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Abstract

Traditional convolution-based generative adversarial

networks synthesize images based on hierarchical local op-

erations, where long-range dependency relation is implic-

itly modeled with a Markov chain. It is still not sufficient

for categories with complicated structures. In this paper, we

characterize long-range dependence with attentive normal-

ization (AN), which is an extension to traditional instance

normalization. Specifically, the input feature map is softly

divided into several regions based on its internal semantic

similarity, which are respectively normalized. It enhances

consistency between distant regions with semantic corre-

spondence. Compared with self-attention GAN, our atten-

tive normalization does not need to measure the correlation

of all locations, and thus can be directly applied to large-

size feature maps without much computational burden. Ex-

tensive experiments on class-conditional image generation

and semantic inpainting verify the efficacy of our proposed

module.

1. Introduction

Generative adversarial networks [8] make image gener-

ation attract much attention. It aims to generate realistic

images based on a collection of natural images. This allows

various practical applications, e.g. image creation [20, 19],

editing [38, 33], data augmentation in discriminative tasks

[1], etc.

Most image generators rely on a fully convolutional gen-

erator [30, 31, 26]. Although these approaches have demon-

strated their success in modeling structured data like hu-

man faces [19, 20], and unstructured data such as natural

scene [26, 25], they do not work well on complicated struc-

tured data such as cats or dogs. The reason is that each

layer in convolutional neural networks (CNN) is locally
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(a) (b)
Figure 1. Conditional image generation of a GAN framework

using our proposed attentive normalization module. (a) Class-

conditional image generation. (b) Image inpainting.

bounded, and the relation between distant locations relies

on the Markovian modeling between convolutional layers.

In this regard, although stacking convolution layers

could lead to the large receptive field, fully convolutional

generators still lack the power to model high-order relation-

ship in distant locations. Such long-range relation is vital

because it presents the semantic correspondence that human

perception is familiar with and sensitive about, e.g. symme-

try of natural objects and correspondence among limbs.

Self-attention GAN (SA-GAN) [39] takes the first step

to model long-range dependency in class-conditional im-

age generation. It introduces a self-attention module in the

convolution-based generator, which is helpful for capturing

the relation of distant regions. However, the self-attention

module requires computing the correlation between every

two points in the feature map. Therefore, the computational

cost grows rapidly as the feature map becomes large. In

this paper, we propose a different way for long-range de-

pendency modeling, and achieves better results as well as a

lower computational burden.

Our method is built upon instance normalization (IN).

But the previous solution of (IN) normalizes the mean and

variance of a feature map along its spatial dimensions. This

strategy ignores the fact that different locations may cor-

respond to semantics with varying mean and variance. As

illustrated in [28], this mechanism tends to deteriorate the

learned semantics of the intermediate features spatially.

In this paper, we normalize the input feature maps spa-

tially according to the semantic layouts predicted from

them. It improves the distant relationship in the input as
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well as preserving semantics spatially. In our method, esti-

mation of the semantic layouts relies on two empirical ob-

servations. First, a feature map can be viewed as a compo-

sition of multiple semantic entities [9]. Second, the deep

layers in a neural network capture high-level semantics of

the input images [22].

We propose our semantic layout learning module based

on these observations. This module contains two compo-

nents, i.e., semantic layout prediction, and self-sampling

regularization. The former produces semantic-aware masks

that divide the feature map into several parts. Self-sampling

regularization regularizes optimization of semantic layout

prediction, avoiding trivial results.

With the semantic layout, spatial information propaga-

tion is conducted by the independent normalization in each

region. This naturally enhances the relationship between

feature points with similar semantics beyond the spatial

limit, because their distribution becomes compact via nor-

malization. Their common characteristics are preserved

and even enhanced through their exclusive learnable affine

transformation.

The proposed normalization is general. It is experimen-

tally validated in the class conditional image generation (on

ImageNet [6]) and generative image inpainting (on Paris

Streetview [29]). Figure 1 shows a few results. Our ma-

jor contribution is the following.

• We propose an attentive normalization (AN) to capture

visual distant relationship in the intermediate feature

maps during image generation. AN predicts a semantic

layout from the input feature map and then conduct re-

gional instance normalization on the feature map based

on this layout.

• The proposed AN module has a low computation com-

plexity by simultaneously fusing and propagating fea-

ture statistics in regions with similar semantics.

• Extensive experiments are conducted to prove the ef-

fectiveness of AN in distant relationship modeling on

class-conditional image generation and generative im-

age inpainting. With the same or similar training set-

ting and model capacity, the proposed AN module

achieves comparable or superior visual and quantita-

tive results. In the class conditional image generation

task on ImageNet (128× 128), Frechet Inception Dis-

tance (FID) [12] reaches 17.84, compared with 18.65

achieved by self-attention GAN [39], and 22.96 with-

out these long-range dependency modeling modules.

2. Related Work

2.1. Generative Adversarial Networks

The generative adversarial network (GAN) [8] is an ef-

fective model to synthesize new images, by learning to

map random noise to real image samples. However, GAN

training is usually difficult considering its sensitivity to the

model design and parameters. A lot of methods were pro-

posed to improve the procedure, including the architecture

design for the generator and discriminator [30, 19, 20, 26],

more stable distribution measurement for learning objective

[24, 2, 18], model weight and gradients constraints [10, 25],

to name a few.

2.2. Attention in Long Range Dependency Modeling

Attention modules in neural networks explicitly model

the relation between neural elements based on their cor-

relation, serving as a crucial component in various natu-

ral language processing and computer vision tasks. In im-

age generation, distant relationship modeling via attention

mechanisms is proved to be effective for learning high-

dimensional and complex image distribution [39, 37, 7, 15,

13].

In [39], the proposed self-attention module reconstructs

each feature point using the weighted sum of all feature

points. This module significantly improves the correlation

between distant relevant regions in the feature map, show-

ing obvious advances in large-scale image generation. From

the computation perspective, pair-wise relationship calcula-

tion in the feature map demands quadratic complexity (re-

garding both time and space), limiting its application to

large feature maps.

2.3. Normalization in Deep Learning

Normalization is vital in neural network training regard-

ing both discriminative or generative tasks. It makes the in-

put features approach independent and identical distribution

by a shared mean and variance. This property accelerates

training convergence of neural networks and makes train-

ing deep networks feasible. Practical normalization lay-

ers include batch normalization [17], instance normaliza-

tion [32], layer normalization [3], and group normalization

[35], which are common in deep learning based classifiers.

Besides, some normalization variants find applications

in image generation tasks with additional conditions, e.g.

conditional batch normalization (CBN) [26], adaptive in-

stance normalization (AdaIN) [14], and spatially-adaptive

(de)normalization (SPADE) [28]. Generally, after normal-

izing the given feature maps, these features are further

affine-transformed, which is learned upon other features

or conditions. These ways of conditional normalization

can benefit the generator in creating more plausible label-

relevant content.

3. Attentive Normalization

The idea of Attentive Normalization (AN) is to divide the

feature maps into different regions based on their semantics,

and then separately normalize and de-normalize the feature

points in the same region. The first task is addressed by the
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Figure 2. Proposed attentive normalization module.

proposed semantic layout learning (SLL) module, and the

second one is conducted by the regional normalization.

For the given feature maps X ∈ Rh×w×c, Attentive Nor-

malization (AN) learns a soft semantic layout L ∈ Rh×w×n

and normalizes X spatially according to L, where Lp ∈
[0, 1], n denotes a predefined class number, and p denotes

pixel location.

AN is formed by the proposed semantic layout learning

(SLL) module, and a regional normalization, as shown in

Figure 2. It has a semantics learning branch and a self-

sampling branch. The semantic learning branch employs

a certain number of convolutional filters to capture regions

with different semantics (which are activated by a specific

filter), with the assumption that each filter in this branch

corresponds to some semantic entities.

The self-sampling branch is complementary to the for-

mer semantic learning one. It regularizes learning of the

semantic entities so that the semantic learning branch can

avoid producing useless semantics – it means they are un-

correlated to the input features. Combining the output from

these two branches, the layout is computed via softmax.

Then the regional normalization is conducted on an affine

translated feature maps according to such layout.

3.1. Semantic Layout Learning Module

We assume each image is composed of n semantic en-

tities. For each feature point from the feature map of the

image, it is determined by at least one entity. This assump-

tion gives an expressive representation since these entities

can be employed to known novel objects in different con-

texts. Such assumptions were widely used in unsupervised

representation learning [22].

Here we are interested in the way to group feature points

of an image according to their correlation to the semantic

entities. It helps enhance intra-similarity in the same group.

We give n initial desired semantic entities, and define their

correlation to the feature points of the image as their in-

ner product. The semantics to represent these entities are

learned through back-propagation. We aggregate the fea-

ture points from the input feature maps into different re-

gions based on the activation status with these entities.

Further, to encourage these entities to approach diverse

patterns, orthogonal regularization is employed to these en-

tities as

Lo = λo||WW
T − I||2F, (1)

where W ∈ Rn×c is a weight matrix constituted by these

n entities (each row is the spanned weight in the row-vector

form).

In our implementation, a convolutional layer with n fil-

ters is adopted as semantic entities. This layer transforms

the input feature maps X into new feature space as f(X) ∈
Rh×w×n. Intuitively, the larger n is, the more diverse and

rich high-level features can be learned. n = 16 is empiri-

cally good for conduct 128 × 128 class-conditional image

generation and 256× 256 generative image inpainting.

However, only relying on this component does not lead

to reasonable training since it tends to group all feature

points with a single semantic entity. It is caused by not set-

ting protocols to ban useless semantic entities that have low

or no correlation with the input feature points. From this

perspective, we introduce a self-sampling branch providing

a reasonable initial semantic layout estimate. It can prevent

the trivial solution.

Self-sampling Regularization Besides learning the

aforementioned semantic layout from scratch, we regu-

larize semantics learning with a self-sampling branch. It

is inspired by the practice in feature quantization [36, 5],

which reassigns empty clusters with the centroid of a

non-empty cluster.

Our self-sampling branch randomly selects n feature

points from the input translated feature maps, acting as the

alternatives for the semantic entities. They are activated

when some entities become irrelevant with the input fea-

ture maps. This branch utilizes the correlations in the same

feature maps to approximate the semantic layout.

Specifically, this branch randomly (we use uniform sam-

pling) selects n feature pixels from the translated feature

maps k(X) as initial semantic filters. To capture more

salient semantics, k(X) is processed by max-pooling first.

Then an activation status map F is calculated as

Fi,j = k(X)T
i q(X)j , (2)
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Figure 3. Illustration of regional normalization. The shown fea-

ture maps are segmented into four different regions (each with a

color) spatially. Each mean and variance are computed on the fea-

ture points of the same color in every feature map. N , H , W ,

and C denote the batch size, channel number, height, and width,

respectively.

where F ∈ Rh×w×n. q(X) are also translated feature

maps. i and j denote pixel location. We set #{i} = n

and #{j} = h× w.

3.2. Soft Semantic Layout Computation

With the slowly updated f(X) and fast generated F, the

raw semantics activation maps Sraw are computed as

S
raw = tF+ f(X), (3)

where t ∈ R1×1×n is a learnable vector initialized as

0.1. It adaptively adjusts the influence of the self-sampling

branch, making the self-sampling branch offer meaningful

entity alternatives when some entities become useless dur-

ing training.

Then we normalize S
raw using softmax to get the soft

semantic layout as

Sk =
exp(τSraw

k )∑n

i=1 exp(τS
raw
i )

, (4)

where i and k index the feature channels. Each Sk is a soft

mask, indicating the probability of every pixel belonging to

class k. τ is the coefficient to control the smoothness of the

predicted semantic layout with default value set to 0.1.

3.3. Regional Normalization

With the soft semantic layout, long-range relationship in

feature maps is modeled by regional instance normalization.

It considers spatial information and treats each individual

region as an instance (shown in Figure 3). Correlation be-

tween feature points with the same or similar semantics are

improved through shared mean and variance, as

X̄ =

n∑

i=1

(
X− µ(XSi

)

σ(XSi
) + ǫ

× βi + αi)⊙ Si, (5)

where XSi
= X ⊙ Si. βi and αi are learnable parame-

ter vectors (∈ R1×1×c) for the affine transformation, ini-

tialized to 1 and 0, respectively. µ(·) and σ(·) compute the

mean and standard deviation from the instance, respectively.

(-0.08, 4.77) (0.00, 0.35) (0.01, 0.44) (-0.01, 1.09)

(-0.17, 5.40) (0.01, 0.41) (0.03, 0.71) (-0.02, 0.81)

(a) (b) (c) (d)

Figure 4. Illustration of how the feature statistics of the feature

maps are affected by their computed regions. (a) Generation result.

(b-d) Learned attention maps of our method on ImageNet dataset

[6]. Their above tuples indicate the computed mean and standard

deviation on the corresponding 32×32 feature maps. The statistics

are calculated on the whole region of (a) and are only processed

on the highlighted regions of (b-d).

The final output of the proposed module considers the

original input feature maps as

AN(X) = ρX̄+X, (6)

where ρ is a learnable scalar initialized as 0. Such a residual

learning scheme smooths the learning curve by gradually

paying more attention to regional normalization.

3.4. Analysis

Why Self-sampling Regularization Works It can adap-

tively capture semantics from the current feature maps, pro-

ducing proper semantic entity candidates when partial se-

mantic entities are not well learned. The uniform sampling

makes such a process not favor specific types of semantics

in the early training stage, when the deep features cannot

capture semantics.

Moreover, such sampling makes the employed entity al-

ternatives change during training. We note that the variation

of the activated alternatives for useless entities is crucial for

learning of the semantic entities, since it can stimulate the

current learned useless entities to capture existing semantics

in the input feature maps. It is experimentally validated in

our experiments (Sec. 5). In short, this strategy regularizes

SLL from only learning a single semantic entity and leads

to understanding more existing semantics.

The Effectiveness of the Learned Semantic Layout The

predicted semantic layout indicates regions with high inner

coherence in semantics. As shown in Figure 4, standard

deviation computed from the areas highlighted by our pre-

dicted semantic layouts is much lower than that from the

whole intermediate feature maps of our generated image
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(a) (b) (c) (d) (e) (f) (g) (h)

Figure 5. Visualization of the learned semantic layout on ImageNet. (a) Class-conditional generation results from our method. (b) Binary-

version of the learned semantic layout. (c-h) Attention maps activated by the learned semantic entities. The brighter the activated regions

are, the higher correlation they are with the used semantic entity. The resolution of the input feature maps is 32× 32.

Figure 6. The residual block using attentive normalization.

(0.35, 0.44, and 1.09 v.s. 4.77 in the 1st row, and 0.41, 0.71,

and 0.81 v.s. 5.40 in the 2nd row). Normalizing these points

regionally based on their similarities can better preserve the

learned semantics.

As shown in Figure 5, the learned semantic entities show

their diversities by activating different regions of the feature

maps. Note the salient foreground object can be detected as

the background part. Some entities focus on parts of the

object as these regions are highly correlated with the given

label information. As shown in (c) and (f) in the 1st row,

they highlight the ear/body and facial regions of a panda,

respectively, which contain highly discriminative features

for this class.

Complexity Analysis Besides the convolutional compu-

tation for generating the intermediate feature maps, the

main computation lies on self-sampling and regional nor-

malization. Both of them cost O(NHWnC), leading to

the final O(nNHWC), where N , H , W , and C denote

the batch size, height, width, and the channel number of the

input feature maps, respectively.

AN consumes much less than a self-attention module

(with time complexity O(N(H2W 2C+HWC2))). It does

not have the square term regarding the spatial size of the

feature map.

Relation to other Normalizations Our work is correlated

with the existing conditional normalization methods, e.g.

adaptive instance normalization (AdaIN) [14] and spatially-

adaptive (de)normalization (SPADE) [28]. A major differ-

ence is that the extra condition (semantic layout) for AN is

self-learned from the input features instead of being given

as the additional input. Besides, AN treats a spatial portion

(indicated by the learned semantic layout) of the features

from an image as an instance for normalization.

4. Applications with Attentive Normalization

In common practice, AN is placed between the convolu-

tional layer (fully connected layer is not considered because

it is computed globally) and the activation layer. To conduct

long-range dependency modeling, it should be placed at the

relatively large feature maps. Meanwhile, it needs to work

on deep layers for the self-sampling regularization.

Similar to that of [26], our proposed AN is incorporated

into a residual block [11] for conditional image generation

(shown in Figure 6). Since it has a relatively higher com-

plexity than common normalization, we only apply it once

in the generative networks, and find it is enough for improv-

ing the distant relation as verified in Section 5.

In the testing phase, we remove the randomness in the

self-sampling branch of AN by switching off this branch

with t = 0. Thus, the generation procedure is deterministic

only affected by the input.

We integrate AN into two GAN frameworks for class-

conditional image generation and generative image inpaint-

ing, respectively. The detailed design of the frameworks is

given in the supplementary file.

Class-conditional Image Generation This task learns to

synthesize image distributions by training on the given im-

ages. It maps a randomly sampled noise z to an image x via

a generator G, conditioning on the image label y. Similar

to that of [25, 39], our generator G is sequentially formed

by five residual blocks [11], and employs AN in the third

residual block (Figure 6). It outputs 32 × 32 feature maps.

Also, the discriminator D consists of five residual blocks –

the first one is incorporated with AN.

For the optimization objective, hinge adversarial loss is
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used to train the generator as

LG = −Ez∼Pz,y∼Pdata
D(G(z, y), y). (7)

Its corresponding discriminator updating loss is

LD =E(x,y)∼Pdata
[min(1−D(x, y))]+

Ez∼Pz,y∼Pdata
[min(1 +D(G(z, y), y))].

(8)

Generative Image Inpainting This task takes an incom-

plete image C and a mask M (with missing pixels value 1

and known ones 0) as input and predicts a visually plausi-

ble result based on image context. The generated content

should be coherent with the given context. Exploiting the

known regions to fill the missing ones is crucial for this task.

Similar to that of [38], we employ a two-stage neural

network framework. Both stages utilize an encoder-decoder

structure. The AN module is placed in the second stage for

exploiting the context to refine the predicted regions.

The learning objective of this task consists of a recon-

struction term and an adversarial term as

LG = λrec||G(C,M)−Y||1 − λadvE
Ĉ∼P

Ĉ

[D(Ĉ)], (9)

where Y is the corresponding ground truth of C, Ĉ =
G(C,M)

⊙
M +Y

⊙
(1 −M), P denotes data distribu-

tion, and D is a discriminator for the adversarial training.⊙
denotes element-wise multiplication. λrec and λadv are

two hyper-parameters for controlling the influence of the

reconstruction and adversarial terms.

For adversarial training of the discriminator D, WGAN-

GP loss [10] is adopted as

LD =E
Ĉ∼Pdata

[D(Ĉ)]− EY∼Pdata
[D(Y)]

+ λgpE
C̃∼P

C̃

[(||∇
C̃
D(C̃)||2 − 1)2],

(10)

where C̃ = tĈ+ (1− t)Y, t ∈ [0, 1], and λgp = 10.

5. Experimental Results and Analysis

We evaluate the long-range dependency modeling abil-

ity of our AN in the tasks of class-conditional image gen-

eration and generative image inpainting. Both tasks rely

heavily on distant visual relationship modeling for generat-

ing convincing semantic structures for objects and complex

scenes. The first task is conducted on ImageNet [6] (with

128 × 128 resolution), while the second one is carried out

on Paris Streetview [29] (with 256× 256 resolution).

Baselines Spectral-normalization GAN (SN-GAN) [25]

and self-attention GAN (SA-GAN) [39] are adopted as our

baselines considering their improvement in class condi-

tional image generation task with popular modular designs.

BigGAN [4] and its following work [23, 40] are not in-

cluded since the big model capacity and big batch size are

beyond our computation ability. For image inpainting, we

take contextual attention (CA) [38] as the baseline.

Table 1. Quantitative results of our proposed module on ImageNet

with class-conditional generation. SN-GAN* applies spectral nor-

malization to the generator and discriminator, while SN-GAN only

applies that to the discriminator.

Model Itr ×1K FID ↓ Intra FID ↓ IS ↑

AC-GAN [27] / / 260.0 28.5

SN-GAN [26] 1000 27.62 92.4 36.80

SN-GAN* [39] 1000 22.96 / 42.87

SA-GAN [39] 1000 18.65 83.7 52.52

Ours 880 17.84 83.40 46.57

Evaluation Metrics For quantitative analysis, we adopt

Frechet Inception Distance (FID) [12], intra FID [25],

and Inception Score (IS) [31] for class conditional im-

age generation task. We employ peak signal-to-noise ratio

(PSNR), structural similarity (SSIM), and mean absolute er-

ror (MAE) for image inpainting.

Intra FID gives FID between the generated and real im-

ages for a specific class, while FID alone in the following

experiments indicates the difference between the synthe-

sized images and real ones with all classes. FID, intra FID,

and IS are computed on 50k randomly generated images.

5.1. Implementation Details

Class-conditional Image Generation The Adam opti-

mizer [21] is used. The two-time scale updating scheme

[12] is adopted with a 1 × 10−4 learning rate for the gen-

erator, and a 4 × 10−4 learning rate for the discriminator.

β1 = 0 and β2 = 0.999. Also, we apply spectral normal-

ization [25] to both the generator and discriminator to stabi-

lize the training procedure further. All baselines are training

with the same batch size 256.

Generative Inpainting To stabilize the training process

and generate context-coherent contents, a two-phase train-

ing scheme is employed [16, 38, 33, ?, 34]. In the first

training phase, only reconstruction loss is used (by setting

λadv = 0), after the whole training converges. The second

phase begins by setting λadv = 1e − 3. In both stages,

Adam optimizer is employed with learning rate = 1e − 4,

β1 = 0.5 and β2 = 0.9.

5.2. Class­conditional Image Generation

As listed in Table 1, the GAN equipped with our pro-

posed AN module outperforms SN-GAN and SN-GAN* in

terms of FID and intra FID. It means our method generates

more realistic and diverse visual results compared with the

two baselines, validating the effectiveness of AN in this task

by capturing the distant relationship.

Compared with SA-GAN, our method yields lower FID,

intra FID, and IS. It shows our module performs compara-

bly to self-attention, which further verifies AN can improve

class-conditional image generation performance. About the

training iterations to reach convergence, our method costs
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Alp (970) Agaric (992) Drilling platform (540) Schooner (780)

Figure 7. Randomly generated images (128× 128) by our model on ImageNet.

Table 2. Intra-FID comparison (the lower the better) on typical

image classes from ImageNet with class-conditional generation.

Class name (label) SN-GAN [26] SA-GAN [39] Ours

Stone wall (825) 49.3 57.5 34.16

Geyser (974) 19.5 21.6 13.97

Valley (979) 26.0 39.7 22.90

Coral fungus (991) 37.2 38.0 24.02

Indigo hunting (14) 66.8 53.0 42.54

Redshank (141) 60.1 48.9 39.06

Saint bernard (247) 55.3 35.7 39.36

Tiger cat (282) 90.2 88.1 66.65

880K iterations compared with 1000K by SN-GAN, SN-

GAN*, and SA-GAN. Our method has a higher conver-

gence speed in training.

Another advantage of our AN is its consistent improve-

ment of generation performance with both relatively simple

spatial constraints (e.g. natural scenes or textures in the first

four rows in Table 2) and complex structural relationship

(e.g. objects given in the last four rows in Table 2).

Table 2 shows that our method improves intra FID by

a large margin compared with SN-GAN in both cases. It

also yields better or comparable intra FID scores compared

with SA-GAN. Figure 7 validates that AN well handles tex-

tures (alp and agaric) and sensitive structures (drilling plat-

form and schooner) in the visual evaluation. Note that self-

attention does not show superiority in the former cases with

simple geometrical patterns.

We observe that our method can produce more diverse

patterns on natural scenes or textures. It is because self-

attention exerts substantial structural constraints as it uses

similar feature points to reconstruct each feature point,

which makes the produced features tend to be uniform.

Meanwhile, AN enhances spatial relationships regionally,

where each region shares the same semantics by normal-

ization. Regional normalization is beneficial to create more

diverse patterns compared with the weighted sum of all fea-

ture points in the attention mechanism.

Figure 8. Categorical interpolation and intermediate results by our

method from Blenheim spaniel (label: 156) to indigo hunting (la-

bel: 14), and from indigo hunting to schooner (label: 780) with

a fixed noisy signal z. 1st and 3rd rows: class-conditional gener-

ation results from our method. 2nd and 4th rows: attention maps

activated by one semantic entity. The brighter the activated regions

are, the higher correlation they are with the used semantic entity.

Table 3. Quantative comparison on Paris Streetview.

Method PSNR (dB) ↑ SSIM ↑ MAE ↓

CA [38] 23.78 0.8406 0.0338

Ours 25.09 0.8541 0.0334

Categorical Interpolation The categorical interpolation

of our method can be conducted by the linear combination

of the statistics from the used conditional batch normaliza-

tion with different labels and a fixed input noise z in the gen-

erator. Figure 8 gives an example. Note that the attention

maps given by one semantic entity keep track of the almost-

foreground part of the generated image no matter how the

foreground changes gradually. It manifests the generality of

the learned semantic entities.

5.3. Applications on Generative Image Inpainting

Generative image inpainting relies on long-range inter-

action and class conditional image generation. A small dif-

ference is that the features from context regions are known.

The inpainting results are given in Figure 9. The baseline

equipped with AN yields the most appealing visual perfor-
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(a) (b) (c) (a) (b) (c)

Figure 9. Visual comparisons on generative image inpainting on Paris street view. (a) Input images. (b) Results from CA [38]. (c) Ours.

More results are given in the supplementary file.

Table 4. Quantitative results of AN module ablation on ImageNet

with class-conditional generation.

Module IS ↑ FID ↓

Attentive Normalization w BN 43.92 19.59

Attentive Normalization w/o orthogonal reg 45.99 18.07

Attentive Normalization w/o SSR 37.86 23.58

Attentive Normalization (n = 8) 45.51 19.01

Attentive Normalization (n = 16) 46.57 17.84

Attentive Normalization (n = 32) 47.14 17.75

mance regarding semantic structure (building facades with

windows) and detailed texture. In the quantitative evalua-

tion, our method also performs better than PSRN, SSIM,

and MAE, as given in Table 3. It, again, validates the effec-

tiveness of AN on enhancing information fusion between

cross-spatial regions.

5.4. Ablation Studies

Number n of the Used Semantic Entities Correlation

between feature points is implicitly characterized by the

employed semantic entities. Their quantity n controls the

fineness of such characterization. The last three rows in Ta-

ble 4 show the obvious performance improvement of AN

from n = 8 to n = 16, while such improvement is rela-

tively marginal from n = 16 to n = 32. Considering the

trade-off between the effectiveness and efficiency of AN,

we choose n = 16 for experiments in this paper.

Effectiveness of Self-sampling Regularization (SSR)

SSR facilitates the entities in the semantic layout learning

(SSL) module to capture meaningful semantics. As men-

tioned in Sec. 3.1, SSL without SSR tends to produce trivial

semantic layouts with only one useful entity (examples are

given in the supplementary file).

In this scenario, regional instance normalization de-

grades to vanilla instance normalization. Table 4 shows that

our method with SSR yields much lower FID as 17.84 com-

pared with that without it (23.58), where the latter is close

to that of SN-GAN* (22.96) in Table 1. We suppose the rel-

atively lower performance is caused by the fact that instance

normalization does not input the extra label as conditional

batch normalization in SN-GAN*.

Table 5. Inference time (ms) of our proposed module and self-

attention. All fed tensors are with the same batch size 1 and chan-

nel number 32. Resolutions are different. ‘-’ stands for evaluation

time unmeasurable due to out-of-memory in GPU.

Module 128×128 256×256 512×512 1024×1024
AN 0.73 2.24 9.46 37.68

Self-attention 5.21 79.42 - -

Choices of Used Normalization in Regional Normaliza-

tion Various available forms of normalization [17, 32, 35,

3] can be used here. For simplicity, we only plug and eval-

uate BN and IN. The lower FID by IN (17.84) compared

with that (19.59) by BN shows the relative superiority of IN

in this task.

The Empirical Evaluation of Computational Efficiency

The computational efficiency of a neural network mod-

ule relies on its implementation, software and hardware

platform. Here we give the efficiency evaluation of self-

attention and our proposed AN (with n = 16) just for ref-

erence. Both of them are programmed with Pytorch 1.1.0,

running on the same computational platform with 4 CPUs,

1 TiTAN 2080 GPU, and 32GB memory.

Table 5 presents that AN performs more efficiently than

self-attention concerning both time and GPU memory con-

sumption on the relative large feature maps. Consistent with

the complexity analysis in Section 3.4, the time complexity

(empirically) of AN grows linearly with the increase of spa-

tial size, while that of self-attention grows much faster.

6. Conclusion

In this paper, we have proposed a novel method to

conduct distant relationship modeling in conditional image

generation through normalization. It offers a new perspec-

tive to characterize the correlation between neural activities

beyond the scope limit. Our proposed normalization mod-

ule is composed of semantic layout learning and regional

normalization. The learned semantic layout is sufficient for

the regional normalization to preserve and enhance the se-

mantic correspondence learned from the generator. We will

explore its usage and possible variants in other tasks (e.g.

classification and semantic segmentation) in future work.
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