
Efficient Derivative Computation for Cumulative B-Splines on Lie Groups

Christiane Sommer∗ Vladyslav Usenko∗ David Schubert Nikolaus Demmel Daniel Cremers

Technical University of Munich

Abstract

Continuous-time trajectory representation has recently

gained popularity for tasks where the fusion of high-frame-

rate sensors and multiple unsynchronized devices is re-

quired. Lie group cumulative B-splines are a popular way

of representing continuous trajectories without singulari-

ties. They have been used in near real-time SLAM and

odometry systems with IMU, LiDAR, regular, RGB-D and

event cameras, as well as for offline calibration.

These applications require efficient computation of time

derivatives (velocity, acceleration), but all prior works rely

on a computationally suboptimal formulation. In this work

we present an alternative derivation of time derivatives

based on recurrence relations that needs O(k) instead of

O(k2) matrix operations (for a spline of order k) and re-

sults in simple and elegant expressions. While producing

the same result, the proposed approach significantly speeds

up the trajectory optimization and allows for computing

simple analytic derivatives with respect to spline knots. The

results presented in this paper pave the way for incorpo-

rating continuous-time trajectory representations into more

applications where real-time performance is required.

1. Introduction

Estimating trajectories is a recurring topic in computer

vision research: In odometry and SLAM applications the

sensor motion needs to be estimated, in object tracking and

robotic grasping tasks, we want to compute the 6DoF pose

over time, and for autonomous exploration, path planning

and obstacle avoidance, we need to predict good trajec-

tories. Over the last years, researchers have increasingly

switched to continuous-time trajectories: Instead of a sim-

ple list of poses for discrete time points, the trajectory is

elegantly represented by a continuous function in time with

values in the space of possible poses. B-splines are a natural

choice for parameterizing such functions. They have been

used in several well-known works on continuous-time tra-

∗ These authors contributed equally.

This work was supported by the ERC Consolidator Grant “3D Reloaded”.

5 10 15 20

0

5

10 a
x

a
y

a
z

Figure 1. Camera-IMU calibration using a Lie group cumulative

B-spline to represent the IMU trajectory (gray line with axes used

to visualize rotation). Observations of the calibration pattern are

combined with accelerometer and gyroscope measurements to es-

timate the trajectory and calibration parameters in a joint opti-

mization. The plot visualizes the accelerometer measurements in

m/s2 (dots) overlaid on the continuous estimate generated from the

spline trajectory (line) after optimization. As shown in the exper-

imental section, the proposed formulation is able to significantly

reduce the computational effort of such an optimization.

jectory estimation. However, since the B-spline trajectories

take values in the Lie group of poses, the resulting differen-

tial calculus is much more involved than in Euclidean space

R
d. Existing approaches to computing time derivatives suf-

fer from a high computational cost that is actually quadratic

in the spline order.

In this paper, we introduce recurrence relations for re-

spective time derivatives and show how they can be em-

ployed to significantly reduce the computational cost and to

derive concrete (analytic) expressions for the spline Jaco-

11148



bians w.r.t. the control points. This is not only of theoret-

ical interest: by speeding up time derivatives and Jacobian

computation significantly, we take a large step towards the

real-time capability of continuous-time trajectory represen-

tation and its applications such as camera tracking, motion

planning, object tracking or rolling-shutter modelling. In

summary, our contributions are the following:

• A simple formulation for the time derivatives of Lie

group cumulative B-splines that requires a number of

matrix operation which scales linearly with the order k
of the spline.

• Simple (linear in k) analytic Jacobians of the value and

the time derivatives of an SO(3) spline with respect to

its knots.

• Faster optimization time compared to the currently

available implementations, due to provably lower com-

plexity. This is demonstrated on simulated exper-

iments and real-world applications such as camera-

IMU calibration.

2. Related Work

This paper consists of two main parts: first, we take a de-

tailed look at the theory behind B-splines, in particular on

Lie groups. In the second part, we look at possible appli-

cations of our efficient derivative computation in computer

vision. In the following, we will review related work for

both parts.

B-splines in Lie groups Since the 1950s, B-splines have

become a popular tool for approximating and interpolating

functions of one variable. Most notably, de Casteljau [6],

Cox [4] and De Boor [5] introduced principled ways of de-

riving spline coefficients from a set of desirable properties,

such as locality and smoothness. Qin [16] found that due

to their locality property, B-splines are conveniently ex-

pressed using a matrix representation. By using so-called

cumulative B-splines, the concept can be transferred from

R
d-valued functions to the more general set of Lie group-

valued functions. This was first done for the group of 3D

rotations SO(3) [11], and later generalized to arbitrary Lie

groups L [20]. The latter also contains formulas for com-

puting derivatives of L-valued B-splines, but the way they

are formulated is not practical for implementation. For a

general overview of computations in Lie groups and Lie al-

gebras, we refer to [2, 19].

Applications in computer vision Thanks to their flexi-

bility in representing functions, B-splines have been used

a lot for trajectory representation in computer vision and

robotics. The applications range from calibration [8, 12] to

odometry estimation with different sensors [12, 10, 13], 3D

reconstruction [14, 15] and trajectory planning [21, 7]. All

of these works need temporal derivatives of the B-splines

at some point, but to the best of our knowledge, there is

no work explicitly investigating efficient computation and

complexity of these. Several works have addressed the

question if it is better to represent trajectories as one spline

in SE (3), or rather use a split representation of two splines

in R
3 and SO(3) [9, 14, 15]. While this cannot be answered

unambiguously without looking at the specific use case, all

authors come to the conclusion that on average, using the

split representation is better both in terms of trajectory rep-

resentation and in terms of computation time.

3. Lie Group Foundations

3.1. Notation

A Lie group L is a group which also is a differentiable

manifold, and for which group multiplication and inver-

sion are differentiable operations. The corresponding Lie

algebra A is the tangent space of L at the identity element

1. Prominent examples of Lie groups are the trivial vector

space Lie groups Rd, which have L = A = R
d and where

the group multiplication is simple vector addition, and ma-

trix Lie groups such as the transformation groups SO(n)
and SE (n), with matrix multiplication as group multiplica-

tion. Of particular interest in computer vision applications

are the groups SO(3) of 3D rotations and SE (3), the group

of rigid body motions.

The continuous-time trajectories in this paper are func-

tions of time t with values in a Lie group L. If d denotes

the number of degrees of freedom of L, the hat transform

·∧ : R
d → A is used to map tangent vectors to elements

in the Lie algebra A. The Lie algebra elements can be

mapped to their Lie group elements using the matrix expo-

nential exp: A → L, which has a closed-form expression

for SO(3) and SE (3). The composition of the hat transform

followed by the matrix exponential is given by

Exp: Rd → L . (1)

Its inverse is denoted

Log : L → R
d , (2)

which is a composition of the matrix logarithm log : L → A
followed be the inverse of the hat transform ·∨ : A → R

d.

Definition 3.1. For an element X ∈ L, the adjoint AdjX is

the linear map defined by

AdjX v = (Xv∧X
−1)∨ ∀ v ∈ R

d . (3)

It follows readily from the definition in (3) that

X Exp(v) = Exp(AdjX v)X ∀ v ∈ R
d , (4)

Exp(v)X = X Exp(AdjX−1 v) ∀ v ∈ R
d . (5)

11149



For a rotation R ∈ SO(3), the adjoint is simply AdjR = R.

In this paper, we also use the commutator of two Lie algebra

elements:

Definition 3.2. The commutator is defined as

[·, ·] : A×A → A, [V,W ] = VW − VW . (6)

For V = v∧,W = w∧ ∈ so(3), the commutator has the

property

[V,W ]
∨
= v ×w . (7)

3.2. Differentiation

To differentiate the trajectories with respect to their pa-

rameters, the following definitions and conventions will be

used.

Definition 3.3. The right Jacobian Jr is defined by

Jr(v)w = lim
ǫ→0

Log(Exp(v)−1 Exp(v + ǫw))

ǫ
(8)

for all vectors w ∈ R
d.

Intuitively, the right Jacobian measures how the differ-

ence of Exp(v) and Exp(v + w), mapped back to R
d,

changes with w. It has the following properties:

Log(Exp(v) Exp(δ)) = v + Jr(v)
−1δ +O(δ2) , (9)

Exp(v + δ) = Exp(v) Exp(Jr(v)δ) +O(δ
2) . (10)

If L = SO(3), the right Jacobian and its inverse can be

found in [3, p. 40].

Whenever an expression f(X) is differentiated w.r.t. to

a Lie group element X , the derivative is defined as

∂f(X)

∂X
=

∂f(Exp(δ)X)

∂δ

∣∣∣∣
δ=0

. (11)

Consequently, an update step for the variable X during op-

timization is performed as X ← Exp(δ)X , where δ is the

the increment determined by the optimization algorithm.

4. B-Spline Foundations

4.1. Basics

B-splines define a continuous function using a set of con-

trol points (knots), see also Fig. 2. They have a number

of desirable properties for continuous trajectory representa-

tion, in particular locality and Ck−1 smoothness for a spline

of order k (degree k − 1). We will focus on uniform B-

splines of order k in this work.

Definition 4.1. A uniform B-spline of order k is defined by

its control points pi (0 ≤ i ≤ N ), times ti = t0 + i∆t and

a set of spline coefficients Bi,k(t):

p(t) =

N∑

i=0

Bi,k(t)pi , (12)

k=2 (linear)

k=4 (cubic)

k=6 (degree 5)

Figure 2. A set of control points (black) in R
2, and the resulting

B-splines for different orders k. For the linear spline (k = 2), the

spline curve actually hits the control points, while for higher order

splines, this is not true in general. The lighter lines show how

the splines change if one control point changes: the curves only

change locally, i.e. in the vicinity of the modified control point.

where the coefficients are given by the De Boor–Cox recur-

rence relation [4, 5]

Bi,0(t) =

{
1, for ti ≤ t < ti+1

0, otherwise
(13)

Bi,j(t) =
t− ti
j∆t

Bi,j−1(t) +
ti+j+1 − t

j∆t
Bi+1,j−1(t) .

(14)

It is possible to transform (12) into a cumulative repre-

sentation:

p(t) = B̃0,k(t)p0 +

N∑

i=1

B̃i,k(t)(pi − pi−1) , (15)

B̃i,k(t) =
N∑

s=i

Bs,k(t) . (16)

4.2. Matrix Representation

B-splines have local support, which means that for a

spline of order k, at a given t only k control points con-

tribute to the value of the spline. As shown in [16], it is

possible to represent the spline coefficients using a matrix

representation, which is constant for uniform B-splines.

At time t ∈ [ti, ti+1) the value of p(t) only depends

on the control points pi, pi+1, ..., pi+k−1. To simplify

calculations, we transform time to a uniform representation

s(t) := (t− t0)/∆t, such that the control points transform

into {0, .., k − 1}. We define u(t) := s(t) − i as normal-

ized time elapsed since the start of the segment [ti, ti+1)
and from now on use u as temporal variable. The value of

p(u) can then be evaluated using a matrix representation as

follows [16]:

p(u)︸︷︷︸
d×1

=
(
pi, pi+1, · · · , pi+k−1

)
︸ ︷︷ ︸

d×k

M (k)
︸ ︷︷ ︸
k×k

u︸︷︷︸
k×1

, (17)

11150



where un = un, M (k) is a blending matrix with entries

m(k)
s,n =

Cn
k−1

(k − 1)!

k−1∑

l=s

(−1)l−sCl−s
k (k − 1− l)k−1−n ,

s, n ∈ {0, . . . , k − 1} ,
(18)

and Cs
k = k!

s! (k−s)! are binomial coefficients.

It is also possible to use the matrix representation for the

cumulative splines:

p(u) =
(
pi , di

1 , · · · , di
k−1

)
M̃ (k)u , (19)

with cumulative matrix entries m̃
(k)
j,n =

∑k−1
s=j m

(k)
s,n and dif-

ference vectors di
j = pi+j − pi+j−1.

We show in the Appendix that the first row of the matrix

M̃ (k) is always equal to the unit vector e0 ∈ R
k:

m̃
(k)
0,n = δn,0 ∀ n = 0, · · · , k − 1 , (20)

with the Kronecker delta δn,0. In particular, if we define

λ(u) = M̃ (k)u , (21)

this implies λ0(u) ≡ 1. Inserting λ with λ0 = 1 into the cu-

mulative matrix representation (19) allows us to write p(u)
conveniently as follows:

Theorem 4.2. The B-spline of order k at position u can be

written as

p(u) = pi +

k−1∑

j=1

λj(u) · d
i
j . (22)

5. Cumulative B-splines in Lie groups

The cumulative B-spline in (22) can be generalized to

Lie groups [20], and in particular to SO(3) for smooth rota-

tion generation [11]. First, a simple Rd-addition in (22) cor-

responds to the group multiplication in a general Lie group

(matrix multiplication in matrix Lie groups). Second, while

we can easily scale a vector d ∈ R
d by a factor λ ∈ R using

scalar multiplication in R
d, the concept of scaling does not

exist for elements X of a Lie group. Thus, we first have

to map X from L to the Lie algebra A, which is a vector

space, then scale the result, and finally map it back to L:

Exp(λ · Log(X)). These two observations together lead

to the following definition of cumulative B-splines in Lie

groups:

Definition 5.1. The cumulative B-spline of order k in a Lie

group L with control points X0, · · · , XN ∈ L has the form

X(u) = Xi ·

k−1∏

j=1

Exp
(
λj(u) · d

i
j

)
, (23)

with the generalized difference vector di
j

di
j = Log

(
X−1

i+j−1Xi+j

)
∈ R

d . (24)

We should mention that as opposed to a B-spline in R
d,

the order of multiplication (addition in (22)) does matter

here, and different generalizations to Lie groups are possi-

ble in principle. In practice, we use the convention that is

most commonly used in related work [12, 10, 13, 14, 15].

We omit the i to simplify notation, and define

Aj(u) = Exp (λj(u) · dj) (25)

to obtain the more concise expression

X(u) = Xi ·

k−1∏

j=1

Aj(u) . (26)

Note that this can be re-formulated as a recurrence relation:

X(u) = X(k)(u) , (27)

X(j)(u) = X(j−1)(u)Aj−1(u) , (28)

X(1)(u) = Xi . (29)

5.1. Time derivatives

The main contribution of this paper is a simplified repre-

sentation of the temporal derivatives, which needs less oper-

ations compared to related work. We first review the deriva-

tives according to the current standard, and then introduce

ours. We denote differentiation w.r.t. u by a dot and apply

the product rule to (26) to get

Ẋ(u) = Xi ·

k−1∑

j=1

(
j−1∏

l=1

Al(u)

)
Ȧj(u)




k−1∏

l=j+1

Al(u)




(30)

with

Ȧj(u) = λ̇j(u)Aj(u)Dj = λ̇j(u)DjAj(u) , (31)

and Dj = (dj)∧. Note that Aj(u) and Dj commute by def-

inition. For the case of cubic splines (k = 4), this reduces

to

Ẋ = Xi

(
Ȧ1A2A3 +A1Ȧ2A3 +A1A2Ȧ3

)
, (32)

which is the well known formula from e.g. [12, 13, 14, 15].

An implementation following this formula needs to per-

form (k− 1)2 +1 matrix-matrix multiplications and is thus

quadratic in the spline degree. We propose to define the time

derivatives recursively instead, which needs less operations:

Theorem 5.2. The time derivative Ẋ is given by the follow-

ing recurrence relation:

Ẋ = Xω
(k)
∧ , (33)

ω(j) = AdjA−1
j−1

ω(j−1) + λ̇j−1dj−1 ∈ R
d , (34)

ω(1) = 0 ∈ R
d . (35)

ω(k) is commonly referred to as velocity. For L = SO(n),
we also call it angular velocity.

11151



Proof. We use the recursive definition of X(u) in (28) and

prove by induction over j that

Ẋ(j) = X(j)ω
(j)
∧ , (36)

which is equivalent to the claim for j = k. First, we note

that for j = 1, X(j)(u) = Xi is constant w.r.t. u, and thus

Ẋ(1) = 0 = X(1)ω̂
(1)
∧ . Now, let (36) be true for some

j ∈ {1, . . . , k − 1}, then we have

Ẋ(j+1) = ∂u

(
X(j)Aj

)
= Ẋ(j)Aj +X(j)Ȧj

= X(j)
(
ω

(j)
∧ Aj + λ̇kAjDj

)

= X(j)Aj

(
A−1

j ω
(j)
∧ Aj + λ̇j(dj)∧

)

= X(j+1)
((

AdjA−1
j

ω(j)
)
∧

+ λ̇j(dj)∧

)

︸ ︷︷ ︸
=ω

(j+1)
∧

.

(37)

Note that our recursive definition of Ẋ makes it very

easy to see that X−1Ẋ = ω
(k)
∧ ∈ A for any Lie group,

a property which is implicitly used in many works [12, 15],

but never shown explicitly for arbitrary L.

The scheme presented in Theorem 5.2 computes time

derivatives with only k − 1 matrix-vector multiplications

and vector additions, together with one single matrix-matrix

multiplication.

Since rotations in SO(3) are a common and important

use case of B-splines in Lie groups, we explicitly state the

angular velocity recursion (34) for L = SO(3):

ω(j) = A⊤

j−1ω
(j−1) + λ̇j−1dj−1 . (38)

For second order time derivatives, it is easy to see that

the calculations proposed in related works [12, 13] need

k(k − 1) + k C2
k−1 =

1

2
k2(k − 1) (39)

matrix-matrix multiplications and are thus cubic in the

spline order. We propose a different way to compute Ẍ:

Theorem 5.3. The second derivative of X w.r.t. u can be

computed by the following recurrence relation:

Ẍ = X
(
(ω(k))2∧ + ω̇

(k)
∧

)
, (40)

where the (angular) acceleration ω̇(k) is recursively defined

by

ω̇(j) = λ̇j−1

[
ω

(j)
∧ , Dj−1

]
∨

+AdjA−1
j−1

ω̇(j−1) + λ̈j−1dj−1 ,
(41)

ω̇(1) = 0 ∈ R
d . (42)

Proof. (40) follows from our expression for Ẋ (33) and the

product rule. For (41), the last summand is trivial, so we

focus on the derivative of the first term in the velocity re-

cursion (34): first, we note that

AdjA−1
j−1

ω(j−1) =
(
A−1

j−1ω
(j−1)
∧ Aj−1

)
∨

=: ω̄ , (43)

so the time derivative of that term is a sum of three terms

following the product rule for differentiation. The middle

term is
(
A−1

j−1ω̇
(j−1)
∧ Aj−1

)
∨

= AdjA−1
j−1

ω̇(j−1) , (44)

which is exactly the second summand in (41). The remain-

ing two terms are

(
Ȧ−1

j−1ω
(j−1)
∧ Aj−1 +A−1

j−1ω
(j−1)
∧ Ȧj−1

)
∨

(31)
=
(
−λ̇j−1Dj−1ω̄∧ + ω̄∧λ̇j−1Dj−1

)
∨

(6)
= λ̇j−1 [ω̄∧, Dj−1]∨
(34)
= λ̇j−1

[
ω

(j)
∧ − λ̇j−1Dj−1, Dj−1

]
∨

= λ̇j−1

[
ω

(j)
∧ , Dj−1

]
∨

.

(45)

This proposed scheme computes second time derivatives

with only 2k matrix-matrix multiplications, k − 1 matrix-

vector multiplications, 3(k − 1) vector additions and one

matrix addition in any L. For L = SO(3), the acceleration

ω̇(j) in (41) simplifies to

ω̇(j) = λ̇j−1ω
(j)×dj−1+A⊤

j−1ω̇
(j−1)+λ̈j−1dj−1 . (46)

This implies that for SO(3), second order time derivatives

only need 3(k−1) matrix-vector multiplications and vector

additions plus two matrix-matrix multiplications, reducing

computation time even further.

The iterative scheme for the computation of time deriva-

tives can be extended to higher order derivatives. As an

example, we provide third order time derivatives of X to-

gether with the jerk ω̈(k) in the Appendix. The number of

matrix operations needed to compute this is still linear in

the order of the spline. We also provide a comprehensive

overview of the matrix operations needed for the different

approaches in the Appendix.

5.2. Jacobians w.r.t. control points in SO(3)

To emphasize that this paragraph focuses on SO(3), we

denote elements by R instead of X . The values of both the

spline itself and its velocity and acceleration depend on the

choice of control points. For the derivatives w.r.t. the con-

trol points of the B-spline, we first note that a control point

11152



Ri+j appears implicitly in dj and dj+1, and for j = 0, we

also have the explicit dependence of R(u) on Ri. Thus, we

compute derivatives w.r.t. the dj and then apply the chain

rule. We focus on L = SO(3) as it is the most relevant

group for computer vision applications.

In order to apply the chain rule, we need the derivatives

of the dj w.r.t. the Ri+j , which follow trivially from the

definition of the right Jacobian and the adjoint of SO(3):

∂dj

∂Ri+j

= J−1
r (dj)R

⊤

i+j ,
∂dj+1

∂Ri+j

= −
∂dj+1

∂Ri+j+1
. (47)

Now consider a curve f that maps to R
d, for example the

spline value, velocity or acceleration. f depends on the set

of control points Ri+j and has derivatives

df

dRi+j

=
∂f

∂dj

·
∂dj

∂Ri+j

+
∂f

∂dj+1
·
∂dj+1

∂Ri+j

. (48)

for j > 0. For j = 0 we obtain

df

dRi

=
∂f

∂Ri

+
∂f

∂d1
·
∂d1

∂Ri

. (49)

Thus, to compute Jacobians w.r.t. control points, we need

the partial derivatives w.r.t. the dj as well as Ri.

In the following, we will first derive some useful proper-

ties, and then present a recursive scheme to compute Jaco-

bians of ρ, ω = ω(k) and ω̇ = ω̇(k), where we define the

vector ρ ∈ R
d as the mapping of R to R

d by the Log map:

ρ(u) = LogR(u) . (50)

The Jacobians of ω(j) and ω̇(j) w.r.t. dj are zero: from the

recursion schemes of ω and ω̇ in Theorems 5.2 and 5.3, we

find that the first index for which dj appears explicitly or

implicitly (in the form of Aj) is j + 1.

Furthermore, we use the following important relation in

our derivations, which is proven in the Appendix:

∂

∂d
Exp(−λd)ω = λExp(−λd)ω∧Jr(−λd) (51)

for λ ∈ R and d,ω ∈ R
3. Together, these findings have

two important implications:

Theorem 5.4. The Jacobian of ω(j+1) w.r.t. dj is

∂ω(j+1)

∂dj

= λjA
⊤

j ω
(j)
∧ Jr(−λjdj) + λ̇j1 . (52)

Proof. We apply (51) to the angular velocity ω(j+1) as de-

rived for L = SO(3) in (38).

Theorem 5.5. The Jacobian of ω̇(j+1) w.r.t. dj is

∂ω̇(j+1)

∂dj

= λ̇j

(
ω

(j+1)
∧ −Dj

∂ω(j+1)

∂dj

)

+ λjA
⊤

j ω̇
(j)
∧ Jr(−λjdj) + λ̈j1 .

(53)

Proof. We apply (51) to ω̇(j+1) as defined in (46) and use

ω × d = ω∧d = −Dω (54)

for d,ω ∈ R
3 and D = d∧.

These results for the Jacobians of ω(j+1) and ω̇(j+1)

w.r.t. dj can be used to derive Jacobians of ω and ω̇ by

recursion:

Theorem 5.6. The following recurrence relation (from j =
k − 1 to j = 1) allows for Jacobian computation of ρ, ω

and ω̇ in a linear (w.r.t. k) number of multiplications and

additions:

Pk−1 = 1 , (55)

sk−1 = 0 , (56)

∂ρ

∂dj

= λjJ
−1
r (ρ)PjJr(λjdj) , (57)

∂ω

∂dj

= Pj

∂ω(j+1)

∂dj

, (58)

∂ω̇

∂dj

= Pj

∂ω̇(j+1)

∂dj

− (sj)∧
∂ω

∂dj

, (59)

Pj−1 = PjA
⊤

j , (60)

sj−1 = sj + λ̇jPjdj . (61)

Pj and sj are accumulator products and sums, respectively.

Proof of (57). We write R as

R = RiApre Exp(λjdj)Apost , (62)

where Apre and Apost are implicitly defined by comparison

with the generic form of a cumulative Lie group B-spline

(23). They do not depend on dj . The right Jacobian prop-

erty (10), combined with the adjoint property, yields

RiApre Exp(λj(dj + δ))Apost

= RExp(λjA
⊤

postJr(λjdj)δ) +O(δ
2)

(63)

Now, we apply the right Jacobian property (9) to obtain

Log (RiApre Exp(λj(dj + δ))Apost)

= ρ+ λjJ
−1
r (ρ)A⊤

postJr(λjdj)δ +O(δ2) .
(64)

Differentiation at δ = 0 and inserting A⊤
post = Pj yields

(57).

Proof of (58). Since j ≤ k − 2, Ak−1 does not depend on

dj , thus

∂ω

∂dj

=
∂

∂dj

(
A⊤

k−1ω
(k−1) + λ̇k−1dk−1

)

= A⊤

k−1

∂ω(k−1)

∂dj

.

(65)

Iterative application of this equation leads to the claim.

11153



Proof of (59). First, since the case j = k − 1 is trivial, we

can focus on j ≤ k−2: for these cases, we find (by insertion

into (46) that

∂ω̇

∂dj

=
∂

∂dj

(
−λ̇k−1Dk−1ω +A⊤

k−1ω̇
(k−1) + λ̈k−1dk−1

)

= −λ̇k−1Dk−1
∂ω

∂dj

+A⊤

k−1

∂ω̇(k−1)

∂dj

.

(66)

We prove the equivalence of this and (59) by induction in

the Appendix.

6. Experiments

To evaluate the proposed formulation for the B-spline

time derivatives and our SO(3) Jacobians, we conduct two

experiments. In the first one, simulated velocity and ac-

celeration measurements are used to estimate the trajectory

represented by the spline. This allows us to highlight the

computational advantages of the proposed formulation. In

the second experiment, we demonstrate an example of a

real-world application, in particular a multiple camera and

IMU calibration. In this case we estimate the continuous

trajectory of the IMU, transformations from the cameras to

the IMU, accelerometer and gyroscope biases and gravity

in the world frame.

In both cases, we implemented as baseline method the

time derivative computation from prior work [12, 13]. Un-

less stated otherwise, optimizations are done using Ceres

[1] with the automatic differentiation option. This option

uses dual numbers for computing Jacobians. In all cases,

we use the Levenberg-Marquardt algorithm for optimiza-

tion with sparse Cholesky decomposition for solving lin-

ear systems. The experiments were conducted on Ubuntu

18.04 with Intel Xeon E5-1620 CPU. We used clang-9 as a

compiler with -O3 -march=native -DNDEBUG flags.

Even though residual and Jacobian computations are easily

parallelizable, in this paper we concentrate on differences

between formulations and run all experiments in single-

thread configuration.

We have made the experiments available open-source at:

https://gitlab.com/tum-vision/lie-spline-experiments

6.1. Simulated Sequence

One typical application of B-splines on Lie groups is tra-

jectory estimation from a set of sensor measurements. In

our first experiment we assume that we have pose, velocity

and acceleration measurements for either SO(3) or SE (3)
and formulate an optimization problem that is supposed to

estimate the values of the spline knots representing the true

trajectory. In this case we minimize the sum of squared

L k Config. Ours Baseline Speedup

SO(3) 4 acc. 0.057 0.147 2.57

SO(3) 4 vel. 0.058 0.088 1.52

SO(3) 5 acc. 0.081 0.280 3.45

SO(3) 5 vel. 0.082 0.141 1.73

SO(3) 6 acc. 0.117 0.520 4.43

SO(3) 6 vel. 0.111 0.217 1.95

SE (3) 4 acc. 0.277 0.587 2.12

SE (3) 4 vel. 0.253 0.334 1.32

SE (3) 5 acc. 0.445 1.196 2.69

SE (3) 5 vel. 0.405 0.581 1.43

SE (3) 6 acc. 0.644 2.332 3.62

SE (3) 6 vel. 0.590 0.936 1.59

Table 1. Optimization time in seconds for the proposed and base-

line formulations with velocity (vel.) and acceleration (acc.) mea-

surements, and the speedup achieved by our formulation. In all the

experiments both formulations converged to the same result with

the same number of iterations.

residuals, where a residual is the difference between the

measured and the computed value.

We use a spline with 100 + k knots with 2 second spac-

ing, 25 value measurements and 2020 velocity or accelera-

tion measurements that are uniformly distributed across the

spline. The measurements are generated from the ground-

truth spline. We initialize the knot values of the splines that

will be optimized to perturbed ground truth values, which

results in 5 optimization iterations until convergence. Table

1 summarizes the results. As expected, the proposed for-

mulation outperforms the baseline formulation in all cases.

The time difference is higher for the acceleration measure-

ments, since there the baseline formulation is cubic in the

order of spline.

6.2. Camera­IMU calibration

In the second experiment we aim to show the applicabil-

ity of our approach for real-world applications with camera-

IMU calibration as an example. We use two types of splines

of order 5 and knot spacing of 10 ms to represent the con-

tinuous motion of the IMU coordinate frame: SO(3) × R
3

(split representation) and SE (3). For both cases we imple-

mented the proposed and the baseline method to compute

time derivatives.

We use the calib-cam1 sequence of [18] in this experi-

ment. It contains 51.8 seconds of data and consists of 10336

accelerometer and the same number of gyroscope measure-

ments, 1036 images for two cameras which observe 291324

corners of the calibration pattern. We assume that the cam-

era intrinsic parameters are pre-calibrated and there is a

good initial guess between camera and IMU rotations com-

puted from angular velocities. All optimizations in our ex-

periment have the same initial conditions and noise settings.

11154



Estimated variable g [m/s2] ba [m/s2] bg [rad/s] tic0 [m] tic1 [m] Ric0 [rad] Ric1 [rad]

Max deviation 6.07 · 10−5 6.32 · 10−5 2.14 · 10−9 6.34 · 10−6 6.33 · 10−6 3.51 · 10−8 3.34 · 10−8

Table 2. Maximum difference between the mean estimate and the estimates from all calibration methods. For vectors (g, ba, bg , tic0,

tic1), the L2 norm is used. For rotational values (Ric0, Ric1) the angle norm in radians is used. The results show that independent of the

underlying spline representation (SO(3)× R
3 or SE(3)) the calibration converges to the same result.

A segment of the sequence trajectory after optimization is

visualized in Figure 1.

The projection residuals are defined as:

rp(u) = π(T−1
ic Twi(u)

−1x)− p̂, (67)

Twi =

(
Rwi twi

0 1

)
∈ SE (3), (68)

where Twi(u) is the pose of the IMU in the coordinate

frame computed from the spline either as a pose directly

(SE (3)), or as two separate values for rotation and transla-

tion (SO(3)×R
3). Tic is the transformation from the cam-

era where the corner was observed to the IMU, π is a fixed

projection function, x is the 3D coordinate of the calibra-

tion corner and p̂ denotes the 2D coordinates of the corner

detected in the image.

The gyroscope and accelerometer residuals are defined

as:

rω(u) = ω(u)− ω̃ + bg, (69)

ra(u) = Rwi(u)
−1(ẗwi(u) + g)− ã+ ba, (70)

where ω̃ and ã are the measurements, bg and ba are static

biases and g is the gravity vector in world coordinates.

Rwi(u) is the rotation from IMU to world frame. The defi-

nition of ω(u) and ẗwi(u) depends on the spline representa-

tion that we use. For the SO(3)× R
3 representation, ω(u)

is the angular velocity in the body frame computed as in

(38) and ẗwi(u) is the second derivative of the R
3 spline

representing the translation of the IMU in the world frame.

For SE (3), ω(u) is the rotational component of the velocity

computed in (34) and ẗwi(u) is the translation part of the

second time derivative of the pose computed in (40). The

SE (3) formulation of these residuals is identical to the one

used in [12].

The calibration is done by minimizing a function that

combines the residuals for all measurements:

E =
∑

r⊤ωWωrω +
∑

r⊤a Wara +
∑

r⊤p Wprp, (71)

where Wω , Wa, Wp are the weight matrices computed using

the sensor noise characteristics.

In all conducted experiments the calibration converged

to the same values (see Table 2) after 12 iterations, so

switching to our formulation does not affect accuracy of the

solution. Our results confirm previous reports [9, 15] that

the SE (3) spline representation does not introduce any ad-

vantages compared to the split representation, but requires

more computations.

SO(3)× R
3 SE (3)

Ours Ours Baseline Ours Baseline

Analytic Ceres Ceres Ceres Ceres

5.82 14.18 15.09 23.56 37.14

Table 3. Time in seconds to perform the camera-IMU calibration.

Analytic uses a custom solver with the analytic Jacobians for all

residuals. All other methods use Ceres solver with dual numbers

for Jacobian computations.

The timing results are presented in Table 3. In all cases

we can see the advantage of the proposed formulation for

time derivatives. In the case of split representation only the

gyroscope residuals are affected, so the difference is rela-

tively small, if Ceres Jacobians are used (6% less time). For

the SE (3) representation, both gyroscope and accelerom-

eter residuals are affected, since we need to compute the

second time derivative for linear acceleration. In this case

our formulation results in 36.7% less computation time. We

also present the results with our custom solver that uses split

representation and the analytic Jacobians for SO(3) that we

introduced in Section 5.2. It results in a further decrease

in the computation time and is able to perform the calibra-

tion in less than 6 seconds (2.6 times faster than the baseline

approach with split representation).

The results indicate that our formulation of the time

derivatives requires less computations, especially if second

time derivatives need to be computed. This can have an

even larger effect for the calibration of multiple IMUs [17],

where even for the split formulation, evaluation of the rota-

tional acceleration is required.

7. Conclusions

In this work, we showed how commonly used B-splines

on Lie groups can be differentiated (w.r.t. time and control

points) in a very efficient way. Both our temporal deriva-

tives and our Jacobians can be computed in O(k) matrix

operations, while traditional computation schemes are up

to cubic in k. We mathematically prove the correctness of

our statements. While our contribution has a clear focus

on theory, we also demonstrate how choosing a good rep-

resentation together with our derivative computation lead to

speedups of up to 4.4x in practical computer vision applica-

tions. This makes our proposed method highly relevant for

real-time applications of continuous-time trajectory repre-

sentations.

11155



References

[1] Sameer Agarwal, Keir Mierle, and Others. Ceres solver.

http://ceres-solver.org.

[2] Timothy D Barfoot. State Estimation for Robotics. Cam-

bridge University Press, 2017.

[3] Gregory S Chirikjian. Stochastic Models, Information The-

ory, and Lie Groups, Volume 2: Analytic Methods and Mod-

ern Applications, volume 2. Springer Science & Business

Media, 2011.

[4] Maurice G Cox. The numerical evaluation of B-splines. IMA

Journal of Applied Mathematics, 1972.

[5] Carl De Boor. On calculating with B-splines. Journal of

Approximation theory, 1972.

[6] Paul de Casteljau. Courbes à pôles, 1959.

[7] W. Ding, W. Gao, K. Wang, and S. Shen. An efficient B-

spline-based kinodynamic replanning framework for quadro-

tors. IEEE Transactions on Robotics, pages 1–20, 2019.

[8] P. Furgale, T. D. Barfoot, and G. Sibley. Continuous-time

batch estimation using temporal basis functions. In 2012

IEEE International Conference on Robotics and Automation,

pages 2088–2095, May 2012.

[9] Adrian Haarbach, Tolga Birdal, and Slobodan Ilic. Survey

of higher order rigid body motion interpolation methods for

keyframe animation and continuous-time trajectory estima-

tion. In 2018 International Conference on 3D Vision (3DV),

pages 381–389. IEEE, 2018.

[10] C. Kerl, J. Stückler, and D. Cremers. Dense continuous-time

tracking and mapping with rolling shutter RGB-D cameras.

In 2015 IEEE International Conference on Computer Vision

(ICCV), pages 2264–2272, Dec 2015.

[11] Myoung-Jun Kim, Myung-Soo Kim, and Sung Yong Shin. A

general construction scheme for unit quaternion curves with

simple high order derivatives. In Proceedings of the 22Nd

Annual Conference on Computer Graphics and Interactive

Techniques, SIGGRAPH ’95, pages 369–376, New York,

NY, USA, 1995. ACM.

[12] Steven Lovegrove, Alonso Patron-Perez, and Gabe Sibley.

Spline Fusion: A continuous-time representation for visual-

inertial fusion with application to rolling shutter cameras. In

Proc. British Mach. Vis. Conf., page 93.1–93.12, 2013.

[13] E. Mueggler, G. Gallego, H. Rebecq, and D. Scaramuzza.

Continuous-time visual-inertial odometry for event cam-

eras. IEEE Transactions on Robotics, 34(6):1425–1440, Dec

2018.

[14] Hannes Ovrén and Per-Erik Forssén. Spline error weight-

ing for robust visual-inertial fusion. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recogni-

tion, pages 321–329, 2018.

[15] Hannes Ovrén and Per-Erik Forssén. Trajectory representa-

tion and landmark projection for continuous-time structure

from motion. The International Journal of Robotics Re-

search, 38(6):686–701, 2019.

[16] Kaihuai Qin. General matrix representations for B-splines.

The Visual Computer, 16(3-4):177–186, 2000.

[17] J. Rehder, J. Nikolic, T. Schneider, T. Hinzmann, and R.

Siegwart. Extending kalibr: Calibrating the extrinsics of

multiple IMUs and of individual axes. In 2016 IEEE In-

ternational Conference on Robotics and Automation (ICRA),

pages 4304–4311, May 2016.

[18] D. Schubert, T. Goll, N. Demmel, V. Usenko, J. Stückler,

and D. Cremers. The TUM VI benchmark for evaluating

visual-inertial odometry. In 2018 IEEE/RSJ International

Conference on Intelligent Robots and Systems (IROS), pages

1680–1687, Oct 2018.

[19] Joan Solà, Jeremie Deray, and Dinesh Atchuthan. A micro

Lie theory for state estimation in robotics. arXiv preprint

arXiv:1812.01537, 2018.

[20] Hannes Sommer, James Richard Forbes, Roland Siegwart,

and Paul Furgale. Continuous-time estimation of attitude us-

ing B-splines on Lie groups. Journal of Guidance, Control,

and Dynamics, 39(2):242–261, 2015.

[21] Vladyslav Usenko, Lukas von Stumberg, Andrej Pangercic,

and Daniel Cremers. Real-time trajectory replanning for

MAVs using uniform B-splines and a 3D circular buffer.

In 2017 IEEE/RSJ International Conference on Intelligent

Robots and Systems (IROS). IEEE, 2017.

11156


