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Abstract

The research community has increasing interest in au-

tonomous driving research, despite the resource intensity

of obtaining representative real world data. Existing self-

driving datasets are limited in the scale and variation of

the environments they capture, even though generalization

within and between operating regions is crucial to the over-

all viability of the technology. In an effort to help align the

research community’s contributions with real-world self-

driving problems, we introduce a new large-scale, high

quality, diverse dataset. Our new dataset consists of 1150

scenes that each span 20 seconds, consisting of well syn-

chronized and calibrated high quality LiDAR and camera

data captured across a range of urban and suburban ge-

ographies. It is 15x more diverse than the largest cam-

era+LiDAR dataset available based on our proposed geo-

graphical coverage metric. We exhaustively annotated this

data with 2D (camera image) and 3D (LiDAR) bounding

boxes, with consistent identifiers across frames. Finally, we

provide strong baselines for 2D as well as 3D detection

and tracking tasks. We further study the effects of dataset

size and generalization across geographies on 3D detection

methods. Find data, code and more up-to-date information

at http://www.waymo.com/open.

1. Introduction

Autonomous driving technology is expected to enable a

wide range of applications that have the potential to save

many human lives, ranging from robotaxis to self-driving

trucks. The availability of public large-scale datasets and

benchmarks has greatly accelerated progress in machine

perception tasks, including image classification, object de-

tection, object tracking, semantic segmentation as well as

∗Work done while at Waymo LLC.

instance segmentation [7, 17, 23, 10].

To further accelerate the development of autonomous

driving technology, we present the largest and most diverse

multimodal autonomous driving dataset to date, comprising

of images recorded by multiple high-resolution cameras and

sensor readings from multiple high-quality LiDAR scanners

mounted on a fleet of self-driving vehicles. The geographi-

cal area captured by our dataset is substantially larger than

the area covered by any other comparable autonomous driv-

ing dataset, both in terms of absolute area coverage, and

in distribution of that coverage across geographies. Data

was recorded across a range of conditions in multiple cities,

namely San Francisco, Phoenix, and Mountain View, with

large geographic coverage within each city. We demonstrate

that the differences in these geographies lead to a pronounced

domain gap, enabling exciting research opportunities in the

field of domain adaptation.

Our proposed dataset contains a large number of high-

quality, manually annotated 3D ground truth bounding boxes

for the LiDAR data, and 2D tightly fitting bounding boxes

for the camera images. All ground truth boxes contain track

identifiers to support object tracking. In addition, researchers

can extract 2D amodal camera boxes from the 3D LiDAR

boxes using our provided rolling shutter aware projection

library. The multimodal ground truth facilitates research in

sensor fusion that leverages both the LiDAR and the camera

annotations. Our dataset contains around 12 million LiDAR

box annotations and around 12 million camera box annota-

tions, giving rise to around 113k LiDAR object tracks and

around 250k camera image tracks. All annotations were

created and subsequently reviewed by trained labelers using

production-level labeling tools.

We recorded all the sensor data of our dataset using an

industrial-strength sensor suite consisting of multiple high-

resolution cameras and multiple high-quality LiDAR sensors.

Furthermore, we offer synchronization between the camera

and the LiDAR readings, which offers interesting opportu-
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nities for cross-domain learning and transfer. We release

our LiDAR sensor readings in the form of range images. In

addition to sensor features such as elongation, we provide

each range image pixel with an accurate vehicle pose. This

is the first dataset with such low-level, synchronized infor-

mation available, making it easier to conduct research on

LiDAR input representations other than the popular 3D point

set format.

Our dataset currently consists of 1000 scenes for training

and validation, and 150 scenes for testing, where each scene

spans 20 s. Selecting the test set scenes from a geographical

holdout area allows us to evaluate how well models that were

trained on our dataset generalize to previously unseen areas.

We present benchmark results of several state-of-the-art

2D-and 3D object detection and tracking methods on the

dataset.

2. Related Work

High-quality, large-scale datasets are crucial for au-

tonomous driving research. There have been an increasing

number of efforts in releasing datasets to the community in

recent years.

Most autonomous driving systems fuse sensor readings

from multiple sensors, including cameras, LiDAR, radar,

GPS, wheel odometry, and IMUs. Recently released au-

tonomous driving datasets have included sensor readings

obtained by multiple sensors. Geiger et al. introduced the

multi-sensor KITTI Dataset [9, 8] in 2012, which provides

synchronized stereo camera as well as LiDAR sensor data

for 22 sequences, enabling tasks such as 3D object detection

and tracking, visual odometry, and scene flow estimation.

The SemanticKITTI Dataset [2] provides annotations that

associate each LiDAR point with one of 28 semantic classes

in all 22 sequences of the KITTI Dataset.

The ApolloScape Dataset [12], released in 2017, pro-

vides per-pixel semantic annotations for 140k camera images

captured in various traffic conditions, ranging from simple

scenes to more challenging scenes with many objects. The

dataset further provides pose information with respect to

static background point clouds. The KAIST Multi-Spectral

Dataset [6] groups scenes recorded by multiple sensors, in-

cluding a thermal imaging camera, by time slot, such as

daytime, nighttime, dusk, and dawn. The Honda Research

Institute 3D Dataset (H3D) [19] is a 3D object detection and

tracking dataset that provides 3D LiDAR sensor readings

recorded in 160 crowded urban scenes.

Some recently published datasets also include map infor-

mation about the environment. For instance, in addition to

multiple sensors such as cameras, LiDAR, and radar, the

nuScenes Dataset [4] provides rasterized top-down semantic

maps of the relevant areas that encode information about

driveable areas and sidewalks for 1k scenes. This dataset has

limited LiDAR sensor quality with 34K points per frame,

KITTI NuScenes Argo Ours

Scenes 22 1000 113 1150

Ann. Lidar Fr. 15K 40K 22K 230K

Hours 1.5 5.5 1 6.4

3D Boxes 80K 1.4M 993k 12M

2D Boxes 80K – – 9.9M

Lidars 1 1 2 5

Cameras 4 6 9 5

Avg Points/Frame 120K 34K 107K 177K

LiDAR Features 1 1 1 2

Maps No Yes Yes No

Visited Area (km2) – 5 1.6 76

Table 1. Comparison of some popular datasets. The Argo Dataset

refers to their Tracking dataset only, not the Motion Forecasting

dataset. 3D labels projected to 2D are not counted in the 2D Boxes.

Avg Points/Frame is the number of points from all LiDAR returns

computed on the released data. Visited area is measured by diluting

trajectories by 75 meters in radius and union all the diluted areas.

Key observations: 1. Our dataset has 15.2x effective geographical

coverage defined by the diversity area metric in Section 3.5. 2. Our

dataset is larger than other camera+LiDAR datasets by different

metrics. (Section 2)

TOP F,SL,SR,R

VFOV [-17.6◦, +2.4◦] [-90◦, 30◦]

Range (restricted) 75 meters 20 meters

Returns/shot 2 2

Table 2. LiDAR Data Specifications for Front (F), Right (R), Side-

Left (SL), Side-Right (SR), and Top (TOP) sensors. The vertical

field of view (VFOV) is specified based on inclination (Section

3.2).

limited geographical diversity covering an effective area of

5km2 (Table 1).

In addition to rasterized maps, the Argoverse Dataset [5]

contributes detailed geometric and semantic maps of the

environment comprising information about the ground height

together with a vector representation of road lanes and their

connectivity. They further study the influence of the provided

map context on autonomous driving tasks, including 3D

tracking and trajectory prediction. Argoverse has a very

limited amount raw sensor data released.

See Table 1 for a comparison of different datasets.

3. Waymo Open Dataset

3.1. Sensor Specifications

The data collection was conducted using five LiDAR sen-

sors and five high-resolution pinhole cameras. We restrict

the range of the LiDAR data, and provide data for the first

two returns of each laser pulse. Table 2 contains detailed

specifications of our LiDAR data. The camera images are

captured with rolling shutter scanning, where the exact scan-

2447



F FL,FR SL,SR

Size 1920x1280 1920x1280 1920x1040

HFOV ±25.2◦ ±25.2◦ ±25.2◦

Table 3. Camera Specifications for Front (F), Front-Left (FL), Front-

Right (FR), Side-Left (SL), Side-Right (SR) cameras. The image

sizes reflect the results of both cropping and downsampling the

original sensor data. The camera horizontal field of view (HFOV) is

provided as an angle range in the x-axis in the x-y plane of camera

sensor frame (Figure 1).

Laser: FRONTLaser: REAR
Vehicle

Laser: SIDE_LEFT

Laser: SIDE_RIGHT

Laser: TOP

SIDE_LEFT

FRONT_RIGHT

Cameras FRONT

FRONT_LEFT

SIDE_RIGHT

x-axis
y-axis
z-axis is positive upwards

Figure 1. Sensor layout and coordinate systems.

ning mode can vary from scene to scene. All camera images

are downsampled and cropped from the raw images; Table 3

provides specifications of the camera images. See Figure 1

for the layout of sensors relevant to the dataset.

3.2. Coordinate Systems

This section describes the coordinate systems used in

the dataset. All of the coordinate systems follow the right

hand rule, and the dataset contains all information needed to

transform data between any two frames within a run segment.

The Global frame is set prior to vehicle motion. It is an

East-North-Up coordinate system: Up (z) is aligned with the

gravity vector, positive upwards; East (x) points directly east

along the line of latitude; North (y) points towards the north

pole.

The Vehicle frame moves with the vehicle. Its x-axis

is positive forwards, y-axis is positive to the left, z-axis

is positive upwards. A vehicle pose is defined as a 4x4

transform matrix from the vehicle frame to the global frame.

Global frame can be used as the proxy to transform between

different vehicle frames. Transform among close frames is

very accurate in this dataset.

A Sensor frame is defined for each sensor. It is denoted

as a 4x4 transformation matrix that maps data from sensor

frame to vehicle frame. This is also known as the ”extrinsics”

matrix.

The LiDAR sensor frame has z pointing upward. The x-y

Figure 2. LiDAR label example. Yellow = vehicle. Red = pedes-

trian. Blue = sign. Pink = cyclist.

axes depends on the LiDAR.

The camera sensor frame is placed at the center of the

lens. The x axis points down the lens barrel out of the lens.

The z axis points up. The y/z plane is parallel to the image

plane.

The Image frame is a 2D coordinate system defined for

each camera image, where +x is along the image width (i.e.

column index starting from the left), and +y is along the

image height (i.e. row index starting from the top). The

origin is the top-left corner.

The LiDAR Spherical coordinate system is based on

the Cartesian coordinate system in the LiDAR sensor frame.

A point (x, y, z) in the LiDAR Cartesian coordinate system

can be uniquely transformed to a (range, azimuth, inclina-

tion) tuple in the LiDAR Spherical coordinate system by the

following equations:

range =
√

x2 + y2 + z2 (1)

azimuth = atan2(y, x) (2)

inclination = atan2(z,
√

x2 + y2). (3)

3.3. Ground Truth Labels

We provide high-quality ground truth annotations, both

for the LiDAR sensor readings as well as the camera images.

Separate annotations in LiDAR and camera data opens up

exciting research avenues in sensor fusion. For any label,

we define length, width, height to be the sizes along x-axis,

y-axis and z-axis respectively.

We exhaustively annotated vehicles, pedestrians, signs

and cyclists in the LiDAR sensor readings. We labeled each

object as a 7-DOF 3D upright bounding box (cx, cy, cz, l, w,

h, θ) with a unique tracking ID, where cx, cy, cz represent

the center coordinates, l, w, h are the length, width, height,

and α denotes the heading angle in radians of the bounding

box. Figure 2 illustrates an annotated scene as an example.

In addition to the LiDAR labels, we separately exhaus-

tively annotated vehicles, pedestrians and cyclists in all cam-

era images. We annotated each object with a tightly fitting

4-DOF image axis-aligned 2D bounding box which is com-

plementary to the 3D boxes and their amodal 2D projections.

The label is encoded as (cx, cy, l, w) with a unique tracking

ID, where cx and cy represent the center pixel of the box, l
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represents the length of the box along the horizontal (x) axis

in the image frame, and w represent the width of the box

along the vertical (y) axis in the image frame. We use this

convention for length and width to be consistent with 3D

boxes. One interesting possibility that can be explored using

the dataset is the prediction of 3D boxes using camera only.

We use two levels for difficulty ratings, similar to KITTI,

where the metrics for LEVEL 2 are cumulative and thus

include LEVEL 1. The criteria for an example to be in

a specific difficulty level can depend on both the human

labelers and the object statistics.

We emphasize that all LiDAR and all camera groundtruth

labels were manually created by highly experienced human

annotators using industrial-strength labeling tools. We have

performed multiple phases of label verification to ensure a

high labeling quality.

3.4. Sensor Data

LiDAR data is encoded in this dataset as range images,

one for each LiDAR return; data for the first two returns is

provided. The range image format is similar to the rolling

shutter camera image in that it is filled in column-by-column

from left to right. Each range image pixel corresponds to

a LiDAR return. The height and width are determined by

the resolution of the inclination and azimuth in the LiDAR

sensor frame. Each inclination for each range image row

is provided. Row 0 (the top row of the image) corresponds

to the maximum inclination. Column 0 (left most column

of the image) corresponds to the negative x-axis (i.e., the

backward direction). The center of the image corresponds to

the positive x-axis (i.e., the forward direction). An azimuth

correction is needed to make sure the center of the range

image corresponds to the positive x-axis.

Each pixel in the range image includes the following

properties. Figure 4 demonstrates an example range image.

• Range: The distance between the LiDAR point and the

origin in LiDAR sensor frame.

• Intensity: A measurement indicating the return strength

of the laser pulse that generated the LiDAR point, partly

based on the reflectivity of the object struck by the laser

pulse.

• Elongation: The elongation of the laser pulse beyond

its nominal width. Elongation in conjunction with in-

tensity is useful for classifying spurious objects, such

as dust, fog, rain. Our experiments suggest that a highly

elongated low-intensity return is a strong indicator for

a spurious object, while low intensity alone is not a

sufficient signal.

• No label zone: This field indicates whether the LiDAR

point falls into a no label zone, i.e., an area that is

ignored for labeling.

• Vehicle pose: The pose at the time the LiDAR point is

captured.

Figure 3. Camera LiDAR synchronization accuracy in milliseconds.

The number in x-axis is in milli-seconds. The y-axis denotes the

percentage of data frames.

Figure 4. A range image example. It is cropped to only show the

front 90◦. The first three rows are range, intensity, and elongation

from the first LiDAR return. The last three are range, intensity, and

elongation from the second LiDAR return.

• Camera projection: We provide accurate LiDAR point

to camera image projections with rolling shutter effect

compensated. Figure 5 demonstrates that LiDAR points

can be accurately mapped to image pixels via the pro-

jections.

Our cameras and LiDARs data are well-synchronized.

The synchronization accuracy is computed as

camera center time − frame start time−

camera center offset/360◦ ∗ 0.1s
(4)

The camera center time is the exposure time of the image’s

center pixel. The frame start time is the start time of this

data frame. The camera center offset is the offset of the

+x axis of each camera sensor frame w.r.t. the backward

direction of the vehicle. The camera center offset is 90◦for

SIDE LEFT camera, 90◦ + 45◦ for FRONT LEFT camera

etc. See Figure 3 for the synchronization accuracy for all

the cameras. The synchronization error is bounded in [-6ms,

7ms] with 99.7% confidence, [-6ms, 8ms] with 99.9995%

confidence.

Camera images are JPEG compressed images. Rolling

shutter timing information is provided with each image.

Rolling shutter projection. For any given point p in the
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Figure 5. An example image overlaid with LiDAR point projections.

PHX MTV SF Day Night Dawn

Train 286 103 409 646 79 73

Validation 93 21 88 160 23 19

Table 4. Scene counts for Phoenix (PHX), Mountain View (MTV),

and San Francisco (SF) and different time of the day for training

and validation set.

global frame, the rolling shutter camera captures the point

at an unknown time t. We can estimate the vehicle pose at t
assuming a constant velocity v and angular velocity ω. Using

the pose at t, we can project p to the image and get an image

point q, which uniquely defines a pixel capture time t̃. We

minimize the difference between t and t̃ by solving a single

variable (t) convex quadratic optimization. The algorithm is

efficient and can be used in real time as it usually converges

in 2 or 3 iterations. See Figure 5 for an example output of

the projection algorithm.

3.5. Dataset Analysis

The dataset has scenes selected from both suburban and

urban areas, from different times of the day. See Table 4 for

the distribution. In addition to the urban/suburban and time

of day diversity, scenes in the dataset are selected from many

different parts within the cities. We define a geographical

coverage metric as the area of the union of all 150-meter di-

luted ego-poses in the dataset. By this definition, our dataset

covers an area of 40km2 in Phoenix, and 36km2 combined

in San Francisco and Mountain View. See Figure 6 for the

parallelogram cover of all level 13 S2 cells [1] touched by

all ego poses from all scenes.

The dataset has around 12M labeled 3D LiDAR objects,

around 113k unique LiDAR tracking IDs, around 12M la-

beled 2D image objects and around 254k unique image track-

ing IDs. See Table 5 for counts of each category.

4. Tasks

We define 2D and 3D object detection and tracking tasks

for the dataset. We anticipate adding other tasks such as

segmentation, domain adaptation, behavior prediction, and

imitative planning in the future.

For consistent reporting of results, we provide pre-defined

Vehicle Pedestrian Cyclist Sign

3D Object 6.1M 2.8M 67k 3.2M

3D TrackID 60k 23k 620 23k

2D Object 9.0M 2.7M 81k –

2D TrackID 194k 58k 1.7k –

Table 5. Labeled object and tracking ID counts for different object

types. 3D labels are LiDAR labels. 2D labels are camera image

labels.

training (798 scenes), validation (202 scenes), and test set

splits (150 scenes). See Table 5 for the number of objects

in each labeled category. The LiDAR annotations capture

all objects within a radius of 75m. The camera image an-

notations capture all objects that are visible in the camera

images, independent of the LiDAR data.

4.1. Object Detection

4.1.1 3D Detection

For a given frame, the 3D detection task involves predict-

ing 3D upright boxes for vehicles, pedestrians, signs, and

cyclists. Detection methods may use data from any of the Li-

DAR and camera sensors; they may also choose to leverage

sensor inputs from preceding frames.

Accurate heading prediction is critical for autonomous

driving, including tracking and behavior prediction tasks.

Average precision (AP), commonly used for object detection,

does not have a notion of heading. Our proposed metric,

APH, incorporates heading information into a familiar object

detection metric with minimal changes.

AP = 100

∫

1

0

max{p(r′)|r′ >= r}dr, (5)

APH = 100

∫

1

0

max{h(r′)|r′ >= r}dr, (6)

where p(r) is the P/R curve. Further, h(r) is computed sim-

ilar to p(r), but each true positive is weighted by heading

accuracy defined as min(|θ̃ − θ|, 2π − |θ̃ − θ|)/π, where θ̃
and θ are the predicted heading and the ground truth head-

ing in radians within [−π, π]. The metrics implementation

takes a set of predictions with scores normalized to [0, 1],
and samples a fixed number of score thresholds uniformly

in this interval. For each score threshold sampled, it does

a Hungarian matching between the predictions with score

above the threshold and ground truths to maximize the over-

all IoU between matched pairs. It computes precision and

recall based on the matching result. If the gap between recall

values of two consecutive operating points on the PR curve

is larger than a preset threshold (set to 0.05), more p/r points

are explicitly inserted between with conservative precisions.

Example: p(r) : p(0) = 1.0, p(1) = 0.0, δ = 0.05. We

add p(0.95) = 0.0, p(0.90) = 0.0, ..., p(0.05) = 0.0. The
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Figure 6. Parallelogram cover of all level 13 S2 cells touched by all ego poses in San Francisco, Mountain View, and Phoenix.

AP = 0.05 after this augmentation. This avoids producing

an over-estimated AP with very sparse p/r curve sampling.

This implementation can be easily parallelized, which makes

it more efficient when evaluating on a large dataset. IoU

is used to decide true positives for vehicle, pedestrian and

cyclist. Box center distances are used to decide true positives

for sign.

4.1.2 2D Object Detection in Camera Images

In contrast to the 3D detection task, the 2D camera image

detection task restricts the input data to camera images, ex-

cluding LiDAR data. The task is to produce 2D axis-aligned

bounding boxes in the camera images based on a single cam-

era image. For this task, we consider the AP metric for the

object classes of vehicles, pedestrians, and cyclists. We use

the same AP metric implementation as described in Section

4.1.1 except that 2D IoU is used for matching.

4.2. Object Tracking

Multi-Object Tracking involves accurately tracking of the

identity, location, and optionally properties (e.g. shape or

box dimensions) of objects in a scene over time.

Our dataset is organized into sequences, each 20 seconds

long with multiple sensors producing data sampled at 10Hz.

Additionally, every object in the dataset is annotated with a

unique identifier that is consistent across each sequence. We

support evaluation of tracking results in both 2D image view,

and 3D vehicle centric coordinates.

To evaluate the tracking performance, we use the multiple

object tracking (MOT) metric [3]. This metric aims to con-

solidate several different characteristics of tracking systems –

namely the ability of the tracker to detect, localize, and track

the identities of objects over time – into a single metric to

aid in direct comparison of method quality:

MOTA = 100− 100

∑

t
(mt + fpt + mmet)

∑

t
gt

(7)

MOTP = 100

∑

i,t
dit

∑

t
ct

. (8)

Let mt, fpt and mmet represent the number of misses,

false positives and mismatches. Let gt be the ground truth

count. A mismatch is counted if a ground truth target is

matched to a track and the last known assignment was not

the track. In MOTP, let dit represent the distance between a

detection and its corresponding ground truth match, and ct
be the number of matches found. The distance function used

to calculate dit is 1− IoU for a matched pair of boxes. See

[3] for the full procedure.

Similar to the detection metrics implementation described

in 4.1, we sample scores directly and compute an MOTA for

each score cutoff. We pick the highest MOTA among all the

score cutoffs as the final metric.

5. Experiments

We provide baselines on our datasets based on recent

approaches for detection and tracking for vehicles and pedes-

trians. The same method can be applied to other object types

in the dataset. We use 0.7 IoU for vehicles and 0.5 IoU for

pedestrians when computing metrics for all tasks.

5.1. Baselines for Object Detection

3D LiDAR Detection To establish a 3D Object Detection

baseline, we reimplemented PointPillars [16], which is a

simple and efficient LiDAR-based 3D detector that first uses

a single layer PointNet [20] to voxelize the point cloud into

the Birds Eye View, followed by a CNN region proposal

network [24]. We trained the model on single frame of

sensor data with all LiDARs included.

For vehicles and pedestrians we set the voxel size to

0.33m, the grid range to [−85m, 85m] along the X and
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Y axes, and [−3m, 3m] along the Z axis. This gives us

a 512 × 512 pixel Birds Eye View (BEV) pseudo-image.

We use the same convolutional backbone architecture as

the original paper [16], with the slight exception that our

Vehicle model matches our Pedestrian model in having a

stride of 1 for the first convolutional block. This decision

means both the input and output spatial resolutions of the

models are 512 × 512 pixels, which increases accuracy at

the cost of a more expensive model. We define anchor

sizes (l, w, h) as (4.73m, 2.08m, 1.77m) for vehicles and

(0.9m, 0.86m, 1.71m) for pedestrians. Both vehicles and

pedestrians have anchors oriented to 0 and π/2 radians. To

achieve good heading prediction, we used a different rota-

tion loss formulation, using a smooth-L1 loss of the heading

residual error, wrapping the result between [−π, π] with a

huber delta δ = 1

9
.

In reference to the LEVEL definition in section 3.3, we

define the difficulty for the single frame 3D object detection

task as follows. We first ignore all 3D labels without any

LiDAR points. Next, we assign LEVEL 2 to examples where

either the labeler annotates as hard or if the example has ≤ 5
LiDAR points. Finally, the rest of the examples are assigned

to LEVEL 1.

We evaluate models on the proposed 3D detection metrics

for both 7-degree-of-freedom 3D boxes and 5-degree-of-

freedom BEV boxes on the 150-scene hidden test set. For

our 3D tasks, we use 0.7 IoU for vehicles and 0.5 IoU for

pedestrians. Table 6 shows detailed results;

2D Object Detection in Camera Images We use the

Faster R-CNN object detection architecture [21], with

ResNet-101 [11] as the feature extractor. We pre-trained

the model on the COCO Dataset [17] before fine-tuning

the model on our dataset. We then run the detector on all

5 camera images, and aggregate the results for evaluation.

The resulting model achieved an AP of 63.7 at LEVEL 1

and 53.3 at LEVEL 2 on vehicles, and an AP of 55.8 at

LEVEL 1 and 52.7 at LEVEL 2 on pedestrians.

5.2. Baselines for Multi­Object Tracking

3D Tracking We provide an online 3D multi-object track-

ing baseline following the common tracking-by-detection

paradigm, leaning heavily on the above PointPillars [16]

models. Our method is similar in spirit to [22]. In this

paradigm, tracking at each timestep t consists of running a

detector to generate detections dnt = {d1t , d
2

t , ..., d
n
t } with

n being the total number of detections, associating these

detections to our tracks tmt = {t1t , t
2

t , ..., t
m
t } with m being

the current number of tracks, and updating the state of these

tracks tmt given the new information from detects dnt . Ad-

ditionally, we need to provide a birth and death process to

determine when a given track is Dead (not to be matched

with), Pending (not confident enough yet), and Live (being

returned from the tracker).

For our baseline, we use our already trained PointPillars

[16] models from above, 1− IOU as our cost function, the

Hungarian method [15] as our assignment function, and a

Kalman Filter [13] as our state update function. We ignore

detections with lower than a 0.2 class score, and set a min-

imum threshold of 0.5 IoU for a track and a detect to be

considered a match. Our tracked state consists of a 10 pa-

rameter state tmt = {cx, cy, cz, w, l, h, α, vx, vy, vz} with a

constant velocity model. For our birth and death process, we

simply increment the score of the track with the associated

detection score if seen, decrement by a fixed cost (0.3) if the

track is unmatched, and provide a floor and ceiling of the

score [0, 3]. Both vehicle and pedestrian results can be seen

in Table 7. For both vehicles and pedestrians the mismatch

percentage is quite low, indicating IoU with a Hungarian

algorithm [15] is a reasonable assignment method. Most of

the loss of MOTA appears to be due to misses that could

either be due to localization, recall, or box shape prediction

issues.

2D Tracking We use the visual multi-object tracking

method Tracktor [14] based on a Faster R-CNN object de-

tector that we pre-trained on the COCO Dataset [17] and

then fine-tuned on our dataset. We optimized the parameters

of the Tracktor method on our dataset and set σactive = 0.4,

λactive = 0.6, and λnew = 0.3. The resulting Tracktor model

achieved a MOTA of 34.8 at LEVEL 1 and 28.3 at LEVEL 2

when tracking vehicles.

5.3. Domain Gap

The majority of the scenes in our dataset were recorded

in three distinct cities (Table 4), namely San Francisco,

Phoenix, Mountain View. We treat Phoenix and Mountain

View as one domain called Suburban (SUB) in this experi-

ment. SF and SUB have similar number of scenes per (Table

4) and different number of objects in total (Table 8). As

these two domains differ from each other in fascinating ways,

the resulting domain gap in our dataset opens up exciting re-

search avenues in the field of domain adaptation. We studied

the effects of this domain gap by evaluating the performance

of object detectors trained on data recorded in one domain

on the training set and evaluated in another domain on the

validation set.

We used the object detectors described in Section 5.1.

We filter the training and validation datasets to only contain

frames from a specific geographic subset referred to as SF

(San Francisco), SUB (MTV + Phoenix), or ALL (all data),

and retrain and reevaluate models on the permutation of these

splits. Table 9 summarizes our results. For the 3D LiDAR-

based vehicle object detector, we observed an APH reduction

of 8.0 when training on SF and evaluating on SUB compared

with training on SUB and evaluating on SUB, and an APH
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Metric
BEV (LEVEL 1/LEVEL 2) 3D (LEVEL 1/LEVEL 2)

Overall 0 - 30m 30 - 50m 50m - Inf Overall 0 - 30m 30 - 50m 50m - Inf

Vehicle APH 79.1/71.0 90.2/87.7 77.3/71.1 62.8/49.9 62.8/55.1 81.9/80.8 58.5/52.3 34.9/26.7

Vehicle AP 80.1/71.9 90.8/88.3 78.4/72.2 64.8/51.6 63.3/55.6 82.3/81.2 59.2/52.9 35.7/27.2

Pedestrian APH 56.1/51.1 63.2/61.1 54.6/50.5 43.9/36.0 50.2/45.1 59.0/56.7 48.3/44.3 35.8/28.8

Pedestrian AP 70.0/63.8 76.9/74.5 68.5/63.4 58.1/47.9 62.1/55.9 71.3/68.6 60.1/55.2 47.0/37.9

Table 6. Baseline APH and AP for vehicles and pedestrians.

Metric
Overall (LEVEL 1/LEVEL 2) MOTA by Range (LEVEL 1/LEVEL 2)

MOTA MOTP Miss Mismatch FP 0 - 30m 30 - 50m 50m - Inf

Vehicle 3D 42.5/40.1 18.6/18.6 40.0/43.4 0.14/0.13 17.3/16.4 70.6/69.9 39.7/37.5 12.5/11.2

Pedestrian 3D 38.9/37.7 34.0/34.0 48.6/50.2 0.49/0.47 12.0/11.6 52.5/51.4 37.6/36.5 22.3/21.3

Table 7. Baseline multi-object tracking metrics for vehicles and pedestrians.

reduction of 7.6 when training on SUB and evaluating on

SF compared with training on SF and evaluating on SF. For

3D object detection of pedestrians, the results are interesting.

When evaluating on SUB, training on either SF or SUB yield

similar APH, while training on all data yields a 7+ APH

improvement. This result does not hold when evaluating

on SF. Training just on SF when evaluating on SF yields

a 2.4 APH improvement as compared to training on the

larger combined dataset, while training on SUB only and

evaluating on SF leads to a 19.8 APH loss. This interesting

behavior on pedestrian might be due to the limited amount

pedestrians available in SUB (MTV + Phoenix). Overall,

these results suggest a pronounced domain gap between

San Francisco and Phoenix in terms of 3D object detection,

which opens up exciting research opportunities to close the

gap by utilizing semi-supervised or unsupervised domain

adaptation algorithms.

SF(Tra) SUB(Tra) SF(Val) SUB(Val)

Vehicle 2.9M 1.9M 691K 555K

Pedestrian 2.0M 210K 435K 103K

Table 8. 3D LiDAR object counts for each domain in training (Tra)

and Validation (Val) sets.

ALL/SUB/SF→SUB ALL/SF/SUB→SF

Vehicle 45.3/44.0/36.7 50.3/49.2/42.5

Pedestrian 25.7/20.6/19.9 46.0/47.6/29.7

Table 9. 3D object detection baseline LEVEL 2 APH results for

domain shift on 3D vehicles and pedestrians on the Validation set.

IoU thresholds: Vehicle 0.7, Pedestrian 0.5.

5.4. Dataset Size

A larger dataset enables research on data intensive algo-

rithms such as Lasernet[18]. For methods that work well

on small datasets such as PointPillars [16], more data can

achieve better results without requiring data augmentation:

we trained the same PointPillars model [16] from Section

5.1 on subsets of the training sequences and evaluated these

models on the test set. To have meaningful results, these

subsets are cumulative, meaning that the larger subsets of

sequences contain the smaller subsets. The results for these

experiments can be found in Table 10.

Dataset %-age 10% 30% 50% 100%

Vehicle 29.7/28.9 41.4/41.0 46.3/45.8 49.8/49.4

Pedestrian 39.5/27.7 45.7/35.7 50.3/40.4 53.0/43.0

Table 10. The AP/APH at LEVEL 2 difficulty on the Validation

set of Vehicles and Pedestrians as the dataset size grows. Each

column uses a cumulative random slice of the training set with size

determined by the percentage in the first row.

6. Conclusion

We presented a large-scale multimodal camera-LiDAR

dataset that is significantly larger, higher quality, more ge-

ographically diverse than any existing similar dataset. It

covers 76km2 when considering the diluted ego poses at a

visibility of 150 meters. We demonstrated domain diversity

among Phoenix, Mountain View and San Francisco data in

this dataset, which opens exciting research opportunities for

domain adaptation. We evaluated the performance of 2D and

3D object detectors and trackers on the dataset. The dataset

and the corresponding code are publicly available; we will

maintain a public leaderboard to keep track of progress in

the tasks. In the future, we plan to add map information,

more labeled and unlabeled data with more diversity focused

on different driving behaviors and different weather condi-

tions to enable exciting research on other self-driving related

tasks, such as behavior prediction, planning and more diverse

domain adaptation.
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