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Abstract

Image segmentation is one of the most fundamental tasks

in computer vision. In many practical applications, it is

essential to properly evaluate the reliability of individual

segmentation results. In this study, we propose a novel

framework for quantifying the statistical significance of in-

dividual segmentation results in the form of p-values by sta-

tistically testing the difference between the object region

and the background region. This seemingly simple prob-

lem is actually quite challenging because the difference —

called segmentation bias — can be deceptively large due to

the adaptation of the segmentation algorithm to the data.

To overcome this difficulty, we introduce a statistical ap-

proach called selective inference, and develop a framework

for computing valid p-values in which segmentation bias

is properly accounted for. Although the proposed frame-

work is potentially applicable to various segmentation algo-

rithms, we focus in this paper on graph-cut- and threshold-

based segmentation algorithms, and develop two specific

methods for computing valid p-values for the segmentation

results obtained by these algorithms. We prove the theo-

retical validity of these two methods and demonstrate their

practicality by applying them to the segmentation of medi-

cal images.

1. Introduction

Image segmentation is one of the most fundamental tasks

in computer vision. Segmentation algorithms are usually

formulated as a problem of optimizing a certain loss func-

tion. For example, in threshold (TH)-based segmentation

algorithms [24, 38], the loss functions are defined based on

similarity within a given region and dissimilarity between

different regions. In graph cut (GC)-based segmentation al-

gorithms [5, 2], the loss functions are defined based on the

similarity of adjacent pixels in a given region and dissim-

ilarity of adjacent pixels at the boundaries. Depending on

the problem and the properties of the target images, an ap-

propriate segmentation algorithm must be selected.

*Correspondence to I.T. (e-mail: takeuchi.ichiro@nitech.ac.jp).

In many practical non-trivial applications, there may be

the risk of obtaining incorrect segmentation results. In prac-

tical problems in which segmentation results are used for

high-stake decision-making or as a component of a larger

system, it is essential to properly evaluate their reliabil-

ity. For example, when segmentation results are used in

a computer-aided diagnosis system, it should be possible to

appropriately quantify the risk that the obtained individual

segments are false positive findings. If multiple segmenta-

tion results with ground truth annotations are available, it

is possible to quantify the expected proportion of the over-

all false positive findings (e.g., by receiver operating char-

acteristic (ROC) curve analysis). On the other hand, it is

challenging to quantitatively evaluate the reliability of indi-

vidual segmentation results when the ground-truth segmen-

tation result is not available,

In this study, we propose a novel framework called Post-

Segmentation Inference (PSegI) for quantifying the statis-

tical significance of individual segmentation results in the

form of p-values when only null images (images in which

we know that there exist no objects) are available. For sim-

plicity, we focus only on segmentation problems in which

an image is divided into an object region and a background

region. To quantify the reliability of individual segmenta-

tion results, we utilize a statistical hypothesis test for deter-

mining the difference between the two regions (see (2) in

§2). If the difference is sufficiently large and the probabil-

ity of observing such a large difference is sufficiently small

in a null image (i.e., one that contains no specific objects),

it indicates that the segmentation result is statistically sig-

nificant. The p-value of the statistical hypothesis test can

be used as a quantitative reliability metric of individual seg-

mentation results; i.e., if the p-value is sufficiently small, it

implies that a segmentation result is reliable.

Although this problem seems fairly simple, computing

a valid p-value for the above statistical hypothesis test is

challenging because the difference between the object and

background regions can be deceptively large even in a null

image that contains no specific objects since the segmen-

tation algorithm divides the image into two regions so that

they are as different as possible. We refer to this decep-

tive difference in segmentation results as segmentation bias.
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It can be interpreted that segmentation bias arises because

the image data are used twice: once for dividing the object

and background regions with a segmentation algorithm, and

again for testing the difference in the average intensities be-

tween the two regions. Such data analysis is often referred

to as double-dipping [19] in statistics, and it has been rec-

ognized that naively computed p-values in double-dipping

data analyses are highly biased. Figure 1 illustrates segmen-

tation bias in a simple simulation. In the proposed PSegI

framework, we overcome this difficulty by introducing a re-

cently developed statistical approach called selective infer-

ence (SI). Selective Inference has been mainly studied for

the statistical analysis of linear model coefficients after fea-

ture selection, which can be interpreted as an example of

double-dipping [12, 31, 33, 22, 20, 36, 29, 34, 32, 10] *.

To the best of our knowledge, due to the difficulty

in accounting for segmentation bias, statistical testing ap-

proaches have never been successfully used for evaluat-

ing the reliability of segmentation results. Our paper has

three main contributions. First, we propose the PSegI

framework in which the problem of quantifying the re-

liability of individual segmentation results is formulated

as an SI problem, making the framework potentially ap-

plicable to a wide range of existing segmentation algo-

rithms. Second, we specifically study the GC-based seg-

mentation algorithm [5, 2] and the TH-based segmentation

algorithm [24, 38] as examples, and develop two specific

PSegI methods, called PSegI-GC and PSegI-TH, for com-

puting valid p-values for the segmentation results obtained

with these two respective segmentation algorithms. Finally,

we apply the PSegI-GC and PSegI-TH methods to medical

images to demonstrate their efficacy.

Related work. A variety of image segmentation algo-

rithms with different losses have been developed by incor-

porating various properties of the target images [21, 11,

41]. The performance of a segmentation algorithm is usu-

ally measured based on a human-annotated ground-truth

dataset. One commonly used evaluation criterion for seg-

mentation algorithms is the area under the curve (AUC).

Unfortunately, criteria such as AUC cannot be used to quan-

tify the reliability of individual segmentation results. The

segmentation problem can also be viewed as a two-class

classification problem that classifies pixels into object and

background classes. Many two-class classification algo-

rithms can provide some level of confidence that a given

pixel belongs to the object or the background, e.g., by esti-

mating the posterior probabilities [18, 17, 25, 15]. Although

*The main idea of the SI approach was first developed in [20] for com-

puting the p-values of the coefficients of LASSO [35]. This problem can be

interpreted as an instance of double-dipping data analysis since the train-

ing set is used twice: once for selecting features with L1 penalized fitting,

and again for testing the statistical significances of the coefficients of the

selected features.

confidence measures can be used to assess the relative reli-

ability of a given pixel, they do not quantify the statistical

significance of the segmentation result. In emphcontrario

approach, similar discussion to this study has taken place

regarding the reliability of objects detected from a noisy

image [8, 7, 26, 37]. Unfortunately, however, the contrario

approach does not properly account for segmentation bias,

and the reliability measure discussed in [26] cannot be used

as a p-value.

Notation. We use the following notation in the rest of the

paper. For a scalar s, sgn(s) is the sign of s, i.e., sgn(s) = 1
if s ≥ 0 and −1 otherwise. For a condition c, 1{c} is the

indicator function, which returns 1 if c is true and 0 other-

wise. For natural number j < n, ej is a vector of length

n whose jth element is 1 and whose other elements are 0.

Similarly, for a set S ⊆ {1, . . . , n}, eS is an n-dimensional

vector whose elements in S are 1 and 0 otherwise. For a

natural number n, In indicates the n-by-n identity matrix.

2. Problem Setup

Consider an image with n pixels. We denote the pre-

processed pixel values after appropriate filtering operations

as x1, . . . , xn ∈ R, i.e., the n-dimensional vector x :=
[x1, . . . , xn]

⊤ ∈ R
n represents the preprocessed image. For

simplicity, we only study segmentation problems in which

an image is divided into two regions†. We call these two re-

gions the object region and the background region for clar-

ity. After a segmentation algorithm is applied, n pixels are

classified into one of the two regions. We denote the set

of pixels classified into the object and the background re-

gions as O and B, respectively. With this notation, a seg-

mentation algorithm A is considered to be a function that

maps an image x into the two sets of pixels O and B, i.e.,

{O,B} = A(x).

2.1. Testing Individual Segmentation Results

To quantify the reliability of individual segmentation re-

sults, consider a score Δ that represents how much the ob-

ject and the background regions differ. The PSegI frame-

work can be applied to any scores if it is written in the form

of Δ = η⊤x where η ∈ R
n is any n-dimensional vector.

For example, if we denote the average pixel values of the

object and the background regions as

mob =
1

|O|

∑

p∈O

xp, mbg =
1

|B|

∑

p∈B

xp,

and define η as

ηi =

{

sgn(mob −mbg)/|O|, if i ∈ O,
sgn(mbg −mob)/|B|, if i ∈ B,

†The proposed PSegI framework can be easily extended to cases where

an image is divided into more than two regions.
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(a) Original image (b) Segmentation result

Intensity

(c) Pixel distribution

Intensity

(d) Ob. and Bg. histograms

Figure 1: Schematic illustration of segmentation bias that arises when the statistical significance of the difference between

the object and background regions obtained with a segmentation algorithm is tested. (a) Randomly generated image with

n = 400 pixels from N(0.5, 0.12). (b) Segmentation result obtained with the local threshold-based segmentation algorithm

in [38]. (c) Distribution and histogram of pixel intensities. (d) Histograms of pixel intensities in the object region (white)

and the background region (gray). Note that even for an image that contains no specific objects, the pixel intensities of the

object and background regions are clearly different. Thus, if we naively compute the statistical significance of the difference,

the p-value (naive-p in (d)) would be very small, indicating that it cannot be used for properly evaluating the reliability of

the segmentation result. In this paper, we present a novel framework for computing valid p-values (selective-p in (d)), which

properly account for segmentation bias.

then the score Δ represents the absolute average difference

in the pixel values between object and background region

Δ = |mob −mbg|. (1)

In what follows, for simplicity, we assume that the score Δ
is in the form of (1), but any other scores in the form of η⊤x

can be employed. Other specific examples are discussed in

supplement A.

If the difference Δ is sufficiently large, it implies that

the segmentation result is reliable. As discussed in §1, it

is non-trivial to properly evaluate the statistical significance

of the difference Δ since it can be deceptively large due to

the effect of segmentation bias. To quantify the statistical

significance of the difference Δ, we consider a statistical

hypothesis test with the following null hypothesis H0 and

alternative hypothesis H1:

H0 : μob = μbg vs. H1 : μob �= μbg, (2)

where μob and μbg are the true means of the pixel intensities

in the object and background regions, respectively. Under

the null hypothesis H0, we assume that an image consists

only of background information, and that the statistical vari-

ability of the background information can be represented

by an n-dimensional normal distribution N(μ,Σ), where

μ ∈ R
n is the unknown mean vector and Σ ∈ R

n×n is the

covariance matrix, which is known or estimated from inde-

pendent data. In practice, we estimate the covariance matrix

Σ from a null image in which we know that there exists no

object. For example, in medical image analysis, it is not

uncommon to assume the availability of such null images.

In a standard statistical test, the p-value is computed

based on the null distribution PH0
(Δ), i.e., the sampling

distribution of the test statistic Δ under the null hypothe-

sis. On the one hand, if we naively compute the p-values

from the pixel intensities in O and B without considering

that {O,B} was obtained with a segmentation algorithm,

these naive p-values will be highly underestimated due to

segmentation bias, and hence the probability of finding in-

correct segmentation results cannot be properly controlled.

Selective inference. SI is a type of conditional inference,

in which a statistical test is conducted based on a condi-

tional sampling distribution of the test statistic under the

null hypothesis. In our problem, to account for segmenta-

tion bias, we consider testing the difference Δ conditional

on the segmentation results. Specifically, the selective p-

value is defined as

p = PH0

(

Δ > Δobs

∣

∣

∣

∣

A(x) = A(xobs)
z(x) = z(xobs)

)

, (3)

where the superscript obs indicates the observed quantity of

the corresponding random variable. In (3), the first condi-

tion A(x) = A(xobs) indicates that we only consider the

case where the segmentation result (O,B) is the same as

what we observed from the actual image data. The second

condition z(x) = z(xobs) indicates that the component

that is (unconditionally) independent of the test statistic Δ
for a random variable x is the same as the observed one ‡.

‡In the unconditional case, the condition z(x) = z(xobs) does not

change the sampling distribution since η⊤x and z(x) are (marginally)
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Figure 2: Schematic illustration of the basic idea used in the

proposed PSegI framework. By applying a segmentation al-

gorithm A to an image x in the data space R
n, a segmen-

tation result {O,B} is obtained. In the PSegI framework,

the statistical inference is conducted conditional on the sub-

space S = {x ∈ R
n | A(x) = {O,B}}; i.e., the subspace

is selected such that an image taken from the subspace has

the same segmentation result {O,B}.

The component z(x) is written as

z(x) = (In − cη⊤)x with c = Ση(η⊤Ση)−1.

Figure 2 shows a schematic illustration of the basic idea

used in the proposed PSegI framework.

2.2. Graph-cut-based Segmentation

As one of the two examples of segmentation algorithm

A, we consider the GC-based segmentation algorithm in

[5, 2]. In GC-based segmentation algorithms, the target im-

age is considered to be a directed graph G = {V, E}, where

V and E are the sets of nodes and edges, respectively. Let

P be the set of all n pixels, and N be the set of all directed

edges from each pixel to its eight adjacent nodes (each pixel

is connected to its horizontally, vertically, and diagonally

adjacent pixels). Furthermore, consider two terminal nodes

S and T . Then, V and E of the graph G are defined as

V = P∪{S, T} and E = N ∪
⋃

p∈P{(S, p), (p, T )}, where

for the two nodes p and q, (p, q) indicates the directed edge

from p to q. At each edge of the graph (p, q) ∈ E , non-

negative weights w(p,q) are defined based on the pixel in-

tensities (see §3.2).

In GC-based segmentation algorithms, the segmentation

into object and background regions is conducted by cutting

the graph into two parts. Let us write the ordered partition of

independent. On the other hand, under the condition with A(x) =
A(xobs), η⊤x and z(X) are not conditionally independent. See [12, 20]

for the details.

the graph as (Vs,Vt), where Vs and Vt constitute a partition

of V . If S ∈ Vs and T ∈ Vt, the ordered partition (Vs,Vt) is

called an s-t cut. Let Ecut ⊂ E be the set of edges (p, q) ∈ E
such that p belongs to Vs and q belongs to Vt. The cost

function of an s-t cut (Vs,Vt) is defined as Lcut(Vs,Vt) =
∑

(p,q)∈Ecut
w(p,q). The GC-based segmentation algorithm

is formulated as the optimization problem for finding the

optimal s-t cut:

(V∗
s ,V

∗
t ) = arg min

(Vs,Vt)
Lcut(Vs,Vt). (4)

Then, the segmentation result {O,B} is obtained as O ←
V∗
s \ {S} and B ← V∗

t \ {T}. The minimum cut prob-

lem (4) is known to be a dual problem of the maximum

flow problem, for which polynomial time algorithms ex-

ist [13, 14, 9]. Among the several implementations of the

maximum flow problem, we employed the one presented

in [4], in which three stages, called the growth stage, the

augmentation stage, and the adoption stage, are iterated.

Briefly, a path from S to T is obtained in the growth stage.

The edge with the minimum weight in the path is selected

and all the weights of the path are reduced by the minimum

weight to account for the flow in the augmentation stage.

The data structure of the updated graph is reconstructed in

the adoption stage (see [4] for details).

2.3. Threshold-based Segmentation

Next, we briefly describe TH-based segmentation algo-

rithms [27]. In TH-based segmentation algorithms, pixels

are simply classified into either the object or background

class depending on whether their intensity is greater or

smaller than a certain threshold. According to the appli-

cation and the features of the target images, various ap-

proaches for determining the threshold have been proposed.

In the following, we first describe a global TH algorithm in

which a single threshold is used for the entire image, and

then present a local TH algorithm in which different thresh-

olds are used for different pixels.

In the method proposed by Otsu [24], a global thresh-

old is selected to maximize the dispersion between the ob-

ject and background pixels. Here, dispersion is defined

so that the between-region variance is maximized and the

within-region variance is minimized. Since the sum of

these two variances is the total variance and does not de-

pend on the threshold, we can only maximize the former.

Denoting the number, mean, and variance of the pixels

with values greater (resp. smaller) than the threshold t as

nt, μt, and σ2
t (resp. nt, μ

t
, and σ2

t ), respectively, the

between-region variance with the threshold t is written as

σ2
bet(t) =

n(t)n(t)(µ(t)−µ(t))2

n2 . The global threshold is then

determined as t∗ = argmaxt σ
2
bet(t). Although this algo-

rithm is simple, it is used in many practical applications.

The local thresholding approach allows more flexible
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segmentation since the threshold is determined per pixel.

The method proposed by White and Rohrer [38] deter-

mines the pixel-wise threshold by comparing the pixel in-

tensity with the average pixel intensity of its neighbors.

Here, neighbors are defined by a square window around a

pixel, and the local threshold for the pixel is determined as

t∗p = |Wp|
−1

∑

q∈Wp
xq/θ, where Wp is the set of pixels

within the window around the pixel p, and θ is a scalar value

specified based on the properties of the image.

3. Post-segmentation Inference

In this section, we consider the problem of how to pro-

vide a valid p-value for the observed difference in aver-

age pixel intensities between the object and background re-

gions Δ when the two regions are obtained by applying

a segmentation algorithm A to an image x. In the pro-

posed PSegI framework, we solve this problem by consider-

ing the sampling distribution of Δ conditional on the event

A(x) = {O,B} under the null hypothesis that μob = μbg;

i.e., the actual mean pixel intensities of the object and back-

ground regions are the same. By conditioning on the seg-

mentation result {O,B}, the effect of segmentation bias is

properly corrected.

By definition, a valid p-value must be interpreted as an

upper bound on the probability that the obtained segmenta-

tion result {O,B} is incorrect§. To this end, in our condi-

tional inference, a valid p-value p must satisfy

PH0

(

p ≤ α

∣

∣

∣

∣

A(x) = A(xobs)
z(x) = z(xobs)

)

= α ∀ α ∈ [0, 1]. (5)

This property is satisfied if and only if p is uniformly dis-

tributed in [0, 1]. Therefore, our problem is cast into the

problem of computing a function of the test statistic Δ that

follows Unif[0, 1] when the test statistic follows the condi-

tional sampling distribution in (3).

In §3.1, we first present our main result for the pro-

posed PSegI framework. Here, we show that if the event

A(x) = {O,B} is characterized by a finite set of quadratic

inequalities on x, then a valid p-value can be exactly com-

puted. In §3.2 and §3.3, as examples of the proposed

PSegI framework, we develop concrete methods of, re-

spectively, the PSegI framework for a GC-based segmen-

tation algorithm [5, 2] and a TH-based segmentation algo-

rithm [24, 38]. Our key finding is that the event A(x) =
{O,B} can be characterized by a finite set of quadratic in-

equalities on x for these segmentation algorithms and thus

valid p-values can be computed by using the result in §3.1.

3.1. Selective Inference for Segmentation Results

The following theorem is the core of the proposed PSegI

framework.

§Naive p-values do not satisfy this property due to segmentation bias.

Theorem 1. Suppose that an image x of size n is drawn

from an n-dimensional normal distribution N(μ,Σ) with

unknown μ and known or independently estimable Σ. If

the event A(x) = {O,B} is characterized by a finite set of

quadratic inequalities on x of the form

x⊤Ajx+ b⊤j x+ cj ≤ 0, j = 1, 2, . . . , (6)

with certain Aj ∈ R
n×n, bj ∈ R

n, and cj ∈ R, j =
1, 2, . . ., then

p = 1− F
E(z(xobs))

0,η⊤Ση
(|mob −mbg|) (7)

is a valid p-value in the sense that it satisfies (5), where

FE
m,s2 is a cumulative distribution function of a truncated

normal distribution with mean m, variance s2, and trun-

cation intervals E. Here, the truncation interval is written

as

E(z(x)) =
⋂

j

{

Δ > 0

∣

∣

∣

∣

(z(x) + Δy)⊤Aj(z(x) + Δy)
+b⊤j (z(x) + Δy) + cj ≤ 0

}

,

where y = Ση⊤η/(η⊤Ση).

The proof of Theorem 1 is presented in supplement B.

This theorem is an adaptation of Theorem 5.2 in [20] and

Theorem 3.1 in [22], in which SI on the selected features

of a linear model was studied. Note that the normality as-

sumption in Theorem 1 does NOT mean that n pixel values

are normally distributed; it means that the noise (deviation

from the unknown true mean value) of each pixel value is

normally distributed.

3.2. Valid p-values for GC-based segmentation

As briefly described in §2-2, GC-based segmentation is

conducted by solving the maximum flow optimization prob-

lem on the directed graph. Basically, all the operations in

this optimization process can be decomposed into additions,

subtractions, and comparisons of the weights w(p,q) of the

directed graph. This suggests that as long as each weight

w(p,q) is written as a quadratic function of the image x, the

event that the GC-based segmentation algorithm produces

the segmentation result {O,B} can be fully characterized

by a finite set of quadratic inequalities in the form of (6). In

the following, we explain how to set the weights w(p,q) for

each edge (p, q) ∈ E . For properly defining the weights, it

is necessary to introduce seed pixels for the object and back-

ground regions. The pixels known or highly plausible to be

in the object or background regions are set as the seed pix-

els, denoted as Ose,Bse ⊂ P , respectively. The seed pixels

may be specified by human experts, or the pixel with the

largest or smallest intensity may be specified as the object

or background seed pixel, respectively.

When the two pixel nodes p, q ∈ P are adjacent to each

other, the weight w(p,q) is determined based on the similar-

ity of their pixel intensities and the distance between them.
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Pixel similarity is usually defined based on the properties

of the target image. To provide flexibility in the choice

of the similarity function, we employ a quadratic spline

approximation, which allows one to specify the desired

similarity function with arbitrary approximation accuracy.

For example, Figure 1 in supplement C shows an example

of the quadratic spline approximation of commonly used

weights w(p,q) = exp(−(xp − xq)
2/(2σ2))dist(p, q)−1,

where dist(p, q) is the distance between the two nodes.

The weight between the terminal node S and the gen-

eral pixel node p ∈ P \ (Ose ∪ Bse) is usually determined

based on the negative log-likelihood of the pixel in the ob-

ject region. Under the normality assumption, it is written

as wS,p = − logP(xp | p ∈ O) ≃ log(2πσ2 + (xp −
mse

ob)
2/(2σ2), where mse

ob =
∑

i∈Ose xi/|O
se| is the esti-

mate of the mean pixel intensity in the object region from

the object seed pixel intensities. The weight between the

terminal node S and an object seed pixel node p ∈ Ose

should be sufficiently large. It is usually determined as

wS,p = 1 + maxq∈P

∑

r:(q,r)∈N w(q,r). The weight be-

tween the terminal node S and a background seed node

p ∈ Bse is set to zero. The weights between the terminal

node T and pixel nodes are determined in the same way.

Since all the weights for the edges are represented by

quadratic equations and quadratic constraints on x, all the

operations for solving the minimum cut (or maximum flow)

optimization problem (4) can be fully characterized by a fi-

nite set of quadratic inequalities in the form of (6). Thus,

valid p-values of the segmentation result obtained with the

GC-based segmentation algorithm can be computed using

the PSegI framework. In supplement C, we present all the

matrices Aj , vectors bj , and scalars cj needed for charac-

terizing a GC-based segmentation event.

3.3. Valid p-values for TH-based segmentation

Both the global and local TH algorithms fit into the

PSegI framework. First, consider the global TH algorithm.

For simplicity, consider selecting a global threshold t∗ from

256 values t ∈ {0, 1, . . . , 255}. An event that the global

threshold t∗ is selected can be simply written as

σ2
bet(t

∗) ≥ σ2
bet(t), t ∈ {0, . . . , 255}. (8)

Let u(t) and u(t) be n-dimensional vectors whose elements

are defined as

u(t)p =

{

1 if xp ≥ t,
0 otherwise;

u(t)p =

{

0 if xp ≥ t,
1 otherwise.

Then, since the between-region variance σ2
bet(t) is written

as the quadratic function

x⊤

(

n(t)

n(t)
u(t)u(t)⊤ +

n(t)

n(t)
u(t)u(t)⊤ − 2u(t)u(t)⊤

)

x,

the event in (8) is represented by 255 quadratic inequalities

on x. Furthermore, it is necessary to specify whether pix-

els are in the object or background region at each threshold

t ∈ {0, . . . , 255}. To this end, consider conditioning on the

order of pixel intensities, which is represented by a set of

n− 1 linear inequalities:

e⊤(i)x ≤ e⊤(i+1)x, i = 1, . . . , n− 1, (9)

where (1), (2), . . . , (n) is the sequence of pixel IDs such

that x(1) ≤ x(2) ≤ . . . ≤ x(n). Since the conditions (8) and

(9) are represented by sets of quadratic and linear inequali-

ties on x, valid p-values of the segmentation result obtained

with the global TH algorithm can be computed using the

PSegI framework.

Next, consider the local threshold approach. The condi-

tions under which the pth pixel is classified into the object

or background region are simply written as a set of linear

inequalities on x as

xp ≥ (|Wp|
−1

∑

q∈Wp

xq)/θ ⇔ e⊤p x ≥ |Wp|
−1e⊤Wp

x,

xp ≤ (|Wp|
−1

∑

q∈Wp

xq)/θ ⇔ e⊤p x ≤ |Wp|
−1e⊤Wp

x,

respectively. Thus, valid p-values of the segmentation result

obtained with the local TH-based algorithm can be com-

puted using the PSegI framework.

4. Experiments

We confirm the validity of the proposed method by nu-

merical experiments. First, we evaluated the false positive

rate (FPR) and the true positive rate (TPR) of the proposed

method using artificial data. Then, we applied the pro-

posed method to medical images as a practical application.

We compared the proposed method with the naive method,

which assumes that Δ ∼ N(0, σ̃2), where σ̃2 is computed

based on the segmentation result without considering seg-

mentation bias. We denote the p-values obtained using the

proposed method and the naive method as selective-p and

naive-p, respectively.

Experiments using artificial data. In the artificial data

experiments, Monte Carlo simulation was conducted 105

times. The significance level was set to α = 0.05 and the

FPRs and TPRs were estimated as 10−5
∑105

i=1 1 {pi < α},

where pi is the p-value at the ith Monte Carlo trial.

Data were generated with the range of pixel values x ∈
[0, 1]. The maximum and minimum values were used as

the seeds for the object and background regions, respec-

tively. Note that these seed selections were incorporated

as selection events. In the experiment for FPR, the data

were randomly generated as x ∼ N(0.5n, 0.5In×n) for
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Figure 3: Results of artificial data experiments using GC-

and TH-based segmentation algorithms. (a) and (c) show

that the FPRs of the proposed method are properly con-

trolled at the desired significance level. In contrast, the

naive method totally failed to control the FPRs. (b) and (d)

show that the proposed method successfully identified the

correct segmentation results.

n = 9, 25, 100, 225, 400, 625, 900. Next, in the exper-

iment for TPR, data were randomly generated as x ∼
N(μ, 0.12In×n). Here, μ is an n-dimensional vector that

contains 100 × 100 elements for which the upper left sub-

matrix with size 50 × 50 has a mean value μS and for

which the remaining values have mean value μT . Cases

with μ = μS − μT = 0.0, 0.2, . . . , 1.0 were investigated.

The results are shown in Figure 3. Figures 3a-b and c-d

show the results for the GC- and TH-based segmentation

algorithms, respectively. As shown in Figures 3a and c, the

proposed method controlled the FPRs at the desired signifi-

cance level, whereas the naive method could not. The FPR

of the naive method increased with image size n since the

deceptive difference in the mean value between the two re-

gions increased. Figures 3b and d show that the TPR of the

proposed method increased as the difference between the

two regions μ increased.

Experiments using medical images. In this section, we

applied the proposed method and the naive method to patho-

logical images and computed tomography (CT) images.

For pathological images, the GC-based segmentation al-

gorithm was employed to extract fibrous tissue regions in

pathological tissue specimens. The quantitative analysis of

pathological images is useful for computer-aided diagnosis,

and the extraction of specified areas is practically impor-

tant [6, 30, 39]. The pathological images were obtained by

scanning tissue specimens of the spleen and cervical lymph

node stained with hematoxylin and eosin at Nagoya Univer-

sity Hospital. As a scanning equipment Aperio ScanScope

XT (Leica Biosystems, Germany) was utilized and the glass

slides were scanned at 20x magnification. From the scanned

whole-slide images, several region-of-interest (ROI) images

were manually extracted with and without fibrous regions

at 5x magnification. The GC-based segmentation algorithm

was applied to the above images and a significance test was

performed for the segmented regions. Variance was set to

Σ = σ̂2In×n, where σ̂2 was estimated from independent

data with the maximum likelihood method. In this experi-

ment, the seed regions were manually selected, but the ef-

fect of the manual selection was not considered when com-

puting p-values. Figures 4 and 5 show the results. It can

be observed that the p-values obtained with the proposed

method are smaller than α = 0.05 only when there are ac-

tually fibrous regions in the images. In contrast, the naive

method always gives p-values that are zero, even for images

that do not contain fibrous regions.

In experiments with CT images, we aimed to extract the

tumor region in the liver [23, 40, 1, 3, 16, 28]. In the exper-

iments, we used CT images from the 2017 MICCAI Liver

Tumor Segmentation Challenge. Here, the local TH-based

segmentation algorithm was employed for identifying liver

tumor regions since CT values in tumor regions are lower

than those in surrounding organ regions. Before applying

the local TH algorithm, original images were blurred with

Gaussian filtering with a filter size of 11×11. The param-

eters for local thresholding were a window size of 50 and

θ = 1.1. The results of local thresholding for CT images

are shown in Figures 6 and 7. It can be observed that the

p-values obtained with the proposed method (selective-p)

are smaller than the significance level α = 0.05 only when

there are actually tumor regions in the images. In contrast,

the naive method always gives p-values that are zero, even

for images that do not contain tumor regions.

5. Conclusions

In this paper, we proposed a novel framework called

PSegI for providing a reliability metric for individual seg-

mentation results by quantifying the statistical significance

of the difference between the object and background regions

in the form of p-values.
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(a) Original (b) Object (c) Background

(naive-p = 0.00 and selective-p = 0.00)

(d) Original (e) Object (f) Background

(naive-p = 0.00 and selective-p = 0.00)

Figure 4: Segmentation results for pathological images with

fibrous regions. The p-values obtained with the proposed

method (selective-p) are smaller than α = 0.05, indicat-

ing that these segmentation results correctly identified the

fibrous regions.

(a) Original (b) Object (c) Background

(naive-p = 0.00 and selective-p = 0.35)

(d) Original (e) Object (f) Background

(naive-p = 0.00 and selective-p = 0.73)

Figure 5: Segmentation results for pathological images

without fibrous regions. The p-values obtained with the pro-

posed method (selective-p) are greater than α = 0.05, indi-

cating that the differences between the two regions in these

images are deceptively large due to segmentation bias. It is

obvious that these images do not contain specific objects.

(a) Original (b) Blurred (c) Binarized

(naive-p = 0.00 and selective-p = 0.00)

(d) Original (e) Blurred (f) Binarized

(naive-p = 0.00 and selective-p = 0.00)

Figure 6: Segmentation results for CT images with tumor

regions. The p-values obtained with the proposed method

(selective-p) are smaller than α = 0.05. These images con-

tain ground-truth tumor regions, which were successfully

identified by the segmentation algorithm.

(a) Original (b) Blurred (c) Binarized

(naive-p = 0.00 and selective-p = 0.21)

(d) Original (e) Blurred (f) Binarized

(naive-p = 0.00 and selective-p = 0.77)

Figure 7: Segmentation results for CT images without tu-

mor regions. The p-values obtained with the proposed

method (selective-p) are greater than α = 0.05. These im-

ages do not contain any ground-truth tumor regions. The

differences between the two regions in these images are de-

ceptively large due to segmentation bias.

9560



References

[1] K. T. Bae, M. L. Giger, C.-T. Chen, and C. E. Kahn. Auto-

matic segmentation of liver structure in ct images. Medical

physics, 20(1):71–78, 1993. 7

[2] Y. Boykov and G. Funka-Lea. Graph cuts and efficient nd

image segmentation. International journal of computer vi-

sion, 70(2):109–131, 2006. 1, 2, 4, 5

[3] Y. Boykov and M.-P. Jolly. Interactive organ segmentation

using graph cuts. In International conference on medical

image computing and computer-assisted intervention, pages

276–286. Springer, 2000. 7

[4] Y. Boykov and V. Kolmogorov. An experimental comparison

of min-cut/max-flow algorithms for energy minimization in

vision. IEEE Transactions on Pattern Analysis & Machine

Intelligence, (9):1124–1137, 2004. 4

[5] Y. Y. Boykov and M.-P. Jolly. Interactive graph cuts for op-

timal boundary & region segmentation of objects in nd im-

ages. In Proceedings eighth IEEE international conference

on computer vision. ICCV 2001, volume 1, pages 105–112.

IEEE, 2001. 1, 2, 4, 5

[6] D. Comaniciu and P. Meer. Cell image segmentation for di-

agnostic pathology. pages 541–558, 2002. 7

[7] A. Desolneux, L. Moisan, and J.-M. More. A grouping prin-

ciple and four applications. IEEE Transactions on Pattern

Analysis and Machine Intelligence, 25(4):508–513, 2003. 2

[8] A. Desolneux, L. Moisan, and J.-M. Morel. Meaning-

ful alignments. International Journal of Computer Vision,

40(1):7–23, 2000. 2

[9] E. A. Dinic. Algorithm for solution of a problem of max-

imum flow in networks with power estimation. In Soviet

Math. Doklady, volume 11, pages 1277–1280, 1970. 4

[10] V. N. L. Duy, H. Toda, R. Sugiyama, and I. Takeuchi.

Computing valid p-value for optimal changepoint by selec-

tive inference using dynamic programming. arXiv preprint

arXiv:2002.09132, 2020. 2

[11] A. Elnakib, G. Gimelfarb, J. S. Suri, and A. El-Baz. Med-

ical image segmentation: a brief survey. In Multi Modality

State-of-the-Art Medical Image Segmentation and Registra-

tion Methodologies, pages 1–39. Springer, 2011. 2

[12] W. Fithian, D. Sun, and J. Taylor. Optimal inference after

model selection. arXiv preprint arXiv:1410.2597, 2014. 2, 4

[13] L. R. Ford and D. R. Fulkerson. Maximal flow through a

network. In Classic papers in combinatorics, pages 243–

248. Springer, 2009. 4

[14] A. V. Goldberg and R. E. Tarjan. A new approach to

the maximum-flow problem. Journal of the ACM (JACM),

35(4):921–940, 1988. 4

[15] L. Grady. Random walks for image segmentation. IEEE

Transactions on Pattern Analysis & Machine Intelligence,

(11):1768–1783, 2006. 2

[16] Y. Gu, V. Kumar, L. O. Hall, D. B. Goldgof, C.-Y. Li,

R. Korn, C. Bendtsen, E. R. Velazquez, A. Dekker, H. Aerts,

et al. Automated delineation of lung tumors from ct images

using a single click ensemble segmentation approach. Pat-

tern recognition, 46(3):692–702, 2013. 7

[17] T. Hershkovitch and T. Riklin-Raviv. Model-dependent un-

certainty estimation of medical image segmentation. In 2018

IEEE 15th International Symposium on Biomedical Imaging

(ISBI 2018), pages 1373–1376. IEEE, 2018. 2

[18] A. Kendall and Y. Gal. What uncertainties do we need in

bayesian deep learning for computer vision? In Advances

in neural information processing systems, pages 5574–5584,

2017. 2

[19] N. Kriegeskorte, W. K. Simmons, P. S. Bellgowan, and C. I.

Baker. Circular analysis in systems neuroscience: the dan-

gers of double dipping. Nature neuroscience, 12(5):535,

2009. 2

[20] J. D. Lee, D. L. Sun, Y. Sun, and J. E. Taylor. Exact post-

selection inference, with application to the lasso. Annals of

Statistics, 44(3):907–927, 2016. 2, 4, 5

[21] Y. Liu, D. Zhang, G. Lu, and W.-Y. Ma. A survey of content-

based image retrieval with high-level semantics. Pattern

recognition, 40(1):262–282, 2007. 2

[22] J. R. Loftus and J. E. Taylor. Selective inference in re-

gression models with groups of variables. arXiv preprint

arXiv:1511.01478, 2015. 2, 5

[23] L. Massoptier and S. Casciaro. A new fully automatic and

robust algorithm for fast segmentation of liver tissue and tu-

mors from ct scans. European radiology, 18(8):1658, 2008.

7

[24] N. Otsu. A threshold selection method from gray-level his-

tograms. IEEE transactions on systems, man, and cybernet-

ics, 9(1):62–66, 1979. 1, 2, 4, 5

[25] K. Qin, K. Xu, F. Liu, and D. Li. Image segmentation based

on histogram analysis utilizing the cloud model. Computers

& Mathematics with Applications, 62(7):2824–2833, 2011.

2

[26] F. Rousseau, F. Blanc, J. de Seze, L. Rumbach, and J.-P.

Armspach. An a contrario approach for outliers segmen-

tation: Application to multiple sclerosis in mri. In 2008

5th IEEE International Symposium on Biomedical Imaging:

From Nano to Macro, pages 9–12. IEEE, 2008. 2

[27] M. Sezgin and B. Sankur. Survey over image thresholding

techniques and quantitative performance evaluation. Journal

of Electronic imaging, 13(1):146–166, 2004. 4

[28] A. Shimizu, R. Ohno, T. Ikegami, H. Kobatake, S. Nawano,

and D. Smutek. Segmentation of multiple organs in non-

contrast 3d abdominal ct images. International journal of

computer assisted radiology and surgery, 2(3-4):135–142,

2007. 7

[29] S. Suzumura, K. Nakagawa, Y. Umezu, K. Tsuda, and

I. Takeuchi. Selective inference for sparse high-order inter-

action models. In Proceedings of the 34th International Con-

ference on Machine Learning-Volume 70, pages 3338–3347.

JMLR. org, 2017. 2
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