft-assignment score for unlabeled samples.

To work at the presence of distractors, we use a fake class

with zero mean as in [33]. We empirically observed that such

a simple modification to the means can improve the results

without the need of refining the matrix decomposition step.

Moreover, this technique is also applicable for transductive

setting using query set as unlabeled data to refine mean of

classes.

Remark 1. To the best of our knowledge, subspaces have

been used to address FSL in [40, 41] and our preliminary

study [42]. A major difference between this work and TAP-

NET [40] is that the projection in our method is class-

specific, while TAPNet makes use of task-specific projections.

Our preliminary work [42] which precedes by ∼8 months

the work of Devos and Grossglauser [41] share the same

spirit and can be considered as a class specific subspace

method for FSL.

5. Experiments

Below we contrast and assess our method against state-

of-the-art techniques on four challenging datasets, namely

mini-ImageNet [8], tiered-ImageNet [33], CIFAR [43], and

Open MIC [44]. Moreover, we used several CNN backbones

such as 4-convolutional layers (Conv-4) as implemented

in [20] and ResNet-12 as employed in [45] in our entire

experiments for standard few-shot classification. We follow

a general practice to evaluate the model with N -way K-

shot and 15 query images. While perturbation analysis and

semi-supervised few-shot (SS-FSL) classification, Conv-4

is adopted. The reported results of deep subspace networks

(DSN) are provided on all datasets.

mini-ImageNet. The mini-ImageNet [8] contains 60,000

images of the ImageNet [46] datasets. Images in the mini-

ImageNet are of size 84 × 84 and represent 100 classes

with 64, 16, and 20 classes used for training, validation, and

testing, respectively. Every class has 600 images following

the image list from [8]. It is clearly shown from previous

work (e.g., [47]) that CNN backbone affects the performance.

Thus, we employ 4-convolutional layer (4-Conv) and ResNet-

12 to make fair comparisons. We also use the mini-ImageNet

for semi-supervised classification with 40% of labeled data.

tiered-ImageNet. This dataset is also derived from Ima-

geNet but contains a broader set of classes compared to the

mini-ImageNet. There are 351 classes from 20 different

categories for training, 97 classes from 6 different categories

for validation, and 160 classes from 8 different categories

for testing. We follow the implementation of 4-Conv and

ResNet-12 backbones and image size of 84× 84 as on mini-

ImageNet.
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Model Backbone 1-shot 5-shot

Matching Nets [4] Conv-4 43.56± 0.84 55.31± 0.73

MAML [7] Conv-4 48.70± 1.84 63.11± 0.92

Reptile [48] Conv-4 49.97± 0.32 65.99± 0.58

R2-D2 [49] Conv-4 48.70± 0.60 65.50± 0.60

Prototypical Nets [20] Conv-4 44.53± 0.76 65.77± 0.66

Relation Nets [14] Conv-4 50.44± 0.82 65.32± 0.70

DSN Conv-4 51.78± 0.96 68.99± 0.69

DSN-MR Conv-4 55.88± 0.90 70.50± 0.68

Meta-Nets [27] ResNet-12 57.10± 0.70 70.04± 0.63

SNAIL [10] ResNet-12 55.71± 0.99 68.88± 0.92

AdaResNet [50] ResNet-12 56.88± 0.62 71.94± 0.57

TADAM [51] ResNet-12 58.50± 0.30 76.70± 0.30

Prototypical Nets [20] ResNet-12 59.25± 0.64 75.60± 0.48

FEAT [30] ResNet-12 61.72± 0.11 78.32± 0.16

CTM [52] ResNet-18 62.05± 0.55 78.63± 0.06

Qiao et al.‡ [11] WRN-28-10 59.60± 0.41 73.74± 0.19

LwoF [36] WRN-28-10 60.06± 0.14 76.39± 0.11

LEO‡ [53] WRN-28-10 61.76± 0.08 77.59± 0.12

wDAE-GNN‡ [54] WRN-28-10 62.96± 0.15 78.85± 0.10

MetaOpt-SVM‡ [45] ResNet-12 64.09± 0.62 80.00± 0.45

DSN ResNet-12 62.64± 0.66 78.83± 0.45

DSN-MR ResNet-12 64.60± 0.72 79.51± 0.50

DSN‡ ResNet-12 65.38± 0.63 81.25± 0.45

DSN-MR‡ ResNet-12 67.09± 0.68 81.65± 0.69

Table 1: Comparison with the state of the art. 5-way few-

shot classification results with 95% confidence interval on

mini-ImageNet dataset with various backbones for 1-shot

and 5-shot. Methods with ‡ include training and validation

sets for training the models.

CIFAR-100. We evaluate on the CIFAR-FS data split. All

images on these datasets are 32 × 32 and the number of

samples per class is 600. The CIFAR-FS dataset [49] is a

few-shot learning benchmark containing all 100 classes from

CIFAR-100 [43]. The dataset is divided into 64, 16 and 20

for training, validation, and testing, respectively.

Open MIC. This dataset [44] contains images from 10 mu-

seum exhibition spaces. In this dataset, there are 866 classes

and 1-20 images per class. The images undergo various

photometric and geometric distortions, the classes are often

fine-grained in their nature, thus making few-shot learning

problem challenging. The protocols and baselines we use are

proposed in [55] but excludes the easiest to classify classes

to make it possible for testing more than 1-shot then we rerun

the SoSN [55] method. The dataset is divided into four sub-

sets: p1=(shn+hon+clv), p2=(clk+gls+scl), p3=(sci+nat),

p4=(shx+rlc). Protocol [55] assumes evaluations on p1→p2,

p2→p3, p3→p4, and p4→p1, where x→y denotes training on

subset x and testing on subset y. Training in a subset and

testing in another subset depicts a few-shot learning problem

because the objects in every museum are distinct with differ-

ent backgrounds. Note that, we eliminate classes with less

than 3 examples and rerun all algorithms in our experiment.

Model Backbone 1-Shot 5-Shot

Prototypical Nets [20] ResNet-12 61.74± 0.77 80.00± 0.55

CTM [52] ResNet-18 64.78± 0.11 81.05± 0.52

LEO‡ [53] WRN-28-10 66.33± 0.05 81.44± 0.09

MetaOpt - SVM‡ [45] ResNet-12 65.81± 0.74 81.75± 0.53

DSN ResNet-12 66.22± 0.75 82.79± 0.48

DSN-MR ResNet-12 67.39± 0.82 82.85± 0.56

DSN‡ ResNet-12 66.83± 0.73 83.31± 0.64

DSN-MR‡ ResNet-12 68.44± 0.77 83.32± 0.66

Table 2: 5-way few-shot classification results on tiered-

ImageNet with 95% confidence intervals. Methods with
‡ include training and validation sets for training the models.

Model 1-Shot 5-Shot

Prototypical Nets [4] 72.2± 0.7 83.5± 0.5

MetaOpt - RR [45] 72.6± 0.7 84.3± 0.5

MetaOpt - SVM [45] 72.0± 0.7 84.2± 0.5

MetaOpt - SVM‡ [45] 72.8± 0.7 85.0± 0.5

DSN 72.3± 0.8 85.1± 0.6

DSN-MR 75.6± 0.9 86.2± 0.6

DSN‡
73.6± 0.9 86.3± 0.6

DSN-MR‡
78.0± 0.9 87.3± 0.6

Table 3: 5-way few-shot classification results on the CIFAR-

FS dataset using ResNet-12 with 95% confidence intervals.

Methods with ‡ include training and validation sets for train-

ing the models.

5.1. Few­shot Learning

We follow the general practice and evaluate our method

on mini-ImageNet, tiered-ImageNet, CIFAR-FS, and Open

MIC when it comes to few-shot learning and classification.

The CNN architectures for mini-ImageNet are the same as

the one used in [47] with 4 convolutional layers (Conv-4)

and ResNet-12 [56]. While, only ResNet-12 is used for

CIFAR-FS and tiered-ImageNet. We use ADAM [57] for

optimizing Conv-4 and SGD for optimizing ResNet-12. For

a fair comparison, we conduct similar experimental setups.

Conv-4 backbone is trained without data augmentation fol-

lowing the other methods and cut learning rate to half every

5K episodes. We trained on 5-way 1-shot and 5-shot, then

applied the same classification task setup during testing for

Conv-4. Note that, Prototypical Nets [20] using Conv-4 were

also trained and tested on 5-way. The training for ResNet-12

is performed with data augmentation and the learning rate

is set 0.1 initially then it is adjusted to 0.003, 0.00032, and

0.00014 at epochs 12, 30, and 45, respectively. Moreover,

the training strategy in [45] is utilized with 15-shot, 10 query

images, and 8 episodes per batch. We cross-validated from

a validation set and set λ = 0.03 for all experiments. The

accuracy is evaluated over 1000 episodes.
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Model
5-way 1-shot 5-way 3-shot

p1 −→ p2 p2 −→ p3 p3 −→ p4 p4 −→ p1 Avg p1 −→ p2 p2 −→ p3 p3 −→ p4 p4 −→ p1 Avg

Matching Nets [4] 69.40 57.30 76.35 53.68 64.18 84.10 74.20 87.47 70.83 79.15

Relation Nets [14] 70.10 49.70 66.90 46.90 58.40 80.90 61.90 78.50 58.90 70.05

Prototypical Nets [20] 66.33 52.03 74.28 54.30 61.74 81.60 73.55 83.55 69.15 76.96

SoSN [55] 78.00 60.10 75.50 57.80 67.85 87.10 72.60 85.90 72.80 79.60

DSN 75.87 62.13 78.25 62.11 69.59 87.93 75.78 88.42 76.59 82.18

Table 4: Few-shot classification results using Conv-4 on the Open MIC dataset for 5-way 1-shot and 3-shot.

Dataset Model
1-shot 5-shot

w/o D w/ D w/o D w/ D

mini-

ImageNet

PN-SSL, Non-Masked [33] 50.09± 0.45 48.70± 0.32 64.59± 0.28 63.55± 0.28

PN-SSL, Masked [33] 50.41± 0.31 49.04± 0.31 64.39± 0.24 62.96± 0.14

Semi DSN 53.01± 0.82 51.01± 0.78 69.12± 0.62 67.12± 0.81

tiered-

ImageNet

PN-SSL, Non-Masked [33] 51.85± 0.25 51.36± 0.31 70.25± 0.31% 68.32± 0.22

PN-SSL, Masked [33] 52.39± 0.44 51.38± 0.38 69.88± 0.20% 69.08± 0.25

Semi DSN 54.06± 0.96 53.89± 0.83 72.07± 0.69 70.15± 0.81

Table 5: 5-way semi-supervised few-shot classification results using Conv-4 on mini-ImageNet and tiered-ImageNet with 40%

and 10% labeled data, respectively. We show the classification results with (w/ D) and without distractors (w/o D).

By design, our method needs more than one sample to

identify the span of a subspace. Thus, for 1-shot case, we

generate an additional sample by data augmentation through

flipping support images.

Results. Below, we provide our results based on the Conv-4

and ResNet-12 for a comprehensive comparison. Note that

different backbones can affect the performance of few-shot

learning. For the mini-ImageNet, Table 1 shows that our

method outperforms state-of-the-art methods with various

CNN backbones and the number of samples for 5-way 5-shot

and 1-shot. Our method can also benefit from the mean re-

finement (MR) of the query set. Our method is even better on

deeper CNN with more parameters such as ResNet-12 [56].

Our performance is 1.3% better than MetaOpt-SVM [45] on

5-way 1-shot and 5-shot. Our method also consistently out-

performs the other methods the tiered-ImageNet and CIFAR-

FS datasets (see Tables 2 and 3).

On the Open MIC dataset (see Table 4), a similar trend

can be observed. Our methods outperform state-of-the-art

embedding methods for few-shot learning (ie., Matching

Nets [4], Prototypical Nets [20], and Second-order Similarity

Network (SoSN) [55]). The results show that our subspace

representation is robust to various photometric and geometric

distortions posed by the Open MIC dataset, and it can model

fine-grained concepts contained in this dataset well. Open

MIC contains different exhibitions with different types of

objects. Our model can generalize to different subsets of

objects on Open MIC with around 2% gain compared to

other methods.

5.2. Semi­Supervised Few­shot Learning

For experiments in this section, we used the embedding

architecture with 4-convolutional layers as in [33]. We fol-

lowed the experimental setup proposed by [33]. The episode

composition of labeled part of support and query sets is simi-

lar to the few-shot learning classification task, however, there

is an additional unlabeled set provided in each episode. Our

model was trained on 100K episodes on mini-ImageNet and

tiered-ImageNet with 40% and 10% of labeled data, respec-

tively. We used the ADAM solver [57], then set the learning

rate to 0.001 with the weight decay and cut the rate to half

every 10K episodes.

The training was performed in the semi-supervised setting

for which the unlabeled set was also used. The unlabeled set

was composed of the samples from the classes in the support

set and distractor classes. The number of supporting classes

and distractor classes were set to five for training and testing.

In the training stage, the number of samples in the unlabeled

set was 50 (five samples from each class). In the testing

stage, the unlabeled set consisted of 20 samples from each

class. The query set had 20 samples per class for testing

purposes. λ was set to 0.03 and 0.005 for semi-supervised

few-shot learning on mini-ImageNet and tiered-ImageNet,

respectively.

Results. The accuracy is evaluated over 600 episodes. The

results are averaged over 10 random splits of labeled and

unlabeled sets. The semi-supervised experiment detailed in

Table 5 shows that our method improves the performance by

exploiting unlabeled data. Our results are compared to proto-
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Figure 4: Experiments in the presence of outliers and additive noise on mini-ImageNet for 5-way 5-shot using Conv-4. The

results of DSN, DSN without discriminative term, and prototypical networks are shown (see the legend). The first column

shows the impact of introducing outliers among support samples (the classes of outliers are disjoint with the support classes of

samples). The second, third and fourth columns show the impact of introducing noisy samples generated randomly according

to the Gaussian distribution with random means and variance of σ = {0.15, 0.3, 0.4}, respectively. The performance is

measured w.r.t. the increasing number of outliers and noisy samples (x-axis).

Approach 5-way 1-shot 5-way 5-shot

Without Disc. Term 50.44± 0.88 67.22± 0.69

With Disc. Term 51.78± 0.96 68.99± 0.69

Table 6: Few-shot classification accuracy for DSN using

Conv-4 with and without the discriminative term on mini-

ImageNet.

typical networks on semi-supervised learning (SS-FSL) with

soft K-means (non-masked) and masked K-means (masked),

as proposed by [33].

5.3. Ablation Study

Discriminative Term. Below, an ablation study w.r.t. the

discriminative term is performed. The discriminative term

in Eq. 4 encourages the orthogonality between subspaces of

different classes. This term leads to a performance boost on

few-shot classification tasks. We investigated results for this

mechanism in Table 6 given the Conv-4 backbone. From

results we conclude that the network learns discriminative

subspaces which are pushed away from each other. This

empirical study proves that the discriminative term gives a

performance boost and results in more discriminative sub-

spaces for classification.

Subspace Dimensionality. In comparison to other mod-

els such as matching networks, prototypical networks, and

relation networks, our DSN comes with an additional hyper-

parameter, the dimensionality of the subspaces (ie., n). As

a rule of thumb, we recommend to use n = K − 1 to train

and test our model. In fact, DSN exhibits a large degree of

robustness to n, which in turns, makes training of our model

simple. We observe that the choice of n from 2 to K − 1
does not affect the performance significantly (± 0.5%) on

mini-ImageNet using Conv-4 backbone.

6. Discussion

Robustness to Perturbations. One may argue whether

noise poses problems in few-shot learning. However, some

noise patterns might not be obvious when collecting the data.

Thus, the data cannot be guaranteed to be free from noise.

We observed in our experiments that the performance for

standard methods degrades significantly with a small de-

gree of perturbations added to signal, as depicted in Fig. 4.

However, our subspace-based model handles such a noise

well.

Computational Complexity. The computational com-

plexity of our DSN approach is O(min(ND2K,NDK2)),
where K, N , and D are the number of shot, way, and the fea-

ture dimensionality, respectively. Compared to the complex-

ity of the prototypical networks approach, ie., O(NDK),
our method is somewhat slower due to the use of the SVD

step. However, to address the complexity of SVD, fast ap-

proximate SVD algorithms can be used [58].

7. Conclusions

This paper presents the DSN, a novel few-shot learning

approach that employs a few-shot learning model via affine

subspaces. Empirically, we showed that the representations

learned via DSN are expressive across a wide-range of su-

pervised and semi-supervised few-shot problems. Both of

them are trained in meta-learning and the test set is not seen

previously while training the model. The subspace model is

proven to improve existing models by a large margin due to

its nature to represent a few datapoints on a subspace.

In DSN, each class classifier is represented by the sub-

space formed by all its samples, meaning that each class is

modeled by the span of its training datapoints. We showed

that DSN is robust to noise in few-shot learning. Our experi-

ments demonstrated that a higher classification accuracy can

be obtained by simply encouraging subspaces to be separated

from each other.
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