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Abstract

This paper presents a method of passive non-line-of-

sight (NLOS) imaging using polarization cues. A key obser-

vation is that the oblique light has a different polarimetric

signal. It turns out this effect is due to the polarization axis

rotation, a phenomena which can be used to better condi-

tion the light transport matrix for non-line-of-sight imaging.

Our analysis and results show that the use of a polarization

for NLOS is both a standalone technique, as well as an en-

hancement technique to boost the results of other forms of

passive NLOS imaging. We make a surprising finding that,

despite 50% light attenuation from polarization optics, the

gains from polarized NLOS are overall superior to unpo-

larized NLOS.

1. Introduction

Non-Line-of-Sight (NLOS) imaging is an active research

topic in computational imaging. The goal is to visualize a

scene that is hidden from the camera’s line of sight, e.g.,

“looking around the corners”. Several prior works have

tackled this problem, using methods that range from (a)

time of flight imaging [49, 22, 33, 37, 32, 35, 46, 6, 17,

11, 52, 47, 36, 2]; (b) wave optics [25, 12, 11, 52]; (c)

shadows [5, 44, 53, 3, 43]; and even (d) machine learn-

ing [42, 10, 8]. This paper takes a different tack, proposing

the use of polarization cues to re-examine the NLOS prob-

lem.

Of particular interest is passive NLOS imaging where

one is unable to control the probing illumination. Such

limited programmable control makes scene reconstruction

very challenging—existing passive NLOS methods [39] of-

fer blurry reconstructions, as compared to active NLOS.

This “blur” in existing passive NLOS methods can be math-

ematically linked to the scene’s light transport matrix. To

obtain better recovery, previous work aims to reduce the

condition number of the light transport matrix. This has

been done, for example, by placing a partial occluder in the

scene to create high-frequency shadows [39].

Our method is analogous to prior approaches in passive

NLOS, but we make a first attempt to use (linear) polariza-

tion cues to improve the conditioning of the light transport

matrix. Our method creates high-frequency variation in the

light transport matrix by, ideally placing the camera at the

Brewster angle of polarization.

In this angle, the reflected light is linear polarized and

can be analyzed by the polarizer. We also found that the

polarizer’s blocking axis varies depending on the oblique

viewing angle and changes the intensity. We refer this ef-

fect as effective angle of polarizer. We show in the paper

that this oblique observation provably changes the condi-

tioning of the light transport matrix. Further, these ben-

efits of polarization can apply to multiple configurations

for passive NLOS. For example, polarization can be used

to enhance occluder-based passive NLOS or direct passive

NLOS imaging.

In summary, we make the following contributions:

• We bring the polarizer’s effective angle theory to

the computer vision field. The polarizer’s transmit-

ting/blocking axis depends on both zenith and azimuth

angle of the light ray, which conveys rich angular in-

formation;

• We demonstrate that the polarization cues are able to

improve the conditioning of the light transport for pas-

sive NLOS imaging without scene modifications; and

• We demonstrate that the same polarization cues also

improve other passive NLOS approaches, including

those that use partial occluders.

Scope: While polarization is a fresh signal for use in

NLOS imaging, the quality of passive NLOS (after po-

larization enhancement) does not approach that of active

methods, which have been shown to obtain extremely high-

fidelity reconstructions. However, our polarization en-

hancement is fundamentally more general than the results

we present here. A future extension details how the pro-

posed technique could apply to active NLOS imaging, cov-

ered in the appendix.
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2. Related Work

In this section, we briefly review the related work re-

garding NLOS imaging. For a more comprehensive review

of NLOS imaging, the readers are directed to [27].

Active NLOS imaging. NLOS imaging was first pro-

posed in the context of active, time-resolved imaging by

Raskar and Davis [38]. Later work experimentally demon-

strated and theoretically evolved these ideas through the

use of time of flight imagers, in particular streak cam-

eras [49, 48, 22, 33], amplitude-modulated continuous-

wave cameras [16, 20, 19], and single photon avalanche

diodes (SPAD) and SPAD cameras [37, 32, 35, 46, 6, 17,

11, 52, 47, 36, 2]. There are other methods of perform-

ing active NLOS imaging that do not require time resolved

information. For example, a coherent light source reveals

occluded cues [4]. An object movement can also be tracked

by speckle [40] or synthesis-based approaches [23]. Recent

work has used a standard RGB camera and laser source to

realize active NLOS [10]. Ding et al. [13] analyze the polar-

ized light reflection to separate specular and diffuse reflec-

tion on the LOS wall. While active illumination increases

the scene information, we choose to focus on enhancing the

lower-performing, but more flexible configuration of pas-

sive NLOS imaging.

Passive NLOS imaging There are fewer works that study

the hard problem of passive NLOS. One promising ap-

proach is to use shadows and corners. Bouman et al. [5]

use the high-frequency detail of a corner to track occluded

scenes (this work is partially inspired by accidental pin-

hole cameras [44]). An extension of this is proposed in

[39, 53, 15], where a partial obstacle is placed between the

wall and NLOS scene. An orthogonal approach is to im-

age thermal scenes around the corner. Here, heat is pas-

sively emitted by the human body, which simplifies the

NLOS problem to a 1-bounce reflection, enabling high-

quality video of a human figure, in real-time [28, 21]. Our

technique is complementary, as polarization can enhance

the quality of most methods referenced above.

Analysis of NLOS imaging The recoverability of NLOS

imaging depends on many factors. Kadambi et al. [20] pro-

pose the first bound on the spatial resolution of NLOS imag-

ing, and in particular active NLOS. Liu et al. [24] analyze

the feature visibility of SPAD-based NLOS imaging. Saun-

ders et al. [39] analyze the aperture of NLOS imaging us-

ing the size of the LOS wall and the obstacles. Pediredla et

al. [36] propose a temporal focusing using ellipsoidal pro-

jection. In this paper, we follow the structure of previous

techniques in analyzing how the condition number of the

light transport matrix is favorably modified through the use

of polarization cues.

Reflection plane

wall patch

Polarizer

microfacet
q

Figure 1: Diagram of the geometry of the problem. The

camera is looking at the wall and the scene point is out of

sight of the camera. On a microfacet model, each reflection

path can be considered as a sum of mirror reflections, hence

the polarization is preserved.

Polarization cues Polarization cues can be used for 3D

geometry recovery [18, 31, 51, 9, 26] and imaging through

scattering media [45, 41, 14]. We firstly use the polarization

cues for enhancing passive NLOS imaging.

Polarizer at oblique view In the LCD development field,

the light leakage of polarizer from oblique view is a major

problem [54, 34]. While they aim to cancel this effect, we

bring this effect to improve the NLOS imaging problem.

3. Light Transport: Passive NLOS Imaging

Suppose a camera is pointed toward the line-of-sight

(LOS) wall and the scene is non-line-of-sight (NLOS) to the

camera as shown in Fig. 1. Without loss of generality, we

consider that the NLOS scene is a set of point light sources.

Then, the intensity I(c) at the wall patch c is given by

I(c) =

∫∫

s∈S

T (s, c)l(s)ds, (1)

where s is a point in the scene S , l(s) is the intensity of

the scene point s, and T (s, c) is the light transport from the

scene point s to the camera via the wall patch c. The model

can be discretized as

i = Tl, (2)

where i is the vectorized observations, T is the light trans-

port matrix, and l is the vectorized scene intensities. If the

light transport matrix is known or generatable, the NLOS

intensities can be estimated by least squares sense as

l̂ = T+i, (3)

where T+ is the pseudo-inverse matrix of T. The stabil-

ity of solving this linear system depends on how small the

condition number of the matrix is. A key goal of previous

methods has been to improve the conditioning of Eq. (3).
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Previous methods of conditioning Eq. (3): Perhaps the

simplest way to decrease the condition number is to use

a favorable bidirectional reflectance distribution function

(BRDF). A trivial case is the mirror, which makes the low-

est condition number because the light transport matrix be-

comes identity. An opposite example is the diffuse wall,

which makes a very large condition number because the sin-

gle light source contributes to the all camera pixels. The

conditioning of using other materials that have specularity

are between the mirror and the diffuse wall because they

somehow preserve high frequency component. Extended

discussion on this topic can be found in [20]. Another

way to improve the conditioning is to place obstacles in the

scene, such as putting a partial obstacle between the wall

and the scene. Saunders et al. [39] place an arbitrary ob-

stacle between the camera and the wall to block the light

rays. This makes a shadow on the wall, which contains

high-frequency information. For more detail, the readers

are referred to papers that use obstacles [39, 53, 15]. Both

of these approaches modify the scene.

4. Light Transport: Polarized NLOS Imaging

We aim to minimize modifications to the scene for con-

ditioning Equation 3 using polarization. Hence, we only use

a polarizer at the camera side. This approach is also able to

conditioning the existing method using partial occluders. If

putting a partial occluder to the scene is tolerable, combin-

ing the existing method and the proposed method improves

the conditioning further.

By putting a polarizer in front of the camera, a small

angular difference of light paths makes a big intensity vari-

ance, thus the conditioning is improved compared to a nor-

mal observation without polarizer. A key observation of this

paper is that the polarizer’s effective axis is slightly rotated

if the light ray is oblique to the polarizer. In other words,

the perpendicular light rays are blocked while oblique light

rays pass through the polarizer. In the following section,

we reveal how the polarization light transport is modeled in

passive NLOS imaging.

Polarized NLOS scenes If the NLOS scene itself is po-

larized, then we can exploit cross-polarization effects to im-

prove the NLOS problem even more. Further detail is de-

ferred to the supplementary material.

4.1. Effective angle of polarizer

We introduce the effective angle of a polarizer, which

is well studied in the area of LCD development [54, 34].

When the light ray is oblique to the polarizer, the light is

‘leaked’ even if two linear polarizers are put crossed. This

is because the effective polarization axis of the polarizer de-

pends on the azimuth and zenith angle of the incident light

Axis

(c) Top view (d) Oblique view (e) Leakage pattern

Effective angle
Original angle

(a) Top view (b) Oblique views

ze
ni

th

azimuth

12%

10%

8%

6%

4%

2%

0%

Figure 2: Polarizer from oblique view. While the LCD

monitor is invisible from top view (a), it is slightly visible

from certain oblique views depending on the zenith and az-

imuth angles (b). (c) The original angle of polarizer from

top view. (d) The effective angle from oblique view. The

polarizer axis is slightly declined. (e) Light leakage pattern

of crossed polarizers from oblique view. These polarizers’

original angles are 45◦ and −45◦, respectively.

ray. Figure 2(a, b) shows pictures of the same scene from

top and oblique views. While the light from the LCD is

blocked on the top view, the content of the LCD is slightly

visible from oblique view even though the polarizer is put

crossed. This effect is angle dependent, therefore it can be

used for analyzing NLOS observations.

Light leakage occurs because the effective angle of the

polarizer changes due to the light ray’s azimuth and zenith

angles. From a geometrical calculation1, the effective angle

θ′ from the incident light viewpoint is represented as

tan θ′ = −
cos(z)

tan(θ − a)
, (4)

where θ is the original polarizer’s axis, i.e., the polarizer’s

axis from top view, a and z are azimuth and zenith angles

of the incident ray, respectively. As θ′ is the angle between

the polarizer and the polarized light, it is wrapped between

0 and π/2. Figure 2(c - e) shows the original and effec-

tive angles of polarizers and the light leakage pattern of

crossed polarizers. This pattern can be utilized to improve

the NLOS imaging.

4.2. Polarization light transport on rough surface

Now, we consider the polarization light transport model

on a rough surface. In this paper, we employ a micro-

facet model for the rough surface, shown in the inset of

1Refer to supplementary material for additional details.
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Fig. 1. The surface normal of each facet that reflects the

light source to the camera is identical to the half vector of

the viewing and lighting vectors. Therefore, the light trans-

port T (s, c) from the scene point s to the camera via the

wall patch c is represented as

T (s, c) = Ω(ωi,ωo)λ(ωi,ωo,q), (5)
{

ωi = s−c
‖s−c‖

2

,

ωo = o−c
‖o−c‖

2

,

where Ω is the BRDF of the rough surface, ωo is the view-

ing vector, ωi is the incident vector, o is the camera posi-

tion, λ is the light leaking/blocking effect due to polarizer,

and q is the polarizer’s axis. The polarizer modulates light

transport by introducing the leakage term λ, which makes

the improvement to the light transport matrix.

As we assume the microfacet model, the reflection on

each facet can be modelled as a Fresnel reflection. The

Fresnel reflection is known to be partially polarized and re-

flectances of s and p polarization components Rs and Rp

can be represented as

Rp(φ) =
tan2(φ− φ′)

tan2(φ+ φ′)
, (6)

Rs(φ) =
sin2(φ− φ′)

sin2(φ+ φ′)
, (7)

φ′ = sin−1 sin(φ)

η
, (8)

where φ is the incident angle, φ′ is the refractive angle, and

η is the refractive index of the wall.

When the incident and reflection angle is at Brewster an-

gle, the reflected light is completely linearly polarized. This

is because the reflectance of p polarization becomes zero.

By putting the camera at near the Brewster angle position

as shown in Fig. 3, highly polarized observations can be ob-

tained, thus the observation can be analyzed with a polarizer

in front of the camera.

Placing a polarizer in front of the camera such that the

polarized reflection is blocked at a specific light path, leads

to the observation of a light leakage pattern. Because the

other light paths from neighboring wall points are oblique

to the polarizer’s blocking axis, the leakage pattern can be

observed as shown in the right of Fig. 3.

The leakage pattern λ can be modeled as

λ(ωi,ωo,q) = Rp(θh) cos(θ
′) +Rs(θh) sin(θ

′), (9)


































θh = 1
2 cos

−1(ωo · ωi)

θ′ = tan−1
(

− cos(z)
tan(θ−a)

)

z = cos−1(−ωonp)

θ − a = cos−1(−wq)

w =
ωo+cos(z)np

‖ωo+cos(z)np‖2

s polarization only on this surface

Light source

Brewster angle

LOS wall

Camera Actual observation

Figure 3: The Brewster angle geometry. Putting the cam-

era so that light path is at Brewster angle, only one direc-

tional polarization (s polarization component) is reflected

to the camera. Because there is no effect from p polariza-

tion, it is possible to observe a light leakage pattern only

using a polarizer in front of the camera. The right image

is the actual observation of the reflection of a unpolarized

point light source.

where q is the polarizer’s axis, θh is the half angle of the

reflection path, θ′ is the effective angle of the polarizer, and

np is the normal of the polarizer.

Combination with the existing method Polarization

light transport can be combined with existing method such

as putting partial occluder in the scene [39]. The light trans-

port matrix in this case becomes

T (c, s) = T ′(c, s)λ(ωi,ωo,q), (10)

where T ′ is the light transport matrix of the existing method.

Again, the difference is the existence of λ and this improves

the condition number of the light transport matrix.

4.3. Other factors

Polarized scene Although most NLOS scenes are unpo-

larized, in the rare cases where the NLOS scene is polarized,

our method is extremely advantageous. Consider that if the

scene is polarized such as an LCD monitor, Eq. (9) can be

rewritten as

λ(ωi,ωo,q) = IpRp(θh) cos(θ
′) + IsRs(θh) sin(θ

′),
(11)

where Ip and Is is the intensity of p and s polarization com-

ponents of the scene. Here, it is possible to place the polar-

izer at an angle where one of the polarization components

becomes zero. Therefore, there is no restriction of having

the capture setup oriented to the Brewster angle, as in the

general case we have described above. We expand on this

discussion in the supplement, and show results.

Why not rotate the polarizer? This paper relies on tak-

ing 1 image from a polarization filter at 90 degrees (paral-

lel to the reflection plane). A natural question is whether
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Figure 4: Comparison to rotating the polarizer. The up-

per row is the captured images of the same exposure time,

and the lower images are normalized at each maximum

value. The dark band, where the light is completely blocked

by polarizer, is a key observation and only appears around

90 degrees.

LOS wall

Camera Light source

Reflection plane

Camera 1

Camera 2

Reflection plane 1

plane 2
Reflection 

Obstacle wall

Camera 1 Camera 2

(a) Horizontal observation (b) Multiple observations

w/o polarizer w/ polarizer

Figure 5: Camera position and reflection plane. (a) Using

a single camera position, only one direction is encoded in

the image. The intensity variance of horizontal direction is

not so improved. (b) Using multiple camera positions, the

scene can be encoded by multiple directions.

the filter can be rotated to take multiple pictures. Since we

rely on a leakage pattern, there is little benefit to captur-

ing multiple images, as the variation in polarization images

at angles other than 90 degrees is subtle, while the capture

effort increases linearly. Very specifically, the key improve-

ment from using polarizers comes from the ‘dark band’ in

the image as shown in Fig. 4. Figure 4 shows the observa-

tion image while rotating the polarizer and without the po-

larizer. The dark band, where the light is blocked, appears

only around 90 degrees, while other angles look similar to

the image without the polarizer.

Multiple camera positions The leakage pattern appears

parallel to the reflection plane. Figure 5(a) shows the actual

measurement of the wall, where the scene is a point light

source. There is large intensity variance in the vertical di-

rection, and therefore the vertical information is better pre-

served. On the other hand, the horizontal intensity variance

Standalone
w/o rotating single multiple

Cond. num. 686.8 486.3 357.0 327.9

Percentage – 70.8% 52.0% 47.7%

With partial occluder

w/o rotating single multiple

Cond. num. 172.3 170.6 146.1 113.9

Percentage – 99.0% 84.8% 66.1%

Table 1: Condition number comparison. Methods with-

out polarizer, rotating polarizer, crossed polarizer from a

single camera position, and crossed polarizer from multiple

camera positions are compared. Our method has the lowest

condition number.

is lower and likely to the unpolarized observations. To over-

come the slim variance in the horizontal direction, it is pos-

sible to capture the scene from multiple camera positions,

enabling the capture of perpendicular reflection planes as

shown in Fig. 5(b).

5. Simulation

Our simulations verify that polarization leakage can be

used to improve the condition number of the light transport

matrix.

Condition number The effectiveness of the method is

confirmed by examining the condition number of light

transport matrices. The lower condition number gives bet-

ter recovery quality. The camera and the light source are

placed 10 cm from the wall. The image is 7 × 7 pixels and

the scene is 3× 3 pixels, so the matrix is 49× 9. The light

sources are placed on a plane and not polarized. For a sin-

gle image observation, the geometry of Fig. 5(a) is selected,

and for multiple camera settings, the geometry of Fig. 5(b)

is used. The condition number for each setting is summa-

rized in Table 1. Our method has the smallest condition

number, indicating the potential for about two times better

recoverability. Likewise, we also show the case when there

is a partial occluder in the same table. We observe through

simulation that the condition number is improved using a

polarizer as well.

Improvement w.r.t. wall roughness The effectiveness

of this method depends on the type of the wall. To con-

firm this, the improvement in condition number is evaluated

while changing the roughness of the wall. The roughness

is changed from 0 (mirror-like) to 1 (completely diffuse).

The plot of the condition number and improvement ratio is

shown in Fig. 6. For all roughness parameters, it is observed

that the polarization cues improve the condition number.
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Figure 6: Condition number with respect to the rough-

ness of the wall. Lower the better. The roughness ranges 0

(mirror-like) to 1 (diffuse-like). Our method has the lowest

condition number for all roughness parameter.

Although the plots of single and multiple cameras look sim-

ilar, we observe that the multiple camera setting is always

slightly better than single camera setting. When the rough-

ness decreases, the wall becomes mirror-like and there is no

improvement using a polarizer because the NLOS scene is

originally visible. The best performance is observed at the

middle of specular and diffuse reflections, where a lot of

materials have such specularities [30].

6. Experiment

Real experiments are consistent with simulations: polar-

ization improves NLOS image reconstruction. For all fol-

lowing experiments, we use ADMM to solve Eq. (2), con-

sisting of a 2D total variation regularizer with a box con-

straint. For clarity, we estimate

l̂ =argmin
l

‖i−Tl‖
2
2 + λTV2D(l) (12)

s. t. 0 � l � 1.

Because this is a convex optimization problem, it can be

solved in a polynomial time. For all cases, the BRDF of the

wall is measured beforehand.

Polarized NLOS Firstly, we evaluate the polarized NLOS

without partial occluder. For numerical evaluation of non-

polarized scene, a projector is used to project the scene im-

age. Figure 7 shows the setup and the result. Two images

are compared with and without the polarizer in front of the

camera. While it is difficult to see the projected scenes if

the polarizer is not used, the scene is visible using the po-

larizer. We also projected more images, which can be found

in the supplementary material. The table shows the numer-

ical evaluation of the results. Peak signal to noise ration

(PSNR), zero-mean normalized cross correlation (ZNCC),

and structural similarity (SSIM) are used. It is confirmed
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condition number

Baseline Polarization enhancement

2961 2012

PSNR

ZNCC

SSIM

6.7 dB 7.3 dB

0.45 0.65
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Polarized NLOS without partial occluder

Camera

Polarizer

LOS wall

Scene
OccluderCamera

Polarizer

LOS wall

Scene
Occluder

Camera

Polarizer ScreenLOS wall

Brewster
angle

Projector
(for numerical evaluation)

Figure 7: Polarized NLOS results without occluder. A

projector is used for numerical evaluation and to make the

scene unpolarized. The scene is recovered with and without

the polarizer in front of the camera. Using polarization, the

recovered images are improved. Improvement is confirmed

by comparing condition number and three image measures.

that the condition number is decreased and the recovered

image is improved for every image metric if the polariza-

tion is used.

Polarized NLOS w/ partial occluder for reflective ob-

jects Here, we show that Polarized NLOS can also en-

hance existing techniques. As shown in Fig. 8 top-left,

we reproduce the partial occluder method from Saunders et

al. [39]. Reflective object scenes are recovered in this ex-

periment and enhanced by polarization. Figure 8 shows the

setup, the target object, the recovered result by the existing

method, and the enhanced result by polarization. The target

object is lit by an uncontrolled light source. In the results

of the baseline method, it is difficult to see the resolution

chart and the content of the book. On the other hand, our

technique recovers images with higher contrast. The clear

texture of resolution chart and printed materials are visual-

ized in detail. The observed image is 160 × 100 pixels and
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Figure 8: Results for reflective objects. Top-left: the setting of the experiment. The scene is a reflective object (not self-

luminous). 1st row: The photograph of target objects. 2nd row: The recovered images by the baseline method [39]. Bottom

row: The recovered images by our method. High frequency details are recovered. Clear detail of resolution charts, sharp edge

of apple, and the detailed shape of bears are clearly visualized. PSNR values are calculated with homography-transformed

photograph for reference.

the scene is 56× 40 pixels, so the matrix is 16000× 2240.

The exposure is 5 seconds. The processing time to solve Eq.

(12) takes approximately 1.5 seconds. Our method quanti-

tatively and qualitatively improves the reconstruction. We

provide more diverse scenes in the supplement.

Comparing our enhancement to image processing An

interesting question that is raised is whether the perfor-

mance improvements we obtain could be achieved by ap-

plying image post-processing algorithms to conventional

NLOS (without polarization). Figure 9 shows the result of

projected images and also includes the result of applying

image post-processing. The baseline method in this case is

[39]. Here, a total variation (TV) denoising algorithm [7]2

and a deep learning image processor (neural enhance) [1]

are used. While the image is improved by post processing,

it is impossible to recover the higher frequency component

that is lost on the wall reflection, because recovering lost in-

formation is mathematically impossible. On the other hand,

our method recovers higher frequency detail, which is pre-

served by polarization light transport. PSNR, ZNCC, and

2We tried several denoising algorithms and report the best for compar-

ison (TV denoising).

SSIM values show significant improvement.

7. Discussion

In summary, there are two surprising findings from this

paper. The first surprising finding is that polarized NLOS

has superior results to ordinary NLOS. The finding is a sur-

prise as initially we were not sure if any method could over-

come the 50% light loss inherent to using a polarization fil-

ter. We are cautiously optimistic, now that this paper has

surpassed the break-even point by a considerable margin.

The second surprising finding is that our polarization paper

does not actually leverage the rotation angle of the polar-

izing filter. In contrast, we use the principle of leakage,

observed when one views an liquid crystal display off-axis.

Our method is not without assumptions, though our prac-

tical results substantiate the validity of our assumptions. For

instance, we assume that the wall preserves polarization.

This holds for many rough surfaces, although for certain

surfaces the signal can be subtle. Concretely, walls that

have a dominant subsurface scattering, such as plastic and

plaster, can be more challenging because one loses the po-

larization property, i.e., the ratio of polarization due to Fres-

nel reflection becomes low. In the future, we might seek to
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combine rotational and angular effects of polarizing filters,

where the former has been shown to be a driving force for

3D scene geometry [18]. In addition, we may also leverage

polarized event cameras [29, 55, 50] to identify the subtle

signal.

In conclusion, we believe that, despite the 50 percent

light loss, polarization can enhance a large swath of NLOS

imaging methods. As shown in the appendix, the proposed

method can be extended to active NLOS imaging tech-

niques as well. We hope this paper spurs interest in using

polarization as an additional tool in NLOS imaging.

Appendix: On Active NLOS Imaging

Followed by the previous work [2, 16, 35, 22, 49], an

active NLOS imaging using time-of-flight measurement can

be modeled as

i(t;p, c) =

∫∫∫

s∈S

ρ(s)
δ(‖s− p‖+ ‖s− c‖ − ct)

‖s− p‖
2
‖s− c‖

2 ×

Ω(ωil,ωol)Ω(ωic,ωoc)ds, (13)






















ωil = s−p

‖s−p‖
2

,

ωol = o−p

‖o−p‖
2

,

ωic = s−c
‖s−c‖

2

,

ωoc = o−c
‖o−c‖

2

,

where i(t;p, c) is the temporal transient observation at the

wall patch c by illuminating the wall patch p by a pulsed

light, ρ is the 3D NLOS albedo, δ is the Dirac delta function,

c is the speed of light, and Ω is the BRDF of the LOS wall.

Discretizing, we obtain

i = Tρ, (14)

where T is the light transport matrix of active NLOS model

and ρ is the vectorized NLOS albedo.

Analogous to the passive case, when we put a polarizer

in front of the camera, Eq. (13) is altered as

i′(t;p, c) =

∫∫∫

s∈S

ρ(s)
δ(‖s− p‖+ ‖s− c‖ − ct)

‖s− p‖
2
‖s− c‖

2 ×

Ω(ωil,ωol)Ω(ωic,ωoc)λ(ωic,ωoc,q)ds, (15)

where the light transport is modulated by the leakage term

λ. Note that the polarization state of active light source is

ignored because the light is assumed to be depolarized at

the NLOS scene reflection.

Simulation We confirm the effectiveness of polarized

NLOS for active NLOS imaging through a simulation. Fig-

ure 10 shows the condition number of the light transport

matrix changing with scene configurations including wall’s

roughness parameter and the spatial resolution of NLOS

scene. For all configurations, polarization cues improve the

conditioning of the active NLOS imaging.
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Figure 9: Polarized NLOS exceeds the quality of conven-

tional NLOS with image processing. The results of polar-

ized NLOS with partial occluders. The result of the baseline

method [39], TV denoised [7], image enhancement by neu-

ral network [1], and the result of our method are compared.
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Figure 10: Condition number of active NLOS. The con-

dition number of active setting is compared. The spatial

resolution κ and the wall’s roughness γ are changed. Using

the polarization cues, the condition number is improved in

the active setting for multiple scene configurations.

Acknowledgments This work is partly supported by

JSPS Kaken JP18H03265. Achuta Kadambi is supported

by an NSF Research Initiation Award (IIS 1849941), and a

Young Faculty Award from Sony Imaging.

2143



References

[1] Neural Enhance, Date accessed: Nov. 13th, 2019. https:

//github.com/alexjc/neural-enhance. 7, 8

[2] Byeongjoo Ahn, Akshat Dave, Ashok Veeraraghavan, Ioan-

nis Gkioulekas, and Aswin C. Sankaranarayanan. Convolu-

tional approximations to the general non-line-of-sight imag-

ing operator. In The IEEE International Conference on Com-

puter Vision, October 2019. 1, 2, 8

[3] Manel Baradad, Vickie Ye, Adam B. Yedidia, Frédo Du-
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