
Active Vision for Early Recognition of Human Actions

Boyu Wang1, Lihan Huang1, Minh Hoai1,2

1Stony Brook University, 2VinAI Research

{boywang, lihahuang, minhhoai}@cs.stonybrook.edu

Abstract

We propose a method for early recognition of human

actions, one that can take advantages of multiple cameras

while satisfying the constraints due to limited communica-

tion bandwidth and processing power. Our method consid-

ers multiple cameras, and at each time step, it will decide

the best camera to use so that a confident recognition deci-

sion can be reached as soon as possible. We formulate the

camera selection problem as a sequential decision process,

and learn a view selection policy based on reinforcement

learning. We also develop a novel recurrent neural network

architecture to account for the unobserved video frames and

the irregular intervals between the observed frames. Ex-

periments on three datasets demonstrate the effectiveness

of our approach for early recognition of human actions.

1. Introduction

We propose a method for early recognition of human ac-

tions using multiple video cameras. Early recognition aims

to recognize an action as soon as possible. This task arises

in many situations, and the ability to make early and re-

liable decisions will enable a wide range of applications,

from robotics to surveillance and health care.

Early recognition is an emerging research area, and sev-

eral methods have been proposed in the last few years [1,

3, 6, 10, 13, 14, 16, 17, 21, 24, 30, 41, 42, 49–51, 53, 57].

However, existing methods only consider scenarios where

temporal events can be wholly observed by a single camera

at a fixed viewpoint. Unfortunately, human actions usually

spread out in time and space, and a single camera with a

fixed viewpoint cannot fully capture the progression of ac-

tion due to limited view and coverage of the camera.

The limitations of a single camera can be overcome by

using multiple cameras. Compared to systems with a sin-

gle camera, the advantages of having multiple cameras are

obvious: wider coverage and multiple perspectives. Unfor-

tunately, these obvious benefits of multiple cameras might

be difficult to realize in practice due to the lack of a method

that can handle the constraints of the physical infrastruc-

TV

Sofa Table

Camera view

1
2

4 3

Scene and camera locations

1

2

3

4

Figure 1: Early recognition of human actions with mul-

tiple cameras. Camera 1 is frontal but occluded by a sofa

and a coffee table. Camera 2 shows a top-down view from

far away. Camera 3 does not observe the action. Camera

4 only sees from the side. Due to the limited network and

processing bandwidths, only one camera can be analyzed at

a time. Which camera should be used at each time step, if

no camera is always superior to the others?

ture. Multiple cameras will require more communication

bandwidth and processing power. In many situations, com-

munication bandwidth and processing power cannot be in-

creased, putting an upper limit on the processing through-

put. Although many cameras can be installed and the cam-

eras might have high frame rates, not all the frames cap-

tured by the cameras can be transmitted and analyzed. Thus,

temporal downsampling, i.e., frame dropping, is unavoid-

able. A simple approach is to apply the same downsam-

pling factor to all cameras to satisfy the overall throughput

limit. However, this uniform resource allocation strategy

is unlikely to be optimal because some cameras might pro-

vide more information about the ongoing human action than

other cameras, as illustrated in Fig. 1.

If processing power is not constrained and if limited

communication bandwidth is the only issue that we need

to address, one may wonder if we can use low-resolution

image or high compression factor instead. However, spa-

tial downsampling and compression can reduce the accu-

racy of the system especially when the camera is far away

from the scene of human action. Furthermore, to save com-

11081



munication bandwidth, compression must be done prior to

transmission using extra hardware equipment. This might

be bulky, expensive, and not applicable to all cameras.

In this paper, we consider a scenario where there are k
cameras, each with the maximum frame rate of l frames

per second. However, the total processing throughput of

the entire system is limited to l frames per second. Thus,

the duration between two time steps is 1/l second; and at

each time step, only one frame from a camera can be ana-

lyzed. Considering the importance of this scenario, we pro-

pose a framework for camera selection and early recogni-

tion of human actions. Our framework is developed based

on reinforcement learning, treating camera selection as the

decision of an artificial agent that is interested in maximiz-

ing its ability to recognize human actions as early as possi-

ble. The agent maintains a belief state based on the history

of its observations from multiple cameras. We use a set of

Recurrent Neural Networks (RNNs) [40] to model the be-

lief state of the agent, from which the policy of the agent is

parameterized and learned.

Reinforcement learning is a well-established framework

for sequential decision making. But this framework is very

general with numerous design choices, and defining the

right state space or choosing the right reward function is not

trivial. Our first contribution is a well-developed solution

for camera selection and early recognition. We explicitly

address the need for integrating observations over time for

early recognition of human actions. We use recurrent net-

works for modeling the dynamics of human actions, but our

situation requires a network architecture that is robust to the

variable frame rate of an input video sequence (due to unob-

served video frames). To this end, the second contribution

of our work is the development of a novel recurrent network

architecture that can estimate the missing values based on

the last observed values and the elapsed time from the last

observation. Another contribution is the approach for in-

tegrating information from multiple cameras for view selec-

tion and action recognition. Our framework and its compo-

nents have been empirically validated on three multi-view

or multi-modality datasets. The experiments show that the

proposed recurrent network can robustly account for unob-

served frames, and the learned policy for camera selection

improves the early recognition ability of the camera system.

2. Related Work

Using multiple views for human action and activity

recognition has been studied before [5, 18, 19, 33, 35, 45,

48, 54, 56]. These studies can be divided into two broad

categories: explicitly building 3D models [48, 54] and in-

tegrating different 2D views. However, most prior studies

were for offline recognition, and they assumed the cameras

could be simultaneously used. They neither considered the

early recognition problem nor addressed the need for cam-

era selection. View-invariant features have been proposed

in [2, 25, 44] for cross-view action recognition. But hav-

ing a view-invariant representation is insufficient. Due to

factors such as distance and occlusion, some views provide

little information, and it is important not to select bad views.

Active sensing is an important research area in robotics.

However, most works in robotics are for search-and-rescue

or static object recognition, e.g., [4, 12, 27, 37, 59], and they

are not applicable to early recognition of human actions.

Most similar to our work are the view selection meth-

ods [11, 46, 47]. Spurlock et al. [47] used a keyframe

classifier for view selection, while Darrell and Pentland

[11], Spurlock and Souvenir [46] also used reinforcement

learning. However, these methods considered simpler types

of human actions, where the classifier and the view se-

lection policy can be defined based on individual frames.

These methods are unsuitable for complex human actions,

where the dynamics of the actions cannot be recognized

accurately without integrating multiple observations over

time. Empirically, these methods do not work well for com-

plex human actions, as will be seen in Sec. 5. In this paper,

we explicitly address the need for integrating observations

over time for early decision making. This, in turn, requires

a novel RNN architecture that can handle missing frames.

This RNN architecture is a technical novelty by itself, and

the whole framework is significantly different from the ex-

isting view selection methods.

Another related work is by Possas et al. [34] for hu-

man activity recognition. Their setting, however, is different

from ours. In their setting, an ego-centric camera and a mo-

tion sensor can both record data about human activity. The

data from the motion sensor is always analyzed, while the

data from the camera might not be analyzed due to the need

to reserve power. Possas et al. [34] learn a power-efficient

policy to confidently recognize what already happened in-

stead of what is happening.

Our work should not be confused with camera selection

in TV broadcast [9, 38], where the selection policy sees

all views before making the selection (no communication

bandwidth problem). Meanwhile, we need to select a view

without seeing the content of the views. Furthermore, the

view selection policy for TV broadcast [9, 38] is mainly

based on the visibility and changes of the human silhouette;

it is not designed for action recognition.

3. Overview of Proposed Framework

Our framework for camera selection and early recogni-

tion is based on reinforcement learning. The core of the

framework is an artificial agent that represents the system

of multiple cameras. Camera selection is a sequential de-

cision process of the agent, where the goal is to maximize

the accuracy and minimize the latency in recognizing hu-

man actions. At each time step, the agent acquires an image

1082



from one camera, analyzes the images, predicts the prob-

abilities of the action classes. The goal of the agent is to

maximize its sum of rewards, where the rewards depend on

how accurate and early human actions can be detected and

recognized.

Belief state. The belief state will integrate information from

multiple sequences of images from multiple cameras. We

will model the belief state based on RNNs [40] (including

LSTMs [15] and IndRNNs [29]), but we extend them to

account for missing observations and variable frame rates.

How the belief state is modeled and the novelty of our ar-

chitecture will be described in the next section.

Action and policy. At each time step, the agent will: 1)

predict the class of the ongoing action, and 2) select a cam-

era to acquire an image and analyze the scene. We will learn

a probabilistic policy for both action recognition and view

selection. For action recognition, the output at time t is the

probability vector pt for the action classes. For view se-

lection, the output at time t is the probability vector πt for

camera selection: the ith camera will be selected with the

probability πt(i).

Reward. The reward is calculated based on the agreement

between the recognition output and what action is occur-

ring. Suppose there are m action classes. The recognition

output of the agent at time t is an m×1 probability vec-

tor pt where pt(c) is the estimated probability for class

c occurring at time t. Let gt ∈ {0, 1}m be the ground

truth binary indicator vector for what action classes occur

at time t; gt(c) = 1 if class c is occurring and 0 other-

wise. We will consider the reward function that is the sum

of log likelihood: rt =
∑m

c=1
gt(c) logpt(c). The goal

of the agent is to maximize the average running reward:

limT→∞

1

T

∑T

t=1
rt. By maximizing the average running

reward, the agent will maximize the agreement between the

predicted probabilities and the ground truth category vector

at multiple time steps, leading to early recognition ability.

4. Belief state modeling and policy learning

Modeling the belief state and learning the policy are two

most crucial steps for the success of the proposed method.

The belief state must encode relevant information, and the

policy must be appropriately parameterized for two tasks:

1) early recognition of human actions; and 2) camera se-

lection. Unlike previous view selection methods [11, 46]

that define the belief state based on individual frames, ours

can integrate observations overtime to capture the dynam-

ics of human actions. Our work is based on the recurrent

network architecture [40], including LSTM [15] and In-

dRNN [29], and we will commonly refer to them as as

RNNs for brevity. We introduce novel extensions to RNNs

for handling missing observations and integrating informa-

tion from multiple cameras. We use RNNs instead of other

X1

1

X2

3

View 1

View 2

View 3

mfRNNmfRNN

mfRNN mfRNN

mfRNN mfRNN

View 
Integration

mfRNN

mfRNN

mfRNN

X3

2

View 
Selection

reward GT action

ptπt

Figure 2: Overview of our system with three main mod-

ules: mfRNN, view integration, and view selection. xi
t rep-

resents the input from view j at time t. A solid box means

the view is selected while a dash box is not. View integra-

tion and selection are performed at every step. This figure

shows one step only. See Sec. 4 for more details.

action classification methods, e.g., non-local network [52]

due to the requirement of early recognition, i.e., to output

the action probability at every time step without looking

into the future.

We will model the belief state with multiple RNNs, one

for each camera. Each RNN is a recurrent network that inte-

grates observations over time, and it outputs the probability

vector for the action classes in consideration. Each RNN

analyzes its data stream independently of other RNNs, and

each has its own ability to deal with unobserved frames.

The combined recognition output is the weighted average

of the outputs of the individual RNNs, where the weights

are learned. For camera selection, we learn a policy that

makes decision based on the concatenated hidden state vec-

tors of the RNNs. Fig. 2 provides an overview of the system.

We will describe below how to handle unobserved video

frames, how to integrate recognition outputs from multiple

RNNs, and how to learn the policy for camera selection.

4.1. Analyzing observations from a single camera

For each camera, we will train and use an RNN to inte-

grate the observed video frames from the camera to obtain

the predicted probability vector for multiple action classes.

Using RNNs for integrating a sequence of observations is a

powerful and popular approach for recognition, but most

existing works often analyze and process observations at

a regular interval, assuming the video frames are always

observed. In our case, not all video frames can be ob-

served and analyzed at the same time, due to limited system

throughput. In this section, we briefly review RNN and then

propose a novel extension to address missing observations.

RNN and its limitation. An RNN (including LSTM and

IndRNN) is a recurrent network that integrates observations

sequentially. Consider a camera, and let x1,x2, · · · ,xt be

1083



the sequence of image frames (or their feature representa-

tions) that are supposedly observed by the camera. At time

t, the RNN analyzes an input xt, updates its internal state

ht, and computes the output pt. Here pt is the predicted

probabilities for the action classes in consideration. The re-

current updates are:

ht = updateState(ht−1,xt);pt = computeOutput(ht).

Both updateState and computeOutput are parametric

functions with learnable parameters. These functions have

specific forms, such as the ones proposed in [15, 29, 40].

What is important to note here is that the RNN expects the

input xt at every step. Without the input, the state vector

cannot be updated and the output cannot be produced. One

can possibly skip the update procedure until the next obser-

vation, but this approach performs poorly in practice.

RNN for Missing Frames (mfRNN). We now describe an

RNN extension that can account for missing video frames.

Consider a camera, and let xt be the video frame that is

supposedly observed by the camera at time t, but the actual

xt might or might not be observed. If xt is not observed,

let t′ < t be the last time step where the video frame xt′

is observed. Let ∆t be the elapsed time from the last ob-

servation: ∆t = t − t′. For an unobserved frame xt, we

estimate the missing values based on the last observation

and the elapsed duration ∆t:

x̂t = wt ⊙ xt′ + (1−wt)⊙ xnull, (1)

wt = exp(−max(0,∆tu+ v)). (2)

We assume two nearby video frames are similar and the

level of similarity depends on the time difference between

the two frames. In the above, the symbol ⊙ denotes the

element-wise product between two vectors. The missing

values are estimated based on the last observed values, tak-

ing into account the elapsed time from the last observation.

We parameterize x̂t as a weighted linear combination of xt′

and a default observation vector xnull. The linear combi-

nation is controlled by the weight vector wt, which is a

function of the elapsed time ∆t. The entries of wt are de-

cay functions of time; they are approximately one if the last

observation is recent, and close to zero if the last observa-

tion is a distant past. The parameters of the decay functions

are u,v, and the default vector for filling missing values is

xnull; all these vectors have the same dimensionality as xt.

The learnable parameters of an mfRNN are u,v, xnull,

and the normal parameters of an RNN. At time t, the input

to the mfRNN is either xt or x̂t, depending on whether the

frame at time t is observed or not. The output of the mfRNN

is the class probability vector pt of m dimensions, where m
is the number of action classes. To learn the parameters of

mfRNN, we minimize the negative log probability of the

correct class at each time step t: lt = − logpt(c), where c

is the ground truth action class, and pt(c) is the predicted

probability for this class. The loss for a particular training

sequence is the sum of the losses at all time steps:
∑

t lt. By

optimizing the total loss over multiple time steps, we force

the mfRNN to make a correct prediction for partial actions,

enabling early recognition ability. This loss function is con-

sistent with the reward function defined in Sec. 3.

We can learn the parameters of an mfRNN for each cam-

era using multiple training video sequences from the cam-

era. From each video sequence, we can generate multi-

ple training video sequences by randomly dropping some

frames. This yields an augmented set of training data,

proactively preparing the mfRNN for missing observations

and also increasing its generalization ability for no missing

observation cases.

The extension we proposed here is not specific to any

recurrent network architecture. In our experiments, we ex-

periment with both LSTMs [15] and IndRNNs [29], which

are recurrent network architectures that achieved state-of-

the-art performance on many sequence modeling tasks. For

brevity, we will refer to all recurrent networks with the ex-

tension to handle missing frame estimation as mfRNNs.

When it is necessary to specify the underlying architecture,

we will refer to them as either mfLSTM or mfIndRNN.

4.2. Integrating information from multiple cameras

To integrate information from multiple cameras, we

compute a weighted average of the mfRNNs’ outputs. Re-

call from the previous subsection that there is one mfRNN

for each camera, and the output of each mfRNN is a vector

of class probabilities. Let pi
t be the output at time t of the

mfRNN for the ith camera. We propose to aggregate multi-

ple outputs by computing their weighted average, where the

weights are determined based on the elapsed times from the

last observations. The intuition is that for a certain view,

if the elapsed time from last observation is large, the out-

put of the corresponding mfRNN is unreliable, so it should

contribute less to the consolidated output. Let ∆i
t denote

the elapsed time from the last observation for the ith cam-

era. We combine the outputs of the mfRNNs as follows:

pt =
∑k

i=1
ωi(∆1

t , · · · ,∆
k
t )p

i
t. Here ωi(∆1

t , · · · ,∆
k
t ) is

the weight for the ith view; and it is a function of the elapsed

times ∆1

t , · · · ,∆
k
t . The set of weight functions can be seen

as a network with k inputs and k outputs, mapping from the

elapsed times ∆1

t , · · · ,∆
k
t to the contribution weights. In

this work, we use a simple network with two linear layers, a

Leaky ReLU of 0.2 as the activation layer, and one soft-max

layer. The parameters of this network are learned during the

training phase.

4.3. Learning the view selection policy

To decide which camera to analyze at every step, a pol-

icy needs to be learned for camera selection based on the

1084



history of previous observations. The input to the pol-

icy needs to contain information about what has been ob-

served and what has been selected for observation. We

therefore parameterize the policy function so that the in-

put to the function has two parts: 1) the hidden states

of mfRNNs, 2) the elapsed times from the last observa-

tions. Formally, the input of the policy function is: st =
[h1

t , · · · ,h
k
t ,∆

1

t , · · · ,∆
k
t ], where hi

t is the hidden state of

the ith mfRNN and ∆i
t is the elapsed time from the last

observation for the ith camera. This input vector st is es-

sentially the belief state of the reinforcement learning agent

for the view selection policy. We parameterize the policy

function as a multi-layer perceptron that takes st as input

and outputs the selection probability for each camera.

Let π denote this multi-layer perceptron policy function

and θ the parameters of the policy. Let π(a|st,θ) be an out-

put of the policy function, specifying the probability for se-

lecting camera a. We use the advantage actor-critic [23, 31]

(A2C) to learn the parameters θ. Each training instance

is a set of video sequences from all cameras. Following

the current policy π(·|·,θ) on the training instance, we ob-

tain a training episode of belief states, actions, and rewards:

s1, a1, r1, s2, a2, r2, · · · . For each step t of the episode

t = 0, 1, · · · , the return Gt for time t is computed as a

discounted sum of future rewards: Gt =
∑T

j=t γ
j−trj ,

where γ the discounted factor. We then update the pa-

rameters of the policy function using the formula: θ :=
θ + αGt∇θ log π(at|st,θ).

5. Experiments

5.1. Datasets and implementation details

We perform experiments on three multi-view or multi-

modality datasets: NTU RGB-D dataset [43], IXMAS

dataset [54], and nvGesture dataset [32].

NTU RGB-D dataset is the largest multi-view dataset for

action recognition. This dataset is collected by three Mi-

crosoft Kinects, capturing human actions from different

views simultaneously. The dataset contains 60 different ac-

tion classes: 40 daily actions, 9 health-related actions, and

11 mutual actions of two people. There are 40 distinct sub-

jects. We used cross-subject evaluation as in [43], i.e., 20

subjects for training and 20 other subjects for testing. We

excluded a small portion of data that does not have three

views. In total, there are 39,984 training and 16,395 testing

sequences from all three views.

The dataset contains RGB images and skeleton informa-

tion, but we only use the skeleton information in our ex-

periments. Following [39], we use the distance matrix be-

tween skeleton joints to represent a skeleton. At time t, the

original skeleton information is a vector of the 3D locations

of 25 body joints, and we replace it with the pairwise dis-

tance matrix between the body joints. The distance matrix

is symmetric, so only the upper triangular matrix is kept,

vectorized, and used as the feature representation for a hu-

man performer. For a video frame and an action class with

two performers, we concatenate the representation vectors

of the two performers. For a video frame with only one per-

former, the feature representation vector of the performer is

duplicated. The length of the feature vectors is 600.

IXMAS dataset contains 11 action classes and 10 actors.

Each action was performed three times by each actor. The

actions were recorded by four side-view cameras and one

top-view camera. This dataset only contains RGB frames.

We used the pre-trained I3D model [7] to densely extract

features for each frame.

nvGesture dataset contains 25 different gesture classes, in-

tended for human-computer interaction. A total of 20 sub-

jects participated in data collection. The data was captured

using two different cameras: one SoftKinetic depth cam-

era recording depth and RGB frames in the front and an-

other top-mounted DUO 3D camera capturing stereo IR.

In addition, optical flow can be computed from the color

stream and IR disparity map can be computed from IR-

stereo pair, resulting in five different modalities. For each

modality, there are 1,050 training and 482 test videos. As

shown in [32], among all five modalities, the IR disparity

performs worst and barely provides any benefit. In our ex-

periments, we excluded the IR disparity modality. For this

dataset, all sequences in the same modality have same tem-

poral length. We uniformly split each sequence into 20 seg-

ments and used pre-trained I3D model to extract features

for each segments. The I3D model was trained on three-

channel RGB images and one-channel flow images. To ap-

ply them to one-channel depth or IR images, we inflated

the one-channel images into three-channel images and fine-

tuned the I3D model on these modalities. This is a weakly-

labeled dataset, and some parts of the videos do not contain

gestures. We therefore discarded the first three and last three

segments. We only used the center segments, within which

most gestures occur.

Overlapping views. Although NTU and IXMAS datasets

contain certain overlapping camera views, they are still

valid to compare different view selection policies, as also

adopted by others [38, 46, 47]. Despite overlapping views,

camera perspectives are drastically different and some

views are more informative than others.

Implementation details. The mfRNNs for different cam-

eras are trained separately. For the NTU dataset, we adopted

IndRNN [29], which is an RNN architecture that achieved

state-of-the-art performance on this dataset (for recognition,

not early recognition). We used the same network architec-

ture: 6-layer IndRNN with the hidden layer of 512 units

and the dropout rate of 0.25. Note that our results are not

directly comparable to [20, 28, 29, 39, 60] due to: 1) we

1085



View 1 View 2 View 3

Test Scenario 1

IndRNN 63.84 59.83 56.34

IndRNN + data augmentation 65.62 61.08 58.66

IndRNN + input interpolation 66.03 62.33 59.75

mfIndRNN (proposed) 70.53 65.38 60.99

Test Scenario 2

IndRNN 73.27 69.49 64.61

IndRNN + data augmentation 68.72 65.61 60.82

IndRNN + input interpolation 68.86 65.25 62.09

mfIndRNN (proposed) 75.40 71.04 66.02

Table 1: Handling missing frames. This shows the classi-

fication accuracies of several methods for two different test

scenarios. The proposed mfIndRNN achieves the best per-

formance on two test scenarios.

trained an mfIndRNN on each view separately, while these

methods trained on all three views at once; and 2) some

methods [20, 28, 39, 60] use CNN for sequence classifica-

tion which requires seeing the full video and therefore is not

applicable for early recognition. For the IXMAS dataset,

we used one-layer LSTM with the hidden state size of 100
and the dropout rate of 0.5. For the nvGesture dataset, we

used one-layer LSTM with the hidden state size of 512 and

the dropout of 0.25.

Both actor and critic networks for view selection pol-

icy were two-layer perceptrons (hidden size of 512 and

128) and with Leaky ReLU of 0.2 as activation function.

The discounted reward factor γ was 0.9. All the mod-

els were trained with Adam optimizer [22] with an initial

learning rate of 10−4, which was decreased by a factor

of 10 when training performance plateaued. Training was

stopped when the learning rate was smaller than 10−8.

5.2. Handling missing frames

One contribution of this paper is the development of

mfRNNs, novel recurrent network architectures for han-

dling missing observations. In this section, we analyze the

ability of mfRNNs and competing approaches for handling

unobserved video frames. We analyze each camera sepa-

rately, without camera selection and integration.

Methods for comparison. Our approach for handling miss-

ing frames has two notable steps: 1) train an RNN classifier

with augmented data by random frame dropping; 2) extend

the normal RNN architecture to include the null and time-

decay parameters for filling the missing values. We consider

three alternative methods for comparison: 1) use a normal

RNN classifier without any modification and without using

augmented training data. 2) perform data augmentation, but

use a normal RNN classifier. 3) use a RNN classifier, while

perform data augmentation by random frames dropping and

Integration method TestScenario 1 TestScenario 2

Uniform weights 75.35 79.76

Learned weights (proposed) 76.66 81.28

Table 2: Comparison of two integration methods. The

first method is based on uniform averaging, and the second

is based on weighted averaging with learned weights.

use linear interpolation to fill the missing values (we assume

future frames is available for interpolation, this is not true

in practice). There are works [8, 26, 36, 58] that fill missing

observations by either interpolation or imputation. Interpo-

lation uses the temporal relation within the data steam to fill

the missing value. However, this usually requires knowing

the frames before and after the missing frame, but the frame

after the current time is unavailable for online setting. Im-

putation usually results in a two-step process and missing

patterns are not effectively explored [55].

Test scenarios. We measure the classification performance

of these methods for two test scenarios. In Test Scenario 1,

the test sequences have variable frame rates due to the ran-

dom frame dropping; the dropping rate ranges from 20% to

70%. In Test Scenario 2, the test sequences are the original

test sequences; every frame is observed.

Results. Tab. 1 shows the experiment results for Test Sce-

nario 1 on the NTU dataset. The actual RNN architec-

ture used in this experiment is IndRNN [29], so the result-

ing network for handling missing frames is called mfInd-

RNN. Tab. 1 reports the action classification accuracy of

four methods on three camera views separately. The re-

ported numbers are averaged over 5 experiment runs. The

proposed mfIndRNN achieves the best performance. Us-

ing augmented training data or input interpolation also im-

proves the performance of IndRNN. This is expected, as

the classifier is trained to anticipate missing video frames,

and this scenario does occur during testing. However, the

augmented training data may hurt the performance of an

IndRNN classifier, as can be seen in Tab. 1, which shows

the classification performance on the test sequences with-

out missing frames. This is due to having the wrong type

of augmented data: the test data has no missing frames,

while the generated training data is severely different. On

the other hand, the proposed mfIndRNN with learnable de-

cay parameters has the right architecture to take advantages

of the augmented training data, regardless of test scenarios.

5.3. Integrating information from multiple cameras

To integrate the outputs of multiple mfRNNs, we per-

form the following training process. Each training instance

is a set of sequences from all camera views. We randomly

select a view at every time step. At every time step, each

mfRNN will output a probability vector. As described in

Sec. 4.2, we learn a weighted combination of these outputs.

1086



Policy/Method acc@40 acc@100 acc

Use All Views 59.90 81.28 61.77

Use View-invariant Features [39] 44.74 70.38 50.17

Use Keyframe Classifier [47] 16.22 43.57 26.01

Frame-based Q-Learning [46] 27.23 53.71 35.47

Always Select View 1 52.80 74.18 54.94

Always Select View 2 47.71 68.92 50.52

Always Select View 3 41.52 62.01 45.24

Select Random View 49.86 76.66 54.81

Cycle Thru All Views 51.69 78.02 56.31

The learned policy (proposed) 54.55 79.62 58.01

Table 3: Comparison of different view selection policies

on the NTU dataset. This experiment assumes only one

view can be analyzed at a time. acc@R is the classification

accuracy when only R% of the action has occurred. acc is

the average accuracy taken over all observation ratios.

During training, the parameters of the weight computation

function are learned, and the parameters of the mfRNNs are

finetuned.

We compare the proposed view combination method

with a baseline where the outputs of multiple mfRNNs are

averaged. Tab. 2 shows the performance of these methods

under two test scenarios on the NTU dataset. In Test Sce-

nario 1, only one view is available at a time, while in Test

Scenario 2, all views are available at every step. In both

cases, the proposed method outperforms the uniform pool-

ing approach.

5.4. Evaluating the learned policy for view selection

Evaluation metrics. We consider three evaluation met-

rics: 1) recognition accuracy when only the first 40% of the

action has observed (denoted as acc@40), 2) recognition

accuracy when the full action has been observed (denoted

as acc@100), and 3) the average early recognition perfor-

mance (noted as acc). The third metric is based on the aver-

age accuracy over different observational ratios. The obser-

vational ratio is the proportion of an action that has been

observed when the recognition decision is made.

Comparison with direct baseline methods. We compare

the learned policy with some baseline methods: i) keep us-

ing the same view; ii) select a random view at every step;

and iii) select views in a cycle, such as 1, 2, 3, 1, 2, 3,

etc. Experimental results are shown in Tab. 3, and there

are some notable messages1. First, consider the top five

policies shown in the table. Always Select View 1 is bet-

ter than the policies that keeps selecting either View 2 or

View 3. This is understandable because View 1 is the frontal

view. Always Select View 1 is better than the Select Ran-

dom View and Cycle Thru All Views when the observation

1See the supplementary material for the entire performance curves.

ratio is 40% (acc@40), but not when the observation ratio

is 100% (acc@100). This suggests that View 1 is much

more informative than the other views at the beginning of

the action, and it is important to observe and analyze more

video frames from View 1. However, the additional infor-

mation provided by View 1 will diminish as the observation

ratio increases. Toward the end of the action sequence, it is

better to observe the action from multiple cameras for bet-

ter recognition accuracy. The reinforcement learning policy

automatically learns which view to select at each time step,

and it outperforms all other direct baseline policies.

Comparison with other view-invariant and view-

selection methods. We also implemented three other meth-

ods for comparison, and the results are shown in Tab. 3.

1) Use View-Invariant Features: we use the vectorized dis-

tance matrix as feature representation, and it is a view-

invariant feature representation for skeleton data, as de-

scribed in Sec. 5.1. Since the features are view invariant,

we can use a single RNN for all views. Specifically, an

IndRNN is trained with sequences which are generated by

randomly selecting one view at each time step. However,

only using view-invariant features is not enough, as can be

seen in Tab. 3. Due to occlusion and other factors, one view

might still be better than other views even though we use

view-invariant features. 2) Use Keyframe Classifier for view

selection [47]. This method first uses iterative clustering to

learn a set of keyframes that are discriminative for recog-

nition. It then uses supervised learning to learn to select

the discriminative frames at each time step. 3) Use frame-

based Q-learning for view selection [46]. However, this

method, and also the second method, only considers the cur-

rent frame for choosing the next view. The performance of

these two methods are relative poor, possibly due to the lack

of a recurrent network to integrate information from multi-

ple observations. As can be seen from Tab. 3, the learned

view selection policy outperforms other methods by a wide

margin. This policy has the average early recognition accu-

racy acc of 58.01%. This is not too far below 61.77%, which

is the average early recognition accuracy of the method that

analyzes all views from all cameras at each time step. This

unfair comparison is reported here for reference only.

Selection behavior of the learned policy. Due to space

limit, the selection behavior of the learned policy at test time

is shown in supplementary materials. This policy does not

stick to any particular view, and it does not cycle through

the views in any order. But the learned policy outperforms

the random policy in our experiments, so it must take into

account what is occurring and what has been observed to

make the decisions. On average, less informative views are

selected less frequently than other views. The selection fre-

quency for View 1, 2, and 3 of the NTU dataset are 40.3%,

38.9%, and 20.9%, respectively.

1087



Policy/Method acc@40 acc@100 acc

Always Select View 1 18.85 30.80 22.22

Always Select View 2 46.49 67.25 49.45

Always Select View 3 41.17 59.96 43.87

Select Random View 40.55 68.34 47.17

Cycle Thru All Views 40.02 71.32 48.85

The learned policy (proposed) 49.88 73.74 53.30

Table 4: Performance of view selection policies when

View 1 suffers from severe occlusions.

0.2 0.4 0.6 0.8 1

Observation Ratio

0

10

20

30

40

50

60

70

R
e

c
o

g
n

it
io

n
 A

c
c
u

ra
c
y

Select a random view: 47.17

Cycle through the views: 48.85

Use the learned policy: 53.23

Figure 3: Early recognition performance on the NTU

dataset when View 1 suffers from severe occlusions. This

shows the recognition accuracy against the observational ra-

tio, which is the proportion of an action that has been ob-

served when the recognition decision is made.

Effect of severe occlusion. We further study the perfor-

mance of the learned policy in the presence of severe occlu-

sions. Assuming View 1 is blocked by a table, and only the

upper body of a person is visible, we set the values of the

leg joints in View 1 to 0. Tab. 4 shows the performance of

different view selection policies under this condition. The

learned policy learns to avoid View 1, and it outperforms

other view selection policies by a wide margin. The over-

all selection frequency for Views 1, 2, 3 are 0.1%, 56.0%,

43.9% respectively. Fig. 3 shows the entire performance

curves of the last three policies on the NTU dataset, plotting

the recognition accuracy as a function of the observational

ratio. To reduce clutter, we only plot the top performing

policies in this figure.

Results on the IXMAS dataset. Tab. 5 shows the perfor-

mance of different view selection policies on the IXMAS

dataset. Following [46], we compute and report the leave-

one-actor-out cross validation performance of the methods.

The shown results for [38, 46, 47] are copied from the orig-

inal papers. As can be seen, the learned policy achieves the

best performance in all three metrics.

Method acc@40 acc@100 acc

Use All Views 98.79 99.39 97.52

Select Random View 95.94 97.15 92.21

Cycle Thru All Views 96.06 97.57 93.09

Use Keyframe Classifier [47] n/a 84.0 n/a

Visibility-based Selection[38] n/a 89.0 n/a

Frame-based Q-Learning [46] 85 94.24 83

The learned policy (proposed) 97.64 97.87 94.32

Table 5: Performance on IXMAS dataset.

Method acc@40 acc@100 acc

Use All 4 Modalities (our impl.) 65.35 82.37 68.20

Use All 4 Modalities (in [32]) n/a 83.4 n/a

Select Random Modality 58.22 78.59 62.29

Cycle Thru All Modalities 58.09 81.95 64.00

The learned policy (proposed) 61.82 82.36 65.37

Table 6: Performance on nvGesture dataset. The first

two methods are shown for reference only; they use all four

modalities at each time step, so they have unfair advantages

over other methods.

Results on the nvGesture dataset. Tab. 6 shows the

performance of view selection policies on the nvGesture

dataset. The learned policy outperforms other view selec-

tion policies and that can only analyze one view at each time

step. For acc@100, the learned policy performs as well as

the method that uses all four modalities, even though the

learned policy only uses one modality at a time. Note that

the additional post-processing step used in [32] is not appli-

cable to early recognition (due to the need for all frames).

This explains the 1% accuracy gap between our implemen-

tation and [32] when using all four modalities.

6. Conclusions

In this paper, we study the problem of early recognition

using multiple cameras. Our objective is to recognize hu-

man actions as early as possible under the constraint that

only one camera can be accessed and analyzed at a time. We

formulate this problem as a sequential decision process and

develop our method based on reinforcement learning. Using

reinforcement learning, we optimize a policy for selecting

the best camera to use at each step and to integrate infor-

mation from multiple cameras. We also propose mfRNN,

a novel recurrent neural network architecture that can deal

with unobserved video frames, improving the overall per-

formance of our method in recognizing human actions.

Acknowledgement. This project is partially supported by

Brookhaven National Lab, the US National Science Foun-

dation Award IIS-1763981, and VinAI Research.

1088



References

[1] Yazan Abu Farha, Alexander Richard, and Juergen Gall.

When will you do what?-anticipating temporal occurrences

of activities. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, 2018. 1

[2] Saad Ali and Mubarak Shah. Human action recognition in

videos using kinematic features and multiple instance learn-

ing. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 32(2):288–303, 2010. 2

[3] Mohammad Sadegh Aliakbarian, Fatemeh Sadat Saleh,

Mathieu Salzmann, Basura Fernando, Lars Petersson, and

Lars Andersson. Encouraging lstms to anticipate actions

very early. In Proceedings of the International Conference

on Computer Vision, 2017. 1

[4] Nikolay Atanasov, Bharath Sankaran, Jerome Le Ny,

Thomas Koletschka, George J Pappas, and Kostas Daniilidis.

Hypothesis testing framework for active object detection. In

Proceedings of the IEEE Conference Robotics and Automa-

tion. IEEE, 2013. 2

[5] Zhuowei Cai, Limin Wang, Xiaojiang Peng, and Yu Qiao.

Multi-view super vector for action recognition. In Proceed-

ings of the IEEE Conference on Computer Vision and Pattern

Recognition, 2014. 2

[6] Yu Cao, Daniel Barrett, Andrei Barbu, Siddharth

Narayanaswamy, Haonan Yu, Aaron Michaux, Yuewei

Lin, Sven Dickinson, Jeffrey Mark Siskind, and Song Wang.

Recognize human activities from partially observed videos.

In Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, 2013. 1

[7] Joao Carreira and Andrew Zisserman. Quo vadis, action

recognition? a new model and the kinetics dataset. In Pro-

ceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, 2017. 5

[8] Zhengping Che, Sanjay Purushotham, Kyunghyun Cho,

David Sontag, and Yan Liu. Recurrent neural networks for

multivariate time series with missing values. Nature Scien-

tific reports, 8(1):6085, 2018. 6

[9] Jianhui Chen, Hoang M Le, Peter Carr, Yisong Yue, and

James J Little. Learning online smooth predictors for real-

time camera planning using recurrent decision trees. In Pro-

ceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, 2016. 2

[10] Lei Chen, Jiwen Lu, Zhanjie Song, and Jie Zhou. Part-

activated deep reinforcement learning for action prediction.

In Proceedings of the European Conference on Computer Vi-

sion, 2018. 1

[11] Trevor Darrell and Alex Pentland. Active gesture recogni-

tion using partially observable markov decision processes.

In Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, 1996. 2, 3

[12] Enrique Dunn and Jan-Michael Frahm. Next best view plan-

ning for active model improvement. In Proceedings of the

British Machine Vision Conference, 2009. 2

[13] Harshala Gammulle, Simon Denman, Sridha Sridharan, and

Clinton Fookes. Predicting the future: A jointly learnt model

for action anticipation. In Proceedings of the International

Conference on Computer Vision, 2019. 1

[14] Minh Hoai and Fernando De la Torre. Max-margin early

event detectors. International Journal of Computer Vision,

107(2):191–202, 2014. 1

[15] Sepp Hochreiter and Jurgen Schmidhuber. Long short-term

memory. Neural Computation, 9(8):1735–1780, 1997. 3, 4

[16] Jian-Fang Hu, Wei-Shi Zheng, Lianyang Ma, Gang Wang,

Jian-Huang Lai, and Jianguo Zhang. Early action prediction

by soft regression. IEEE Transactions on Pattern Analysis

and Machine Intelligence, 2018. 1

[17] Dong Huang, Shitong Yao, Yi Wang, and Fernando De La

Torre. Sequential max-margin event detectors. In Proceed-

ings of the European Conference on Computer Vision, 2014.

1

[18] Karim Iskakov, Egor Burkov, Victor Lempitsky, and Yury

Malkov. Learnable triangulation of human pose. In Pro-

ceedings of the International Conference on Computer Vi-

sion, 2019. 2

[19] Abhishek Kar, Christian Häne, and Jitendra Malik. Learning

a multi-view stereo machine. In Advances in Neural Infor-

mation Processing Systems, 2017. 2

[20] Qiuhong Ke, Mohammed Bennamoun, Hossein Rahmani,

Senjian An, Ferdous Sohel, and Farid Boussaid. Learning

latent global network for skeleton-based action prediction.

IEEE Transactions on Image Processing, 2019. 5, 6

[21] Qiuhong Ke, Mario Fritz, and Bernt Schiele. Time-

conditioned action anticipation in one shot. In Proceedings

of the IEEE Conference on Computer Vision and Pattern

Recognition, 2019. 1

[22] Diederik P Kingma and Jimmy Ba. Adam: A method for

stochastic optimization. In arXiv preprint arXiv:1412.6980,

2014. 6

[23] Vijay R Konda and John N Tsitsiklis. Actor-critic algo-

rithms. In Advances in Neural Information Processing Sys-

tems, 2000. 5

[24] Yu Kong, Dmitry Kit, and Yun Fu. A discriminative model

with multiple temporal scales for action prediction. In Pro-

ceedings of the European Conference on Computer Vision,

2014. 1

[25] Yu Kong, Zhengming Ding, Jun Li, and Yun Fu. Deeply

learned view-invariant features for cross-view action recog-

nition. IEEE Transactions on Image Processing, 26(6):

3028–3037, 2017. 2

[26] David M Kreindler and Charles J Lumsden. The effects of

the irregular sample and missing data in time series analysis.

Nonlinear Dynamical Systems Analysis for the Behavioral

Sciences Using Real Data, page 135, 2012. 6

[27] Catherine Laporte and Tal Arbel. Efficient discriminant

viewpoint selection for active bayesian recognition. Inter-

national Journal of Computer Vision, 68(3):267–287, 2006.

2

[28] Chao Li, Qiaoyong Zhong, Di Xie, and Shiliang Pu. Co-

occurrence feature learning from skeleton data for action

recognition and detection with hierarchical aggregation. Pro-

ceedings of the International Joint Conference on Artificial

Intelligence, 2018. 5, 6

[29] Shuai Li, Wanqing Li, Chris Cook, Ce Zhu, and Yanbo Gao.

Independently recurrent neural network (indrnn): Building a

longer and deeper rnn. In Proceedings of the IEEE Confer-

1089



ence on Computer Vision and Pattern Recognition, 2018. 3,

4, 5, 6

[30] Shugao Ma, Leonid Sigal, and Stan Sclaroff. Learning activ-

ity progression in lstms for activity detection and early detec-

tion. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, 2016. 1

[31] Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza,

Alex Graves, Timothy Lillicrap, Tim Harley, David Silver,

and Koray Kavukcuoglu. Asynchronous methods for deep

reinforcement learning. In Proceedings of the International

Conference on Machine Learning, 2016. 5

[32] Pavlo Molchanov, Xiaodong Yang, Shalini Gupta, Kihwan

Kim, Stephen Tyree, and Jan Kautz. Online detection and

classification of dynamic hand gestures with recurrent 3d

convolutional neural network. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition,

2016. 5, 8

[33] Ehsan Adeli Mosabbeb, Kaamran Raahemifar, and Mah-

mood Fathy. Multi-view human activity recognition in dis-

tributed camera sensor networks. Sensors, 13(8750–8770),

2013. 2

[34] Rafael Possas, Sheila Pinto Caceres, and Fabio Ramos. Ego-

centric activity recognition on a budget. In Proceedings

of the IEEE Conference on Computer Vision and Pattern

Recognition, 2018. 2

[35] S. Ramagiri, R. Kavi, and V. Kulathumani. Real-time multi-

view human action recognition using a wireless camera net-

work. In Proceedings of the International Conference on

Distributed Smart Cameras, 2011. 2

[36] Kira Rehfeld, Norbert Marwan, Jobst Heitzig, and Jürgen

Kurths. Comparison of correlation analysis techniques for

irregularly sampled time series. Nonlinear Processes in Geo-

physics, 18(3):389–404, 2011. 6

[37] Sumantra Dutta Roy, Santanu Chaudhury, and Subhashis

Banerjee. Active recognition through next view planning:

a survey. Pattern Recognition, 37(3):429–446, 2004. 2

[38] Dmitry Rudoy and Lihi Zelnik-Manor. Viewpoint selection

for human actions. International Journal of Computer Vi-

sion, 97(3):243–254, 2012. 2, 5, 8

[39] Alejandro Hernandez Ruiz, Lorenzo Porzi, Samuel Rota

Bulò, and Francesc Moreno-Noguer. 3d cnns on distance

matrices for human action recognition. In ACM Multimedia,

2017. 5, 6, 7

[40] D. Rumelhart, G. Hinton, and R. Williams. Learning internal

representations by error propagation. In Parallel Distributed

Processing, volume 1, chapter 8, pages 318–362. MIT Press,

Cambridge, MA, 1986. 2, 3, 4

[41] M. S. Ryoo, Thomas J. Fuchs, Lu Xia, J. K. Aggarwal, and

Larry Matthies. Robot-centric activity prediction from first-

person videos: What will they do to me? In International

Conference on Human-Robot Interaction, 2015. 1

[42] M.S. Ryoo. Human activity prediction: Early recognition of

ongoing activities from streaming videos. In Proceedings of

the International Conference on Computer Vision, 2011. 1

[43] Amir Shahroudy, Jun Liu, Tian-Tsong Ng, and Gang Wang.

Ntu rgb+d: A large scale dataset for 3d human activity anal-

ysis. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, 2016. 5

[44] Abhishek Sharma, Abhishek Kumar, Hal Daume, and

David W Jacobs. Generalized multiview analysis: A dis-

criminative latent space. In Proceedings of the IEEE Con-

ference on Computer Vision and Pattern Recognition, 2012.

2

[45] Richard Souvenir and Justin Babbs. Learning the viewpoint

manifold for action recognition. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition,

2008. 2

[46] Scott Spurlock and Richard Souvenir. Multi-view action

recognition one camera at a time. In Proceedings of the IEEE

Workshop on Applications of Computer Vision, 2014. 2, 3, 5,

7, 8

[47] Scott Spurlock, Junjie Shan, and Richard Souvenir. Discrim-

inative poses for early recognition in multi-camera networks.

In Proceedings of the 9th International Conference on Dis-

tributed Smart Cameras. ACM, 2015. 2, 5, 7, 8

[48] Pavan Turaga, Ashok Veeraraghavan, and Rama Chellappa.

Statistical analysis on stiefel and grassmann manifolds with

applications in computer vision. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition,

2008. 2

[49] Carl Vondrick, Hamed Pirsiavash, and Antonio Torralba. An-

ticipating the future by watching unlabeled video. In Pro-

ceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, 2016. 1

[50] Boyu Wang and Minh Hoai. Predicting body movement

and recognizing actions: an integrated framework for mu-

tual benefits. In Proceedings of the International Conference

on Automatic Face and Gesture Recognition, 2018.

[51] Boyu Wang and Minh Hoai. Back to the beginning: Start-

ing point detection for early recognition of ongoing human

actions. Computer Vision and Image Understanding, 175:

24–31, 2018. 1

[52] Xiaolong Wang, Ross Girshick, Abhinav Gupta, and Kaim-

ing He. Non-local neural networks. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recogni-

tion, 2018. 3

[53] Xionghui Wang, Jian-Fang Hu, Jian-Huang Lai, Jianguo

Zhang, and Wei-Shi Zheng. Progressive teacher-student

learning for early action prediction. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recogni-

tion, 2019. 1

[54] Daniel Weinland, Remi Ronfard, and Edmond Boyer. Free

viewpoint action recognition using motion history volumes.

Computer Vision and Image Understanding, 104(2):249–

257, 2006. 2, 5

[55] Brian J Wells, Kevin M Chagin, Amy S Nowacki, and

Michael W Kattan. Strategies for handling missing data in

electronic health record derived data. eGEMs, 1(3), 2013. 6

[56] Chen Wu, Amir Hossein Khalili, and Hamid Aghajan.

Multiview activity recognition in smart homes with spatio-

temporal features. In Proceedings of the International Con-

ference on Distributed Smart Cameras, 2010. 2

[57] Zhen Xu, Laiyun Qing, and Jun Miao. Activity auto-

completion: Predicting human activities from partial videos.

In Proceedings of the International Conference on Computer

Vision, 2015. 1

1090



[58] Jinsung Yoon, William R Zame, and Mihaela van der Schaar.

Deep sensing: Active sensing using multi-directional recur-

rent neural networks. In ICLR, 2018. 6

[59] Mabel M Zhang, Nikolay Atanasov, and Kostas Daniilidis.

Active end-effector pose selection for tactile object recog-

nition through monte carlo tree search. In Proceedings of

the IEEE/RSJ Conference on Intelligent Robots and Systems.

IEEE, 2017. 2

[60] Pengfei Zhang, Cuiling Lan, Junliang Xing, Wenjun Zeng,

Jianru Xue, and Nanning Zheng. View adaptive neural net-

works for high performance skeleton-based human action

recognition. IEEE Transactions on Pattern Analysis and Ma-

chine Intelligence, 2019. 5, 6

1091


