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1MPI Informatics, Saarland Informatics Campus 2Technicolor 3Valeo.ai 4Stanford University

Figure 1: StyleRig allows for face rig-like control over StyleGAN generated portrait images, by translating semantic edits on

3D face meshes to the input space of StyleGAN.

Abstract

StyleGAN [18] generates photorealistic portrait images

of faces with eyes, teeth, hair and context (neck, shoulders,

background), but lacks a rig-like control over semantic face

parameters that are interpretable in 3D, such as face pose,

expressions, and scene illumination. Three-dimensional mor-

phable face models (3DMMs) [10] on the other hand offer

control over the semantic parameters, but lack photorealism

when rendered and only model the face interior, not other

parts of a portrait image (hair, mouth interior, background).

We present the first method to provide a face rig-like control

over a pretrained and fixed StyleGAN via a 3DMM. A new

rigging network, RigNet is trained between the 3DMM’s

semantic parameters and StyleGAN’s input. The network

is trained in a self-supervised manner, without the need for

manual annotations. At test time, our method generates por-

trait images with the photorealism of StyleGAN and provides

explicit control over the 3D semantic parameters of the face.

1. Introduction

Photorealistic synthesis of portrait face images finds many

applications in several fields including special effects, ex-

tended reality, virtual worlds, and next-generation communi-

cation. During the content creation process for such applica-

tions, artist control over the face rig’s semantic parameters,

such as geometric identity, expressions, reflectance, or scene

illumination is desired. The computer vision and graph-

ics communities have a rich history of modeling face rigs

[21, 25, 26, 31]. These models provide artist-friendly con-

trol (often called a face rig), while navigating the various

parameters of a morphable face model (3DMM) [3, 4]. Such

methods are often limited by the lack of training data, and

more importantly, lack of photorealism in the final rendering.

Through 3D face scanning techniques high-quality face

geometry datasets can be obtained [5, 21]. However, mod-

els derived from these datasets are bound by the diversity

of faces scanned and may limit the generalization over the

rich set of human faces’ semantic parameterization. Fur-

ther, deep learning-based models trained on in-the-wild data

[31, 32, 35] also often rely on data-driven priors and other

forms of regularization obtained from scan-based datasets.

With respect to photorealism, perceptual losses recently

showed an improvement of face modeling quality [9, 35]

over existing methods. However, they still do not engender

photorealistic face renders. Mouth interiors, hair, or eyes,

let alone image background are often not modeled by such

approaches. Generative Adversarial Networks (GANs) [14]

have lately achieved photorealism [15, 17], especially for

faces. Karras et al. [17] show that through a progressive

growth of GAN’s generator and discriminator, one can bet-

ter stabilize and speed up training. When trained on the

CelebA-HQ [17] dataset this yields a remarkable level of

photorealism for faces. Their approach also shows how pho-

torealistic face images of non-existent people can be sampled

from the learned GAN distribution. Building on Karras et
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al. [17], StyleGAN [18] uses ideas from the style transfer

literature [12, 29] and proposes an architecture capable of

disentangling various face attributes. Promising results of

control over various attributes, including coarse (hair, ge-

ometry), medium (expressions, facial hair) and fine (color

distribution, freckles) attributes were shown. However, these

controllable attributes are not semantically well defined, and

contain several similar yet entangled semantic attributes. For

example, both coarse and medium level attributes contain

face identity information. In addition, the coarse levels con-

tain several entangled attributes such as face identity and

head pose.

We present a novel solution to rig StyleGAN using a

semantic parameter space for faces. Our approach brings

the best of both worlds: the controllable parametric nature

of existing morphable face models [26, 31], and the high

photorealism of generative face models [17, 18]. We employ

a fixed and pretrained StyleGAN and do not require more

data for training. Our focus is to provide computer graphics

style rig-like control over the various semantic parameters.

Our novel training procedure is based on a self-supervised

two-way cycle consistency loss that is empowered by the

combination of a face reconstruction network with a differ-

entiable renderer. This allows us to measure the photometric

rerendering error in the image domain and leads to high

quality results. We show compelling results of our method,

including interactive control of StyleGAN generated imagery

as well as image synthesis conditioned on well-defined se-

mantic parameters.

2. Related Work

In the following, we discuss deep generative models for

the synthesis of imagery with a focus on faces, as well as

3D parametric face models. For an in-depth overview of

parametric face models and their possible applications we

refer to the recent survey papers [10, 39].

Deep Generative Models Generative adversarial net-

works (GANs) contain two main blocks: a generator and

a discriminator [14]. The generator takes a noise vector as

an input and produces an output, and tries to fool the dis-

criminator, whose purpose is to classify whether the output

is real or fake. When the input to the network is a noise

vector, the output is a sample from the learned distribution.

Karras et al. [17] show that such a noise vector can generate

high-resolution photorealistic images of human faces. To

achieve this they employ a progressive strategy of slowly

increasing the size of the generator and the discriminator,

by adding more layers during training. This enables more

stable training phase, and in turn helps learn high-resolution

images of faces. StyleGAN [18] can synthesize highly pho-

torealistic images while allowing for more control over the

output, compared to Karras et al. [17]. However, StyleGAN

still suffers from a clear entanglement of semantically dif-

ferent attributes. Therefore, it does not provide a semantic

and interpretable control over the image synthesis process.

Exploring the latent space of GANs for image editing has

been recently explored in Jahanian et al. [16]. They can only

achieve simple transformations, such as zoom and 2D trans-

lations as they need ground truth images for each transforma-

tion during training. For faces, concurrent efforts have been

made in controlling images synthesized by GANs [1, 30],

but they lack explicit rig-like 3D control of the generative

model. Isola et al. [15] use conditional GANs to produce

image-to-image translations. Here, the input is not a noise

vector, but a conditional image from a source domain, which

is translated to the target domain by the generator. Their

approach, however, requires paired training data. CycleGAN

[38] and UNIT [22] learn to perform image-to-image transla-

tion only using unpaired data using cycle-consistency losses.

GAUGAN [24] shows interactive semantic image synthesis

based on spatially adaptive normalization. The remarkable

quality achieved by GANs has inspired the development of

several neural rendering applications for faces [10, 39] and

others objects [8, 23, 36].

3D Morphable Models 3D Morphable Models (3DMMs)

are commonly used to represent faces [3, 4]. Here, faces are

parameterized by the identity geometry, expressions, skin re-

flectance and scene illumination. Expressions are commonly

modeled using blendshapes, and illumination is generally

modeled via spherical harmonics parameters [33]. The mod-

els are learned from 3D scans of people [5, 21], or more

recently from in-the-wild internet footage [31]. The para-

metric nature of 3DMMs allows navigating and exploring

the space of plausible faces, e.g., in terms of geometry, ex-

pressions and so on. Thus, synthetic images can be rendered

based on different parameter configurations. The rendered

images, however, often look synthetic and lack photorealism.

More recently, neural rendering has been used to bridge the

gap between synthetic computer graphics renderings and

corresponding real versions [19, 34]. Several methods have

been proposed for fitting face models to images [7, 11, 13,

20, 25, 26, 28, 31, 32, 33, 35]. Our work, however, focuses

on learning-based approaches, that can be categorized into

reconstruction only techniques [20, 25, 26, 28, 33], and re-

construction plus model learning [31, 32, 35]. MOFA [33]

projects a face into the 3DMM space using a CNN, followed

by a differentiable renderer to synthesize the reconstructed

face. The network is trained in a self-supervised manner

based on a large collection of face images. Tran et al. [35]

use a perceptual loss to enhance the renderings of the recon-

struction. RingNet [26] and FML [31] impose multi-image

consistency losses to enforce identity similarity. RingNet

also enforces identity dissimilarity between pictures of dif-

ferent people. Several approaches learn to reconstruct the
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parameters of a 3DMM by training it on large scale synthetic

data [20, 25, 28]. For a more comprehensive overview of all

techniques please refer to [10, 39].

3. Overview

StyleGAN [18] can be seen as a function that maps a

latent code w ∈ R
l to a realistic portrait image Iw =

StyleGAN(w) ∈ R
3×w×h of a human face. While the gener-

ated images are of very high quality and at a high resolution

(w = h = 1024), there is no semantic control over the

generated output, such as the head pose, expression, or illu-

mination. StyleRig allows us to obtain a rig-like control over

StyleGAN-generated facial imagery in terms of semantic

and interpretable control parameters (Sec. 8). In the follow-

ing, we explain the semantic control space (Sec. 4), training

data (Sec. 5), network architecture (Sec. 6) and loss function

(Sec. 7).

4. Semantic Rig Parameters

Our approach uses a parametric face model to achieve

an explicit rig-like control of StyleGAN-generated imagery

based on a set of semantic control parameters. The control

parameters are a subset of p = (α,β, δ,γ,R, t) ∈ R
f ,

which describes the facial shape α ∈ R
80, skin reflectance

β ∈ R
80, facial expression δ ∈ R

64, scene illumination

γ ∈ R
27, head rotation R ∈ SO(3), and translation t ∈ R

3,

with the dimensionality of p being f = 257. We define

the control space for the facial shape α and skin reflectance

β using two low-dimensional affine models that have been

computed via Principal Component Analysis (PCA) based

on 200 (100 male, 100 female) scans of human faces [4].

The output of this model is represented by a triangle mesh

with 53k vertices and per-vertex color information. The

control space for the expression δ is given in terms of an

additional affine model that captures the expression depen-

dent displacement of the vertices. We obtain this model by

applying PCA to a set of blendshapes [2, 6] which have been

transferred to the topology of the shape and reflectance mod-

els. The affine models for shape, appearance, and expression

cover more than 99% of the variance in the original datasets.

Illumination γ is modeled based on three bands of spheri-

cal harmonics per color channel leading to an additional 27
parameters.

5. Training Corpus

Besides the parametric face model, our approach requires

a set of face images Iw and their corresponding latent codes

w as training data. To this end, we sample N = 200k latent

codes w ∈ R
l and generate the corresponding photorealistic

face images Iw = StyleGAN(w) using a pretrained Style-

GAN network. We use l = 18 × 512 dimensional latent

space which is the output of the mapping network in Style-

GAN, as it has been shown to be more disentangled [1, 18].

Here, 18 latent vectors of size 512 are used at different reso-

lutions. Each training sample is generated by combining up

to 5 separately sampled latent vectors, similar to the mixing

regularizer in Karras et al. [18]. This allows our networks

to reason independently about the latent vectors at different

resolutions. Given these (w, Iw) pairs, our approach can be

trained in a self-supervised manner without requiring any

additional image data or manual annotations.

6. Network Architecture

Given a latent code w ∈ R
l that corresponds to an image

Iw, and a vector p ∈ R
f of semantic control parameters, we

want to learn a function that outputs a modified latent code

ŵ = RigNet(w,p). The modified latent code ŵ should map

to a modified face image Iŵ = StyleGAN(ŵ) that obeys the

control parameters p. One example would be changing

the rotation of the face in an image such that it matches a

given target rotation, while maintaining the facial identity,

expression, and scene illumination (see Sec. 8 for examples).

We train separate RigNet networks for the different modes

of control i.e., pose, expressions and illumination. RigNet is

implemented based on a linear two-layer perceptron (MLP).

We propose a self-supervised training of RigNet based on

two-way cycle consistency losses and a differentiable face

reconstruction (DFR) network. Fig. 2 shows an overview of

our architecture. Our network combines several components

that fulfill specific tasks.

Differentiable Face Reconstruction One key compo-

nent is a pretrained differentiable face reconstruction (DFR)

network. This parameter regressor is a function F : Rl →
R

f that maps a latent code w to a vector of semantic control

parameters pw = F(w). In practice, we model F using a

three layer MLP with ELU activations after every interme-

diate layer, and train it in a self-supervised manner. This

requires a differentiable render layer R : Rf → R
3×w×h

that takes a face parameter vector p as input, converts it into

a 3D mesh and generates a synthetic rendering Sw = R(pw)
of the face1. We then train F using a rerendering loss:

Lrender(Iw,p) = Lphoto(Iw,p) + λlandLland(Iw,p) . (1)

The first term is a dense photometric alignment loss:

Lphoto(Iw,p) =
∥

∥M⊙ (Iw −R
(

p)
))
∥

∥

2

2
.

Here, M is a binary mask with all pixels where the face mesh

is rendered set to 1 and ⊙ is element-wise multiplication.

We also use a sparse landmark loss

Lland(Iw,p) =
∥

∥LIw
− LM

∥

∥

2

2
,

1We use point-based rendering of the mesh vertices.
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Figure 2: StyleRig enables rig-like control over StyleGAN-generated facial imagery based on a learned rigger network

(RigNet). To this end, we employ a self-supervised training approach based on a differentiable face reconstruction (DFR) and

a neural face renderer (StyleGAN). The DFR and StyleGAN networks are pretrained and their weights are fixed, only RigNet

is trainable. We define the consistency and edit losses in the image domain using a differentiable renderer.

Figure 3: Differentiable Face Reconstruction. Visualized are

(image, reconstruction) pairs. The network however, only

gets the latent vector corresponding to the images as input.

where LIw
∈ R

66×2 are 66 automatically computed land-

marks [27] on the image Iw, and LM are the corresponding

landmark positions on the rendered reconstructed face. The

landmark vertices on the mesh are manually annoted before

training. λland is a fixed weight used to balance the loss

terms. In addition, we also employ statistical regularization

on the parameters of the face model, as done in MoFA. [33].

After training, the weights of F are fixed. Fig. 3 shows some

results of the reconstructions obtained by DFR.

RigNet Encoder The encoder takes the latent vector w

as input and linearly transforms it into a lower dimensional

vector l of size 18 × 32. Each sub-vector wi of w of size

512 is independently transformed into a sub-vector li of size

32, for all i ∈ {0, . . . , 17}.

RigNet Decoder The decoder tranforms l and the input

control parameters p into the output ŵ. Similar to the en-

coder, we use independent linear decoders for each li. Each

layer first concatenates li and p, and transforms it into di,

for all i ∈ {0, . . . , 17}. The final output is computed as

ŵ = d+w.

7. Self-supervised Training

Our goal is to train RigNet such that we can inject a subset

of parameters into a given latent code w. For example, we

might want to inject a new head pose, while maintaining the

facial identity, expression, and illumination in the original

image synthesized from w. We employ the following loss

function for training:

Ltotal = Lrec + Ledit + Lconsist . (2)

It consists of a reconstruction loss Lrec, an editing loss Ledit,

and a consistency loss Lconsist. Since we do not have ground

truth for the desired modifications (our training corpus only

contains one image per person), we employ self-supervision

based on cycle-consistent editing and consistency losses. We

optimize Ltotal based on AdaDelta [37] with a learning rate

of 0.01. In the following, we provide details.

Reconstruction Loss We want to design RigNet such that

it reproduces the latent codes in the training corpus. For-

mally, we want that RigNet(w,F(w)) = w. We enforce

this with the following ℓ2-loss:

Lrec =
∥

∥RigNet(w,F(w))−w
∥

∥

2

2
.
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Figure 4: Change of latent vectors at different resolutions. Coarse vectors are responsible for rotation (left), medium for

expressions (middle), medium and fine for illumination (right).

This constraint anchors the learned mapping at the right loca-

tion in the latent space. Without this constraint, learning the

mapping is underconstrained, which leads to a degradation

in the image quality (see Sec. 8). Since F is pretrained and

not updated, the semantics of the control space are enforced.

Cycle-Consistent Per-Pixel Editing Loss Given two la-

tent codes, w and v with corresponding images Iw and Iv,

we transfer the semantic parameters of v to w during train-

ing. We first extract the target parameter vector pv = F(v)
using the differentiable face reconstruction network. Next,

we inject a subset of the parameters of pv (the ones we want

to modify) into the latent code w to yield a new latent code

ŵ = RigNet(w,pv), so that Iŵ = StyleGAN(ŵ) (ideally)

corresponds to the image Iw, modified according to the sub-

set of the parameters of pv. For example, ŵ might retain

the facial identity, expression and scene illumination of w,

but should perform the head rotation specified in pv.

Since we do not have ground truth for such a modification,

i.e., the image Iŵ is unknown, we employ supervision based

on a cycle-consistent editing loss. The editing loss enforces

that the latent code ŵ contains the modified parameters. We

enforce this by mapping from the latent to the parameter

space p̂ = F(ŵ). The regressed parameters p̂ should have

the same rotation as pv. We could measure this directly

in the parameter space but this has been shown to not be

very effective [33]. We also observed in our experiments

that minimizing a loss in the parameter space does not lead

to desired results, since the perceptual effect of different

parameters in the image space can be very different.

Instead, we employ a rerendering loss similar to the one

used for differentiable face reconstruction. We take the

original target parameter vector pv and replace its rotation

parameters with the regressed rotation from p̂, resulting in

pedit. We can now compare this to Iv using the rerendering

loss (see Eq. 1):

Ledit = Lrender(Iv,pedit) .

We do not use any regularization terms here. Such a loss

function ensures that the rotation component of pedit aligns

with Iv, which is the desired output. The component of

pv which is replaced from p̂ depends on the property we

want to change. It could either be the pose, expressions, or

illumination parameters.

Cycle-consistent Per-pixel Consistency Loss In addition

to the editing loss, we enforce consistency of the parameters

that should not be changed by the performed edit operation.

The regressed parameters p̂ should have the same unmodi-

fied parameters as pw. Similarly as above, we impose this

in terms of a rerendering loss. We take the original parame-

ter vector pw and replace all parameters that should not be

modified by the regressed ones from p̂, resulting in pconsist.

In the case of modifying rotation values, the parameters that

should not change are expression, illumination as well as

identity parameters (shape and skin reflectance). This leads

to the loss function:

Lconsist = Lrender(Iw,pconsist) .

Siamese Training Since we have already sampled two

latent codes w and v during training, we perform the same

operations in a reverse order, i.e., in addition to injecting

pv into w, we also inject pw into v. To this end, we use a

Siamese network with two towers that have shared weights.

This results in a two-way cycle consistency loss.

8. Results

At test time, StyleRig allows control over the pose, ex-

pression, and illumination parameters of StyleGAN gener-

ated images. We demonstrate the efficacy of our approach

with three applications: Style Mixing (8.1), Interactive Rig

Control (8.2) and Conditional Image Generation (8.3).
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Figure 5: Mixing between source and target images generated by StyleGAN. For StyleGAN, the latent vectors of the source

samples (rows) are copied to the target vectors (columns). StyleRig allows us to mix semantically meaningful parameters, i.e.,

head pose, expressions and scene illumination. These parameters can be copied over from the source to target images.

8.1. Style Mixing

Karras et al. [18] show StyleGAN vectors at different

scales that correspond to different styles. To demonstrate

style mixing, latent vectors at certain resolutions are copied

from a source to a target image, and new images are gener-

ated. As shown in Fig. 5, coarse styles contain information

about the pose as well as identity, medium styles include in-

formation about expressions, hair structure, and illumination,

while fine styles include the color scheme of the source. We

show a similar application of mixing, but with significantly

more complete control over the semantic parameters. To

generate images with a target identity, we transfer the source

parameters of our face rig to the target latent, resulting in

images with different head poses, expressions and illumi-

nation. This rig-like control is not possible via the mixing

strategy of Karras et al. which entangles multiple semantic

dimensions in the mixed results. In Fig. 4, we analyze how

the latent vectors of StyleGAN are transformed by StyleRig.

The figure shows the average change and variance (change

is measured as ℓ2 distance) of StyleGAN latent vectors at

all resolutions, computed over 2500 mixing results. As ex-

pected, coarse latent code vectors are mainly responsible

for rotation. Expression is controlled both by coarse and

medium level latent codes. The light direction is mostly

controlled by the medium resolution vectors. However, the

fine latent vector also plays an important role in the control

of the global color scheme of the images. Rather than having

to specify which vectors need to change and by how much,

StyleRig recovers this mapping in a self-supervised manner.

As shown in Fig. 5, we can also preserve scene context like

background, hair styles and accessories better.

8.2. Interactive Rig Control

Since the parameters of the 3DMM can also be controlled

independently, StyleRig allows for explicit semantic control

of StyleGAN generated images. We develop a user interface

where a user can interact with a face mesh by interactively

changing its pose, expression, and scene illumination param-

eters. These updated parameters are then fed into RigNet

to generate new images at interactive frame rates (∼ 5 fps).
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Figure 6: Distribution of face model parameters in the train-

ing data. x-axis shows the face model parameters for rotation,

expression and illumination from left-right. y-axis shows

the mean and variance of the parameters computed over 20k
training samples.

Fig. 1 shows the results for various controls over StyleGAN

images: pose, expression, and illumination edits. The con-

trol rig carries out the edits in a smooth interactive manner.

Please refer to the supplemental video for more results.

Analysis of StyleRig The interactive editor allows us to

easily inspect the trained networks. We observe that while

the network does a good job at most controls, some expressiv-

ity of the 3D parametric face model is lost. That is, RigNet

cannot transfer all modes of parametric control to similar

changes in the StyleGAN generated images. For example,

we notice that in-plane rotation of the face mesh is ignored.

Similarly, many expressions of the face mesh do not trans-

late well into the resultant generated images. We attribute

these problems to the bias in the images StyleGAN has been

trained on. To analyze these modes, we look at the distribu-

tion of face model parameters in our training data, generated

from StyleGAN, see Fig. 6. We notice that in-plane rotations

(rotation around the Z-axis) are hardly present in the data. In

fact, most variation is only around the Y-axis. This could be

because StyleGAN is trained on the Flickr-HQ dataset [18].

Most static images of faces in such a dataset would not in-

clude in-plane rotations. The same reasoning can be applied

to expressions, where most generated images consist of ei-

ther neutral or smiling/laughing faces. These expressions

can be captured using up to three blendshapes. Even though

the face rig contains 64 vectors, we cannot control them

well because of the biases in the distribution of the training

data. Similarly, the lighting conditions are also limited in

the dataset. We note that there are larger variations in the

global color and azimuth dimensions, as compared to the

other dimensions. Our approach provides an intuitive and

interactive user interface which allows us to inspect not only

StyleRig, but also the biases present in StyleGAN.

Figure 7: Explicit control over the 3D parameters allows us

to turn StyleGAN into a conditional generative model.

8.3. Conditional Image Generation

Explicit and implicit control of a pretrained generative

model allows us to turn it into a conditional one. We can

simply fix the pose, expression, or illumination inputs to

RigNet in order to generate images which correspond to the

specified parameters, see Fig. 7. This is a straight forward

way to convert an unconditional generative model into a

conditional model, and can produce high-resolution photo-

realistic results. It is also very efficient, as it takes us less

than 24 hours to train StyleRig, while training a conditional

generative model from scratch should take at least as much

time as StyleGAN, which takes more than 41 days to train

(both numbers are for an Nvidia Volta GPU).

8.4. Comparisons to Baseline Approaches

In the following, we compare our approach with several

baseline approaches.

“Steering” the latent vector Inspired by Jahanian et

al. [16], we design a network architecture which tries to

steer the StyleGAN latent vector based on the change in

parameters. This network architecture does not use the latent

vector w as an input, and thus does not require an encoder.

The inputs to the network are the delta in the face model

parameters, with the output being the delta in the latent vec-

tor. In our settings, such an architecture does not lead to

desirable results with the network not being able to deform

the geometry of the faces, see Fig. 8. Thus, the semantic

deltas in latent space should also be conditional on the the

latent vectors, in addition to the target parameters.

Different Loss Functions As explained in Eq. 2, our

loss function consists of three terms. For the first baseline,

we switch off the reconstruction loss. This can lead to the

output latent vectors drifting from the space of StyleGAN

latent codes, thus resulting in non-face images. Next, we

switch off the consistency loss. This loss term enforces the

consistency of all face model parameters, other than the one

being changed. Without this term, changing one dimension,

for example the illumination, also changes others such as

the head pose. Our final model ensures the desired edits
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Figure 8: Baseline comparisons. Our full approach obtains

the highest quality results.

with consistent identity and scene information. Note that

switching off the editing loss is not a good baseline, as it

would not add any control over the generator.

8.5. Simultaneous Parameter Control

In addition to controlling different parameters indepen-

dently, we can also control them simultaneously. To this end,

we train RigNet, such that, it receives target pose, expres-

sion, and illumination parameters as input. For every (w,v)
training code vector pair, we sample three training samples.

Here, one out of the three parameters (pose, expression or

illumination) is changed in each sample. We then use the

loss function defined in Eq. 2 for each such sample. Thus,

RigNet learns to edit each dimension of the control space

independently, while also being able to combine the edits

using the same network. Fig. 9 shows mixing results where

pose, expression and illumination parameters are transferred

from the source to target images.

9. Limitations

While we have demonstrated high quality semantic con-

trol of StyleGAN-generated facial imagery, our approach

is still subject to a few limitations that can be addressed in

follow-up work. In the analysis sections, we have already

Figure 9: RigNet can also control pose, expression, and illu-

mination parameters simultaneously. These parameters are

transferred from source to target images, while the identity

in the target images is preserved.

discussed that StyleRig is not able to exploit the full ex-

pressivity of the parametric face model. This provides a

nice insight into the inner workings of StlyeGAN and al-

lows us to introspect the biases it learned. In the future, this

might lead the ways to designing better generative models.

Our approach is also limited by the quality of the employed

differentiable face reconstruction network. Currently, this

model does not allow us to reconstruct fine-scale detail, thus

we can not explicitly control them. Finally, there is no ex-

plicit constraint that tries to preserve parts of the scene that

are not explained by the parameteric face model, e.g., the

background or hair style. Therefore, these parts can not be

controlled and might change when editing the parameters.

10. Conclusion

We have proposed StyleRig, a novel approach that pro-

vides face rig-like control over a pretrained and fixed Style-

GAN network. Our network is trained in a self-supervised

manner and does not require any additional images or man-

ual annotations. At test time, our method generates images

of faces with the photorealism of StyleGAN, while providing

explicit control over a set of semantic control parameters. We

believe that the combination of computer graphics control

with deep generative models enables many exciting editing

applications, provides insights into the inner workings of the

generative model, and will inspire follow-up work.
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Pérez, M. Stamminger, M. Nießner, and C. Theobalt. State of

the Art on Monocular 3D Face Reconstruction, Tracking, and

Applications. Comput. Graph. Forum (Eurographics State of

the Art Reports 2018), 37(2), 2018.

6151


