APQ: Joint Search for Network Architecture, Pruning and Quantization Policy

Tianzhe Wang1,2, Kuan Wang1, Han Cai1, Ji Lin1, Zhijian Liu1, Hanrui Wang1, Yujun Lin1, Song Han1
1Massachusetts Institute of Technology \quad 2Shanghai Jiao Tong University

Abstract

We present APQ, a novel design methodology for efficient deep learning deployment. Unlike previous methods that separately optimize the neural network architecture, pruning policy, and quantization policy, we design to optimize them in a joint manner. To deal with the larger design space it brings, we devise to train a quantization-aware accuracy predictor that is fed to the evolutionary search to select the best fit. Since directly training such a predictor requires time-consuming quantization data collection, we propose to use predictor-transfer technique to get the quantization-aware predictor: we first generate a large dataset of (NN architecture, ImageNet accuracy) pairs by sampling a pretrained unified once-for-all network and doing direct evaluation; then we use these data to train an accuracy predictor without quantization, followed by transferring its weights to train the quantization-aware predictor, which largely reduces the quantization data collection time. Extensive experiments on ImageNet show the benefits of this joint design methodology: the model searched by our method maintains the same level accuracy as ResNet34 8-bit model while saving $8 \times$ BitOps; we achieve $2 \times 1.3 \times$ latency/energy saving compared to MobileNetV2+HAQ [30, 36] while obtaining the same level accuracy; the marginal search cost of joint optimization for a new deployment scenario outperforms separate optimizations using ProxylessNAS+AMC+HAQ [5, 12, 36] by 2.3% accuracy while reducing orders of magnitude GPU hours and CO$_2$ emission with respect to the training cost.

1. Introduction

Deep learning has prevailed in many real-world applications like autonomous driving, robotics, and mobile VR/AR, while efficiency is the key to bridge research and deployment. Given a constrained resource budget on the target hardware (e.g., latency, model size, and energy consumption), it requires an elaborated design of network architecture to achieve the optimal performance within the constraint. Traditionally, the deployment of efficient deep learning can be split into model architecture design and model compression (pruning and quantization). Some existing works [10, 9] have shown that such a sequential pipeline can significantly reduce the cost of existing models. Nevertheless, careful hyper-parameter tuning is required to obtain optimal performance [12]. The number of hyper-parameters grows exponentially when we consider the three stages in the pipeline together, which will soon exceed acceptable human labor bandwidth. To tackle the problem, recent works have applied AutoML techniques to automate the process. Researchers proposed Neural Architecture Search (NAS) [44, 45, 18, 19, 2, 4] to automate the model design, outperforming the human-designed models by a large margin. Based on a similar technique, researchers adopt reinforcement learning to compress the model by automated pruning [12] and automated quantization [36]. However, optimizing these three factors in separate stages will lead to sub-optimal results: e.g., the best network architecture for the full-precision model is not necessarily the optimal one after pruning and quantization. Besides, this three-step strategy also requires considerable search time and energy consumption [32]. Therefore, we need a solution to jointly optimize the deep learning model for a certain hardware platform.

However, directly extending existing AutoML techniques to joint model optimization setting can be problematic. Firstly, the joint search space is cubic compared to stage-wise search, making the search difficult. Introducing pruning and quantization into the pipeline will also greatly increase the total search time, as both of them require time-consuming post-processing (e.g., fine-tuning) to get accuracy approximation [36, 39]. As shown in Fig. 1, searching for each deployment would lead to a considerable CO$_2$ emission, which can exacerbate the greenhouse effect and deteriorate the environment seriously. Moreover, the search space of each step in pipeline could be entangled, and each
step has its own optimization objective (e.g. accuracy, latency, energy), so that the final policy of the pipeline always turns out to be sub-optimal.

To this end, we proposed APQ, a joint design method to solve this problem. To take care of the large space it brings, we reorganize the traditional pipeline of “model design→pruning→quantization” into “architecture search + mixed-precision search”. The former consists of both coarse-grained architecture search (topology, operator choice, etc.) and fine-grained channel search (replacing the traditional channel pruning [13]). The latter aims to find the optimal mixed-precision quantization policy trading off between accuracy and resource consumption. It is reasonable since “model design” and “pruning”, act on the topology of network, can be viewed as an integrity while “quantization”, acts on the details for each block, is more microscopic and orthogonal to such integrity. We work on both aspects to address the search efficiency. For architecture search, we need to train a highly flexible once-for-all network that supports not only the operator change but also fine-grained channel change, so that we can perform joint search over architecture and channel number. For the mixed-precision search, due to the orthogonality for “architecture” versus “quantization” and the time-consuming fine-tuning which is required for quantized accuracy evaluation, We instead apply a predictor to predict the accuracy after quantization. Nevertheless, it is difficult to train such a predictor for two main reasons. 1. It predicts the accuracy of models with both different architecture and different bitwidth. Therefore, it is more complicated than the predictors in [18, 7] which only takes architecture as input. 2. Collecting predictor training data could be prohibitive due to the time-consuming fine-tuning process. To address this dilemma, we proposed Predictor-Transfer Technique to dramatically improve the sample efficiency: our quantization-aware accuracy predictor is transferred from full-precision accuracy predictor, which is firstly trained on cheap data points collected using our flexible once-for-all network (evaluation only, no training required). After the training of this quantization-aware predictor P(arch, prune, quantization), we can perform search at ultra fast speed just using the predictor. With the above design, we are able to efficiently perform joint search over model architecture, channel number, and mixed-precision quantization. The predictor can also be used for new hardware and deployment scenarios, without training the whole system again.

Extensive experiments show the superiority of our method: while maintaining the same level accuracy with 8-bit version of ResNet34 model, we achieve $8\times$ reduction in BitOps; we obtain the same level accuracy as MobileNetV2+HAQ, and achieve $2\times/1.3\times$ latency/energy saving; our models outperform separate optimizations using ProxylessNAS+AMC+HAQ by 2.3% accuracy under same latency constraints, while reducing $600\times$ GPU hours and CO$_2$ emission, which could mitigate the ecological stress and accelerate the deployment process of deep model.

The contributions of this paper are:

1. We devise a methodology APQ to jointly perform NAS-pruning-quantization, thus unifying the conventionally separated stages into an integrated solution.
2. We propose a predictor-transfer method to tackle the high cost of the quantization-aware accuracy predictor’s dataset collection (NN architecture, quantization policy, accuracy).
3. We achieve significant speedup to search optimal network architecture with quantization policy via this joint optimization, and enable automatic model adjustment in diverse deployment scenarios.

2. Background and Outline

Researchers have proposed various methods to accelerate the model inference, including architecture design [14, 30], network pruning [11, 21] and network quantization [10].

Neural Architecture Search. Tracing back to the development of NAS, one can see the reduction in the search time. Former NAS [45, 29] use an RL agent to determine the cell-wise architecture. To efficiently search for the architecture, many later works viewed architecture searching as a path finding problem [20, 5], it cuts down the search time by jointly training rather than iteratively training from scratch. Inspired by the path structure, some one-shot methods [8] have been proposed to further leverage the network’s weights in training time and begin to handle mixed-precision case for efficient deployment. Another line of works tries to grasp the information by a performance predictor [23, 7], which reduces the frequent evaluation for target dataset when searching for the optimal.

Pruning. Extensive works show the progress achieved in pruning: in early time, researchers proposed fine-grained pruning [11, 10] by cutting off the connections (i.e., elements) within the weight matrix. However, such kind of method is not friendly to the CPU and GPU, and requires dedicated hardware [26, 40] to support sparse matrix multiplication, which are highly demanding to design [35, 34, 24]. Later, some researchers proposed channel-level pruning [13, 21, 17, 25, 1, 15, 27] by pruning the entire convolution channel based on some importance score (e.g., L1-norm) to enable acceleration on general-purpose hardware. However, both fine-grained pruning and channel-level pruning introduces an enormous search space as different layer has different sensitivities (e.g., the first convolution layer is very sensitive to be pruned as it extracts important
low-level features; while the last layer can be easily pruned as it’s very redundant). To this end, recent researches leverage the AutoML techniques [12, 39] to automate this exploration process and surpass the human design.

Quantization. Quantization is a necessary technique to deploy the models on hardware platforms like FPGAs and mobile phones. [10] quantized the network weights to reduce the model size by grouping the weights using k-means. [6] binarized the network weights into \{-1, +1\}; [42] quantized the network using one bit for weights and two bits for activation; [28] binarized each convolution filter into \{-w, +w\}; [43] mapped the network weights into \{-wN, 0, +wP\} using two bits with a trainable range; [41] explicitly regularized the loss perturbation and weight approximation error in a incremental way to quantize the network using binary or ternary weights. [16] used 8-bit integers for both weights and activation for deployment on mobile devices. Some existing works explored the relationship between quantization and network architecture. HAQ [36] proposed to leverage AutoML to determine the bit-width for a mixed-precision quantized model. A better trade-off can be achieved when different layers are quantized with different bits, showing the strong correlation between network architecture and quantization.

Multi-Stage Optimization. Above methods are orthogonal to each other and a straightforward combination approach is to apply them sequentially in multiple stages i.e. NAS+Pruning+Quantization:

- In the first stage, we can search the neural network architecture with the best accuracy on the target dataset [33, 5, 37]:
 \[
 \mathcal{A}_{\text{NAS}}, w_{\text{NAS}}^* = \arg \max_{\mathcal{A}, w} ACC_{\text{val}}(\mathcal{A}, w). \tag{1}
 \]

- In the second stage, we can prune the channels in the model automatically [12]:
 \[
 \mathcal{A}_{\text{pr}}, w_{\text{pr}}^* = \arg \max_{\mathcal{A}, w} ACC_{\text{val}}(P(\mathcal{A}_{\text{NAS}}, w_{\text{NAS}}^*)). \tag{2}
 \]

- In the third stage, we can quantize the model to mixed-precision [36]:
 \[
 \mathcal{A}^*, w^* = \arg \max_{Q} ACC_{\text{val}}(Q(\mathcal{A}_{\text{pr}}, w_{\text{pr}}^*)) \tag{3}
 \]

However, this separation usually leads to a sub-optimal solution: e.g., the best neural architecture for the floating-point model may not be optimal for the quantized model. Moreover, frequent evaluations on the target dataset make such kind of methods time-costly: e.g., a typical pipeline as above can take about 300 GPU hours, making it hard for researchers with limited computation resources to do automatic design.

Joint Optimization. Instead of optimizing NAS, pruning and quantization independently, joint optimization aims to find a balance among these configurations and search for the optimal strategy. To this end, the joint optimization objective can be formalized into:

\[
\mathcal{A}^* = \arg \max_{\mathcal{A}, w, P, Q} ACC_{\text{val}}(Q(P(\mathcal{A}, w))), \tag{4}
\]

However, the search space of this new objective is tripled as original one, so it becomes challenging to perform joint optimization. We endeavor to unify NAS, pruning and quantization as joint optimization. The outline is: 1. Train a once-for-all network that covers a large search space and every sub-network can be directly extracted without re-training. 2. Build a quantization-aware accuracy predictor to predict quantized accuracy given a sub-network and quantization policy. 3. Construct a latency/energy lookup table and do resource constrained evolution search. Thereby, this optimization problem can be tackled jointly.

3. Joint Design Methodology

The overall framework of our joint design is shown in Figure 2. It consists of a highly flexible once-for-all network with fine-grained channels, an accuracy predictor, and evolution search to jointly optimize architecture, pruning, and quantization.

3.1. Once-For-All Network with Fine-grained Channels

Neural architecture search aims to find a good sub-network from a large search space. Traditionally, each sam-
The combined search space contains more than 10^{35} sub-networks, which is large enough to perform search on top of it.

Properties of the Once-For-All Network. To ensure efficient architecture search, we find that the once-for-all network needs to satisfy the following properties: (1) For every extracted sub-network, the performance could be directly evaluated without re-training, so that the cost of training only need to be paid once. (2) Support an extremely large and fine-grained search space to support channel number search. As we hope to incorporate pruning policy into architecture space, the once-for-all network not only needs to support different operators, but also fine-grained channel numbers (8 as interval). Thereby, the new space is significantly enlarged (nearly quadratic from 10^{19} to 10^{35}).

However, it is hard to achieve the two goals at the same time due to the nature of once-for-all network training: it is generally believed that if the search space gets too large (e.g., supporting fine-grained channel numbers), the accuracy approximation would be inaccurate [22]. A large search space will result in high variance when training the once-for-all network. To address the issue, we adopt progressive shrinking (PS) algorithm [3] to train the once-for-all network. Specifically, we first train a full sub-network with largest kernel sizes, channel numbers and depths in the once-for-all network, and use it as a teacher to progressively distill the smaller sub-networks sampled from the once-for-all network. During distillation, the trained sub-networks still update the weights to prevent accuracy loss. The PS algorithm effectively reduces the variance during once-for-all network training. By doing so, we can assure that the extracted sub-network from the once-for-all network preserves competitive accuracy without re-training.

3.2. Quantization-Aware Accuracy Predictor

To reduce the cost for designs in various deployment scenarios, we propose to build a quantization-aware accuracy predictor P, which predicts the accuracy of the mixed-precision (MP) model based on architecture configurations.
and quantization policies. During search, we used the predicted accuracy $\hat{\text{acc}} = P(\text{arch, prune, quantize})$ instead of the measured accuracy. The input to the predictor P is the encoding of the network architecture, the pruning strategy, and the quantization policy.

Architecture and Quantization Policy Encoding. We encode the network architecture block by block: for each building block (i.e. bottleneck residual block like MobileNetV2 [30]), we encode the kernel size, channel numbers, weight/activation bits for pointwise and depthwise convolutions into one-hot vectors, and concatenate these vectors together as the encoding of the block. For example, a block has 3 choices of kernel sizes (e.g. 3,5,7) and 4 choices of channel numbers (e.g. 16,24,32,40), if we choose kernel size=3 and channel numbers=32, then we get two vectors $[1,0,0]$ and $[0,0,1,0]$, and we concatenate them together and use $[1,0,0,0,0,1,0]$ to represent this block’s architecture. Likewise, we also use one-hot vectors to denote the choice of bitwidth for certain weights/activation of pointwise and depthwise layers, e.g. suppose weight/activation bitwidth choices for pointwise/depthwise layer are 4 or 8, we use $[1,0,0,1,0,1,0,1]$ to denote the choice (4,8,4,8) for quantization policy. If this block is skipped, we set all values of the vector to 0. We further concatenate the features of all blocks as the encoding of the whole network. Then for a 5-layer network, we can use a 75-dim $(5 \times (3+4+2 \times 4)=75)$ vector to represent such an encoding. In our setting, the choices of kernel sizes are [3,5,7], the choices of channel number depend on the base channel number for each block, and bitwidth choices are [4,6,8], there are 21 blocks in total to design.

Accuracy Predictor. The predictor we use is a 3-layer feed-forward neural network with each embedding dim equaling to 400. As shown in the left of Figure 3, the input of the predictor is the one-hot encoding described above and the output is the predicted accuracy. Different from existing methods [20, 5, 37], our predictor based method does not require frequent evaluation of architecture on target dataset in the search phase. Once we have the predictor, we can integrate it with any search method (e.g. reinforcement learning, evolution, bayesian optimization, etc.) to perform joint design over architecture-pruning-quantization at a negligible cost. However, the biggest challenge is how to collect the (architecture, quantization policy, accuracy) dataset to train the predictor for quantized models, which is due to: 1) collecting quantized model’s accuracy is time-consuming; fine-tuning is required to recover the accuracy after quantization, which takes about 0.2 GPU hours per data point. In fact, we find that for training a good full precision accuracy predictor, 80k (NN architecture, ImageNet accuracy) data pairs would be enough. However, if we collect a quantized dataset with the same size as the full precision one, it can cost 16,000 GPU hours, which is far beyond affordable. 2) The quantization-aware accuracy predictor is harder to train than a traditional accuracy predictor on full-precision models: the architecture design and quantization policy affect network performance from two separate aspects, making it hard to model the mutual influence. Thus using traditional way to train quantization-aware accuracy predictor can result in a significant performance drop (Table 2).

Transfer Predictor to Quantized Models. Collecting a quantized NN dataset for training the predictor is difficult (needs finetuning), but collecting a full-precision NN dataset is easy: we can directly pick sub-networks from the once-for-all network and measure its accuracy. We propose the **predictor-transfer technique** to increase the sample efficiency and make up for the lack of data. As the order of accuracy before and after quantization is usually preserved, we first pre-train the predictor on a large-scale dataset to predict the accuracy of full-precision models, then transfer to quantized models. The quantized accuracy dataset is much smaller and we only perform short-term fine-tuning. As shown in Figure 3, we add the quantization bits (weights& activation) of the current block into the input embedding to build the quantization-aware accuracy predictor. We then further fine-tune the quantization-aware accuracy predictor using pre-trained FP predictor’s weights as initialization. Since most of the weights are inherited from the full-precision predictor, the training requires much less data compared to training from scratch.

3.3. Hardware-Aware Evolutionary Search

As different hardware might have drastically different properties (e.g., cache size, level of parallelism), the optimal network architecture and quantization policy for one hardware is not necessarily the best for the other. Therefore,
Table 2. Comparison with state-of-the-art efficient models for hardware with fixed quantization or mixed precision. Our method cuts down the marginal search time by two-order of magnitudes while achieving better performance than others. The marginal CO$_2$ emission (lbs) and cloud compute cost ($) is negligible for search in a new scenario. Here marginal cost means the cost for searching in a new deployment scenario, we use N to denote the number of up-coming deployment scenarios and we include the cost for training our once-for-all network in the "design cost". The listed "our models" are searched under different latency constraints for fair comparison.

<table>
<thead>
<tr>
<th>Model</th>
<th>ImageNet Top1 (%)</th>
<th>Latency (ms)</th>
<th>Energy (mJ)</th>
<th>BitOps (G)</th>
<th>Design cost (GPU hours)</th>
<th>CO$_2$e (marginal)</th>
<th>Cloud compute cost (marginal)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MobileNetV2 - 8bit</td>
<td>71.8</td>
<td>9.10</td>
<td>12.46</td>
<td>19.2</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>ProxylessNAS - 8bit</td>
<td>74.2</td>
<td>13.14</td>
<td>14.12</td>
<td>19.5</td>
<td>200N</td>
<td>56.72</td>
<td>$148 – $496</td>
</tr>
<tr>
<td>ProxylessNAS + AMC - 8bit</td>
<td>73.3</td>
<td>9.77</td>
<td>10.53</td>
<td>15.0</td>
<td>204N</td>
<td>57.85</td>
<td>$151 – $506</td>
</tr>
<tr>
<td>MobileNetV2 + HAQ</td>
<td>71.9</td>
<td>8.93</td>
<td>11.82</td>
<td>-</td>
<td>96N</td>
<td>27.23</td>
<td>$71 – $238</td>
</tr>
<tr>
<td>ProxylessNAS + AMC + HAQ</td>
<td>71.8</td>
<td>8.45</td>
<td>8.84</td>
<td>-</td>
<td>300N</td>
<td>85.08</td>
<td>$222 – $744</td>
</tr>
<tr>
<td>DNAS [38]</td>
<td>74.0</td>
<td>-</td>
<td>-</td>
<td>57.3</td>
<td>40N</td>
<td>11.34</td>
<td>$30 – $99</td>
</tr>
<tr>
<td>Single Path One-Shot [8]</td>
<td>74.6</td>
<td>-</td>
<td>-</td>
<td>51.9</td>
<td>288 + 24N</td>
<td>6.81</td>
<td>$18 – $60</td>
</tr>
<tr>
<td>Ours-A (w/o transfer)</td>
<td>72.1</td>
<td>8.85</td>
<td>11.79</td>
<td>13.2</td>
<td>2400 + 0.5N</td>
<td>0.14</td>
<td>$0.4 – $1.2</td>
</tr>
<tr>
<td>Ours-B (w/ transfer)</td>
<td>74.1</td>
<td>8.40</td>
<td>12.18</td>
<td>16.5</td>
<td>2400 + 0.5N</td>
<td>0.14</td>
<td>$0.4 – $1.2</td>
</tr>
<tr>
<td>Ours-C (w/ transfer)</td>
<td>75.1</td>
<td>12.17</td>
<td>14.14</td>
<td>23.6</td>
<td>2400 + 0.5N</td>
<td>0.14</td>
<td>$0.4 – $1.2</td>
</tr>
</tbody>
</table>

Figure 4. Comparison with mixed-precision models searched by HAQ [36] under latency/energy constraints. The baselines are 4-bit and 6-bit fixed precision, respectively. When the constraint is strict, our model can outperform fixed precision model by more than 10% accuracy, and 5% compared with HAQ. Such performance boost may benefit from the dynamic architecture search space rather than fixed one as MobileNetV2.

instead of relying on some indirect signals (e.g., BitOps), our optimization is directly based on the measured latency and energy on the target hardware.

Measuring Latency and Energy. Evaluating each candidate policy on actual hardware can be very costly. Thanks to the sequential structure of neural network, we can approximate the latency (or energy) of the model by summing up the latency (or energy) of each layer. We can first build a lookup table containing the latency and energy of each layer under different architecture configurations and bit-widths. Afterwards, for any candidate policy, we can break it down and query the lookup table to directly calculate the latency (or energy) at negligible cost. In practice, we find that such practice can precisely approximate the actual inference cost.

Resource-Constrained Evolution Search. We adopt the evolution-based architecture search [8] to explore the best resource-constrained model. Based on this, we further replace the evaluation process with our quantization-aware accuracy predictor to estimate the performance of each candidate directly. The cost for each candidate can then be reduced from N times of model inference to only one time of predictor inference (where N is the size of the validation set). Furthermore, we can verify the resource constraints by our latency/energy lookup table to avoid the direct interaction with the target hardware. Given a resource budget, we directly eliminate the candidates that exceed the constraints.

4. Implementation Details

Data Preparation for Quantization-aware Accuracy Predictor. We generate two kinds of data (2,500 for each): 1. random sample both architecture and quantization policy; 2. random sample architecture, and sample 10 quantization policies for each architecture configuration. We mix the data for training the quantization-aware accuracy predictor, and use full-precision pretrained predictor’s weights to transfer. The number of data to train a full precision predictor is 80,000. As such, our quantization accuracy predictor can have the ability to generalize among different
architecture/quantization policy pairs and learn the mutual relation between architecture and quantization policy.

Evolutionary Architecture Search. For evolutionary architecture search, we set the population size to be 100, and choose Top-25 candidates to produce the next generation (50 by mutation, 50 by crossover). Each population is a network architecture with quantization policy, using the same encoding as quantization-aware accuracy predictor. The mutation rate is 0.1 for each layer, which is the same as that in [8], and we randomly choose the new kernel size and channel number for mutation. For crossover, each layer is randomly choose from the layer configuration of its parents. We set max iterations to 500, and choose the best candidate among the final population.

Quantization. We follow the implementation in [36] to do quantization. Specifically, we quantize the weights and activations with the specific quantization policies. For each layer with weights w with quantization bit b, we linearly quantize it to $[-v, v]$, the quantized weight is:

$$w' = \max(0, \min(2v, \text{round}(2w \cdot \frac{2^v - 1}{2^b - 1}) \cdot v)) - v$$ (5)

We set choose different v for each layer that minimize the KL-divergence $D(w || w')$ between origin weights w and quantized weights w'. For activation weights, we quantize it to $[0, v]$ since the value is non-negative after ReLU6 layer.

5. Experiments

To verify the effectiveness of our methods, we conduct experiments that cover two of the most important constraints for on-device deployment: latency and energy consumption in comparison with some state-of-the-art models using neural architecture search. Besides, we compare BitOps with some multi-stage optimized models.

Dataset, Models and Hardware Platform. The experiments are conducted on ImageNet dataset. We compare the performance of our joint designed models with mixed-precision models searched by [36, 12, 5] and some SOTA fixed precision 8-bit models. The platform we used to measure the resource consumption for mixed-precision model is BitFusion [31], which is a state-of-the-art spatial ASIC design for neural network accelerator. It employs a 2D systolic array of Fusion Units which spatially sum the shifted partial products of two-bit elements from weights and activations.

5.1. Comparison with SOTA Efficient Models

Table 2 presents the results for different efficiency constraints. As one can see, our model can consistently outperform state-of-the-art models with either fixed or mixed-precision. Specifically, our small model (Ours-B) can have 2.2% accuracy boost than mixed-precision MobileNetV2 search by HAQ (from 71.9% to 74.1%); our large model (Ours-C) attains better accuracy (from 74.6% to 75.1%) while only requires half of BitOps. When applied with transfer technology, it does help for the model to get better performance (from 72.1% to 74.1%). It is also notable that the marginal cost for cloud computer and CO$_2$ emission is two orders of magnitudes smaller than other works.

5.2. Effectiveness of Joint Design

Comparison with MobileNetV2+HAQ. Figure 4 show the results on the BitFusion platform under different latency constraints and energy constraints. Our jointly designed models consistently outperform both mixed-precision and fixed precision SOTA models under certain constraints. It is notable when constraint is tight, our models have signif-
significant improvement compared with state-of-the-art mixed-precision models. Specifically, with similar efficiency constraints, we improve the ImageNet top1 accuracy from the MobileNetV2 baseline 61.4% to 71.9% (+10.5%) and 72.7% (+11.3%) for latency and energy constraints, respectively. Moreover, we show some models searched by our quantization-aware predictor without predictor-transfer technique. With this technique applied, the accuracy can consistently have an improvement, since the non-transferred predictor might loss some mutual information between architecture and quantization policy.

Comparison with Multi-Stage Optimized Model. Figure 5 compares the multi-stage optimization with our joint optimization results. As one can see, under the same latency/energy constraint, our model can attain better accuracy than the multi-stage optimized model (74.1% vs 71.8%). This is reasonable since the per-stage optimization might not find the global optimal model as joint design does.

Comparison under Limited BitOps. Figure 6 reports the results with limited BitOps budget. As one can see, under a tight BitOps constraint, our model improves over 2% accuracy (from 71.5% to 73.9%) compared with searched model using [8]. Moreover, our models achieve the same level accuracy (75.1%) as ResNet34 8-bit model while saving 8 × BitOps.

5.3. Effectiveness of Predictor-Transfer

Figure 7 shows the performance of our predictor-transfer technique compared with training from scratch. For each setting, we train the predictor to convergence and evaluate the pairwise accuracy (i.e., the proportion that predictor correctly identifies which is better between two randomly selected candidates from a held-out dataset), which is a measurement for the predictor’s performance. We use the same test set with 2000 (NN architecture, ImageNet accuracy) pairs that are generated by randomly choosing network architecture and quantization policy. Typically, for training with N data points, the number of two kinds of data as mentioned in Sec. 4 is equal, i.e., N/2. As shown, the transferred predictor have a higher and faster pairwise accuracy convergence. Also, when the data is very limited, our method can have more than 10% pairwise accuracy over scratch training.

6. Conclusion

We propose APQ, a joint design method for architecting mixed-precision model. Unlike former works that decouple into separated stages, we directly search for the optimal mixed-precision architecture without multi-stage optimization. We use predictor-base method that can have no extra evaluation for target dataset, which greatly saves GPU hours for searching under an upcoming scenario, thus reducing marginally CO$_2$ emission and cloud compute cost. To tackle the problem for high expense of data collection, we propose predictor-transfer technique to make up for the limitation of data. Comparisons with state-of-the-art models show the necessity of joint optimization and prosperity of our joint design method.

Acknowledgments

We thank NSF Career Award #1943349, MIT-IBM Watson AI Lab, Samsung, SONY, AWS Machine Learning Research Award for supporting this research.
References

