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Abstract

Depth estimation from a monocular 360◦ image is an

emerging problem that gains popularity due to the avail-

ability of consumer-level 360◦ cameras and the complete

surrounding sensing capability. While the standard of 360◦

imaging is under rapid development, we propose to pre-

dict the depth map of a monocular 360◦ image by mim-

icking both peripheral and foveal vision of the human eye.

To this end, we adopt a two-branch neural network lever-

aging two common projections: equirectangular and cube-

map projections. In particular, equirectangular projection

incorporates a complete field-of-view but introduces distor-

tion, whereas cubemap projection avoids distortion but in-

troduces discontinuity at the boundary of the cube. Thus

we propose a bi-projection fusion scheme along with learn-

able masks to balance the feature map from the two projec-

tions. Moreover, for the cubemap projection, we propose a

spherical padding procedure which mitigates discontinuity

at the boundary of each face. We apply our method to four

panorama datasets and show favorable results against the

existing state-of-the-art methods.

1. Introduction

Inferring 3D structure from 2D images has been widely

studied due to numerous practical applications. For in-

stance, it is crucial for autonomous systems like self-driving

cars and indoor robots to sense the 3D environment since

they need to navigate safely in 3D. Among several tech-

niques for 3D reconstruction, significant improvement has

been achieved in monocular depth estimation due to the ad-

vance of deep learning and availability of large-scale 3D

training data. For example, FCRN [16] achieves monocular
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Figure 1. Our BiFuse network estimates the 360◦ depth from a

monocular image using both equirectangular and cubemap pro-

jections. A bi-projection fusion component is proposed to lever-

age both projections inspired by both peripheral and foveal vision

of the human eye. Given the estimated 360◦ depth, a complete

3D point cloud surrounding the camera can be generated to serve

downstream applications.

depth estimation by their proposed up-projection module.

However, most of the existing methods are designed for a

camera with normal field-of-view (FoV). As 360◦ camera

becomes more and more popular in recent years, the ability

to infer the 3D structure of a camera’s complete surround-

ing has motivated the study of monocular 360◦ depth esti-

mation.

In this paper, we propose an end-to-end trainable neu-

ral network leveraging two common projections – equirect-

angular and cubemap projection – as inputs to predict the

depth map of a monocular 360◦ image. Our main motiva-

tion is to combine the capability from both peripheral and

foveal vision like the human eye (see Fig. 1 for the illustra-

tion). Note that, equirectangular projection provides a wide

field-of-view mimicking a peripheral vision, whereas cube-

map projection provides a smaller but non-distorted field-

of-view mimicking the foveal vision. On the one hand,

equirectangular projection allows all surrounding informa-

tion to be observed from a single 2D image but introduces

distortion. On the other hand, cubemap projection avoids

distortion but introduces discontinuity at the boundary of
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the cube. Considering both projections would have the com-

plementary property to each other, where we refer to our

method as BiFuse.

However, the FoV of the foveal vision could be too

small, which degrades the effectiveness of our fusion

scheme (Fig. 2). To tackle this issue, cube padding (CP)

methods [26, 4] have been proposed to expand field-of-

view from neighboring faces on the cube. Nevertheless,

using cube padding may result in geometric inconsistency

at the boundary that introduces non-negligible distortion ef-

fect. Therefore, we propose spherical padding (SP) which

pads the boundary by considering the spherical geometry

and reduces the boundary inconsistency. Finally, instead

of naively combining features of both branches (e.g., [31]),

we propose a bi-projection fusion procedure with learnable

masks to balance the information shared between two pro-

jections. The source code and pretrained models are avail-

able to the public1.

We apply our method to four panorama datasets: Mat-

terport3D [3], PanoSUNCG [26], 360D [38] and Stan-

ford2D3D [1]. Our experimental results show that the pro-

posed method performs favorably against the current state-

of-the-art (SOTA) methods. In addition, we present exten-

sive ablation study for each of the proposed modules, in-

cluding the spherical padding and fusion schemes. Our con-

tributions are summarized as follows:

1. We propose an end-to-end two-branch network, which

incorporates both equirectangular and cubemap pro-

jections, to mimic the combination of peripheral and

foveal vision of the human eye, respectively.

2. To share the information of different projections, we

propose a bi-projection fusion procedure with learn-

able masks to balance the information from two pro-

jections.

3. We propose spherical padding to extend the field-of-

view of cubemap projection and reduce the boundary

inconsistency of each face.

2. Related Work

We describe the related work regarding monocular depth

estimation and 360◦ perception in the following.

Monocular Depth Estimation. Saxena et al. [20] is one

of the pioneer work on learning to estimate monocular

depth. After several years of development using classical

machine learning approaches, deep learning contributes to

the latest significant improvement in performance. Eigen et

al. [8] first use a deep neural network to estimate the depth

map from a single image. Later on, Laina et al. [16] utilize

ResNet [12] as the encoder and propose an up-projection

1https://fuenwang.ml/project/bifuse

Figure 2. Field-of-view (FoV) comparison. Equirectangular pro-

jection has the largest FoV compared to each face on the cubemap

projection with (solid-line) or without (dash-line) the proposed

spherical padding.

module for the upsampling procedure along with the reverse

Huber loss to improve depth estimation. In addition, Lee et

al. [17] try to predict depth using several cropped images

and combine them in the Fourier domain. To further refine

depth predictions, [2, 28, 18, 29, 30] integrate conditional

random fields (CRF) into deep neural network to achieve

better performance. For instance, Cao et al. [2] formulate

depth estimation as a classification problem and use CRF to

refine the final prediction.

Moreover, other attempts have been made to advance

depth estimation. Fu et al. [10] use dilated convolution to

increase the receptive field and apply the ordinal regression

loss to preserve the spatial relation between each neigh-

boring class. With photometric loss, unsupervised train-

ing for depth estimation [11, 37, 33, 34, 32, 25, 15] can

be achieved. Godard et al. [11] use stereo pairs to predict

disparity based on the left-right consistency, while Zhou et

al. [37] propose two networks to estimate both depth and

ego-motion from video sequences. In addition, Yang et

al. [32] use depth-normal consistency to improve depth pre-

diction. However, for the above-mentioned methods, they

are designed for a camera with normal FoV without consid-

ering the property of 360◦ images.

360◦ Perception. Recently, omnidirectional cameras has

become a popular media, which encourages people to work

on panorama related tasks [27, 39]. For instance, due to

the large field-of-view, room layout can be inferred from

panorama [39, 35, 31]. However, the performance usually

suffers from the distortion of equirectangular projection.

To overcome this issue, several approaches are proposed.

Cheng et al. [4] convert panorama into cubemap. For each

face, they replace the original zero padding with their pro-
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posed cube padding method to remove the boundary incon-

sistency. Built upon [4], Wang et al. [26] use cubemap and

cube padding for unsupervised panorama depth estimation.

To make the network aware of the distortion, spherical

convolution methods are proposed recently [6, 9, 22, 23].

Considering this property, Zioulis et al. [38] propose Om-

niDepth and adopt spherical layers in [23] as the pre-

processing module. However, it still remains a challenge

when applying spherical CNNs using deeper networks on

the depth task. Ederet et al. [7] tackle the 360◦ depth es-

timation as multi-task learning of depth, surface normal,

and plane boundary. However, the surface normal from

depth map is usually noisy especially in real-world sce-

narios which limits the scalability outside synthetic scenes.

Different from existing works above, we improve the learn-

ing mechanism via utilizing a two-branch network from the

perspective of the human eye system and propose a spher-

ical padding scheme to maintain the geometric consistency

in the cubemap representation. Our experiments shows that

our method achieves state-of-the-art performance in both

real-world and synthetic scenes.

3. Our Approach

In this paper, we aim to take advantage of two different

representations for 360◦ images, equirectangular and cube-

map projections, for improving the monocular 360◦ depth

estimation. In the following, we sequentially detail the

cubemap projection with our proposed spherical padding

procedure in Sec. 3.1 and 3.2, bi-projection fusion scheme

in Sec. 3.3, and the overall network architecture in Sec. 3.3.

3.1. Preliminary

For a cubemap representation with sides of equal length

w, we denote its six faces as fi, i ∈ {B,D,F, L,R, U},

corresponding to the ones on the back, down, front, left,

right and up, respectively. Each face can be treated as the

image plane of an independent camera with focal length w
2

,

in which all these cameras share the same center of projec-

tion (i.e., the center of the cube) but with different poses.

When we set the origin of the world coordinate system to

the center of the cube, the extrinsic matrix of each camera

coordinate system can be simply defined by a rotation ma-

trix Rfi and zero translation. Given a pixel pi on the image

plane fi with its coordinate (x, y, z) on the corresponding

camera system, where 0 ≤ x, y ≤ w − 1 and z = w
2

, we

can transform it into the equirectangular representation by

a simple mapping:

qi = Rfi · pi ,

θfi = arctan(
qxi
qzi

) ,

φfi = arcsin
qyi
|qi|

,

(1)

Cube Face

Cube Padding Spherical Padding

Figure 3. Spherical padding v.s. cube padding. Cube padding di-

rectly pads the feature of the connected faces. In addition to ob-

vious inconsistency at the boundary, the values of four corners are

undefined. In [4], the values are only chosen by the closest side.

In our proposed spherical padding, the padding area is calculated

with spherical projection. As a result, both the missing corner and

inconsistency at the boundary can be addressed.

where θfi and φfi are longitude and latitude in equirectan-

gular projection; and qxi , qyi , qzi are the x, y, z components

of qi respectively. As this mapping is reversible, we are able

to easily perform both equirectangular-to-cube and cube-to-

equirectangular transformations, which are denoted as E2C

and C2E, respectively. A more detailed illustration is shown

in the supplementary material.

3.2. Proposed Spherical Padding

Due to the distortion in the equirectangular projection,

directly learning a typical convolutional neural network to

perform monocular depth estimation on equirectangular im-

ages would lead to unstable training process and unsatisfy-

ing prediction [4]. In contrast, the cubemap representation

suffers less from distortion but instead produces large er-

rors since the discontinuity across the boundaries of each

face [4, 26]. In order to resolve this issue for cubemap pro-

jection, Cheng et al. [4] propose the cube padding (CP)

approach to utilize the connectivity between faces on the

cube for image padding. However, solely padding the fea-

ture map of a face by using the features from its neighboring

faces does not follow the characteristic of perspective pro-

jection. Therefore, here we propose the spherical padding

(SP) method, which pads the feature according to spher-

ical projection. As such, we can connect each face with

the geometric relationship. A comparison between the cube

padding [4] and our proposed spherical padding is illus-

trated in Fig. 3.

The most straightforward way to apply spherical padding

for cubemap is to first transform all the faces into a unified
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Figure 4. The proposed BiFuse Network. Our network consists of two branches Be and Bc. The input of Be is an RGB equirectangular

image, while Bc takes the corresponding cubemap as input. We replace the first convolution layer in Be with a Pre-Block [38, 23]. For

the decoder, we adopt up-projection [16] modules. For each convolution and up-projection layer in Bc, we apply our spherical padding

to connect feature maps of six faces. Most importantly, between feature maps from Be and Bc, we use the proposed bi-projection fusion

module to share information between two feature representations. Finally, we add a Conv module [24] to unify two depth predictions from

Be and Bc.

0.5𝑤

𝑤𝛾

𝜎'

2

Figure 5. The cubemap with length w and padding size γ. We keep

the focal length the same (0.5w) and calculate a new FoV σ′.

equirectangular image by C2E. Then, we extend the orig-

inal FoV σ = 90◦ to σ′, and map it back to the cubemap

by E2C. As a result, we can pad them on each face com-

pletely without missing parts (i.e., undefined areas in cube

padding of Fig. 3) and with consistent geometry. Specifi-

cally, given a cubemap with side length w and Fov σ = 90◦,

the C2E transformation is identical to the inverse calcula-

tion of (1). When we apply spherical padding with padding

size γ, which is determined by the padding size in the con-

volution layer (e.g.,γ=1 for a 3×3convolution layer), we up-

date the side length of a cube face to w′ = w + 2γ, and

the corresponding FoV becomes σ′ = 2arctan w/2+γ
w/2 af-

ter padding, as illustrated in Fig. 5. Hence, for mapping

from equirectangular image back to the padded cubemap,

we should use both w′ and σ′ to derive the correct E2C

transformation for spherical padding.

Efficient Transformation. We have described the over-

all concept of our spherical padding. However, the above

procedure consists of both C2E and E2C transformations,

which could require heavy computational cost. Therefore,

we simplify this procedure by deriving a direct mapping

function between two cube faces. Given two cube faces

fi and fj , we first denote the geometric transformation be-

tween their camera coordinate systems as a rotation matrix

Rfi→fj . Then the mapping from a pixel pi in fi to fj can

be established upon the typical projection model of pinhole

cameras:

K =





w/2 0 w/2
0 w/2 w/2
0 0 1



 ,

pj = K ·Rfi→fj · pi ,

x =
pxj
pzj

, y =
pyj
pzj

,

(2)

where (x, y) represents the 2D location of pi after being

mapped onto the image plane of fj . Since this mapping

only needs to be computed once for all the pixels on the

padding region, the computational cost of applying spheri-

cal padding is comparable with cube padding, without any

E2C or C2E transformation included.

3.3. Proposed BiFuse Network

We have introduced our spherical padding method that

enlarges the field-of-view while maintaining the geometric

consistency at the boundary, to improve the cubemap rep-

resentation as one branch of the proposed BiFuse network.

In Fig. 4, we show our complete two-branch network moti-

vated by the human eye system with peripheral and foveal

vision.

Overall, our model consists of two encoder-decoder

branches which take the equirectangular image and cube-

map as input, respectively, where we denote the equirectan-

gular branch as Be and the cubemap one as Bc. As men-

tioned in Sec. 1, each branch has its benefit but also suf-

fers from some limitations. To jointly learn a better model

while sharing both advantages, we utilize a bi-projection fu-

sion block that bridges the information across two branches,

which will be described in the following. To generate the fi-
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nal prediction, we first convert the prediction of cubemap to

the equirectangular view and adopt a convolution module to

combine both predictions.

Bi-Projection Fusion. To encourage the information

shared across two branches, we empirically find that di-

rectly combining feature maps [31] from Be and Bc would

result in unstable gradients and training procedure, and

thus it is keen to develop a fusion scheme to balance two

branches. Inspired by the recent works in multi-tasking

[5, 36], we focus on balancing the feature map from two

different representations. To achieve this goal, we propose

a bi-projection fusion module H: given feature maps he

and hc from Be and Bc in each layer respectively, we es-

timate the corresponding feature maps h′

e = He(he) and

h′

c = Hc(C2E(hc)), where He and Hc indicate a convolu-

tion layer.

To produce feature maps that benefit both branches, we

first concatenate h′

e and h′

c, and then pass it to a convolution

layer with the sigmoid activation to estimate a mask M to

balance the fusion procedure. Finally, we generate feature

maps h̄e and h̄c as the input to the next layer as:

h̄e = he +M · h′

c ,

h̄c = hc + E2C((1−M)) · E2C(h′

e) . (3)

Note that we use C2E and E2C operations in the fusion pro-

cedure to ensure that features and the mask M are in the

same projection space.

Loss Function. We adopt the reverse Huber loss [16] as

the objective function for optimizing predictions from both

Be and Bc:

B(x) =

{

|x| |x| ≤ c ,
x2

+c2

2c |x| > c .
(4)

The overall objective function is then written as:

L =
∑

i∈P

B(Di
e −Di

GT ) + B(C2E(Dc)
i −Di

GT ) , (5)

where De and Dc are the predictions produced by Be and

Bc respectively; DGT is the ground truth depth in the

equirectangular representation; and P indicates all pixels

where there is a valid depth value in the ground truth map.

We note that the C2E operation is required on converting Dc

into the equirectangular form before computing the loss.

Network Architecture. For each branch, we adopt the

ResNet-50 [12] architecture as the encoder and use the up-

projection module proposed by [16] as the decoder. Similar

to [38] that considers the equirectangular property, we re-

place the first convolution layer of ResNet-50 in Be with

a spherical Pre-Block that has multi-scale kernels with size

of (3,9), (5,11), (5,7), and (7,7), where their output feature

maps are concatenated together as a 64-channel feature map

and further fed into the next layer. In the cubemap branch

Bc, we replace the original zero padding operation with our

spherical padding among every adjacent layer (Fig. 4).

Furthermore, the proposed bi-projection fusion block as

in (3) is inserted between every two layers between Be and

Bc in both encoder and decoder, in which each He and Hc

in one fusion module contains a convolution layer which has

the same channel number as the input feature map. Finally,

to combine the predictions from Be and Bc, we adopt a

module with several convolution layers as in [24].

3.4. Implementation Details

We implement the network using the PyTorch [19]

framework. We use Adam [14] optimizer with β1 = 0.9 and

β2 = 0.999. Our batch size is 16 and the learning rate is set

to 0.0003. For training our model, we first learn Be and Bc

branches independently without using the fusion scheme as

the warm-up training stage for 40 epochs, and then update

only bi-projection fusion modules for another 40 epochs.

Finally, we train the entire network for 20 epochs.

4. Experimental Results

In this section, we conduct experiments on four

panorama benchmark datasets: Matterport3D [3],

PanoSUNCG [26], 360D [38] and Stanford2D3D [1],

both quantitatively and qualitatively. We mainly compare

our method with the baseline FCRN [16] and the Om-

niDepth [38] approach, which is the current state-of-the-art

for single panorama depth estimation. In addition, we

compare different variants of the proposed framework to

validate the effectiveness of our designed modules. Source

code and models will be made available to the public.

4.1. Evaluation Metric and Datasets

We evaluate the performance by standard metrics in depth

estimation, including MAE, MRE, RMSE, RMSE (log),

and δ. Details of each dataset are introduced below and

we use the same setting to compare all the methods.

Matterport3D. Matterport3D contains 10,800 panorama

and the corresponding depth ground truth captured by Mat-

terport’s Pro 3D Camera. This dataset is the largest real-

world dataset for indoor panorama scenes, which makes it

challenging as the depth map from ToF sensors usually has

noise or missing value in certain areas. In practice, we fil-

ter areas with missing values during training. To train and

test our network, we follow the official split which takes 61

rooms for training and the others are for testing. We resize

the resolution of image and depth map into 512 × 1024.

Stanford2D3D. Stanford2D3D is collected from three

kinds of buildings in the real world, containing six large-

scale indoor areas. The dataset contains 1413 panoramas
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Table 1. Quantitative results on real-world datasets: Matterport3D and Stanford2D3D.

Dataset Method MRE ↓ MAE ↓ RMSE ↓ RMSE (log) ↓ δ1 ↑ δ2 ↑ δ3 ↑

Matterport3D

FCRN [16] 0.2409 0.4008 0.6704 0.1244 0.7703 0.9174 0.9617

OmniDepth (bn) [38] 0.2901 0.4838 0.7643 0.1450 0.6830 0.8794 0.9429

Equi 0.2074 0.3701 0.6536 0.1176 0.8302 0.9245 0.9577

Cube 0.2505 0.3929 0.6628 0.1281 0.7556 0.9135 0.9612

Ours w/ fusion 0.2048 0.3470 0.6259 0.1134 0.8452 0.9319 0.9632

Stanford2D3D

FCRN [16] 0.1837 0.3428 0.5774 0.1100 0.7230 0.9207 0.9731

OmniDepth (bn) [38] 0.1996 0.3743 0.6152 0.1212 0.6877 0.8891 0.9578

Equi 0.1428 0.2711 0.4637 0.0911 0.8261 0.9458 0.9800

Cube 0.1332 0.2588 0.4407 0.0844 0.8347 0.9523 0.9838

Ours w/ fusion 0.1209 0.2343 0.4142 0.0787 0.8660 0.9580 0.9860

Table 2. Quantitative results on virtual-world datasets: PanoSUNCG and 360D.

Dataset Method MRE ↓ MAE ↓ RMSE ↓ RMSE (log) ↓ δ1 ↑ δ2 ↑ δ3 ↑

PanoSUNCG

FCRN [16] 0.0979 0.1346 0.3973 0.0692 0.9223 0.9659 0.9819

OmniDepth [38] 0.1143 0.1624 0.3710 0.0882 0.8705 0.9365 0.9650

Equi 0.0687 0.0836 0.2902 0.0496 0.9529 0.9787 0.9886

Cube 0.0628 0.0891 0.2946 0.0508 0.9453 0.9780 0.9890

Ours w/ fusion 0.0592 0.0789 0.2596 0.0443 0.9590 0.9823 0.9907

360D

FCRN [16] 0.0699 0.1381 0.2833 0.0473 0.9532 0.9905 0.9966

OmniDepth [38] 0.0931 0.1706 0.3171 0.0725 0.9092 0.9702 0.9851

Equi 0.0606 0.1172 0.2667 0.0437 0.9667 0.9920 0.9966

Cube 0.0613 0.1167 0.2739 0.0447 0.9688 0.9908 0.9956

Ours w/ fusion 0.0615 0.1143 0.2440 0.0428 0.9699 0.9927 0.9969

and we use one of official splits that takes fifth area (area 5)

for testing, and the others are for training. During training

and testing, we resize the resolution of image and depth map

into 512 × 1024.

PanoSUNCG. PanoSUNCG contains 103 scenes of

SUNCG [21] and has 25,000 panoramas. In experiments,

we use the official training and testing splits, where 80

scenes are for training and 23 for testing. For all panora-

mas, we resize them to 256 × 512 and filter out pixels with

depth values larger than 10 meters.

360D. 360D dataset is collected by OmniDepth [38], in-

cluding two synthetic datasets, SunCG and SceneNet and

two realistic datasets, Stanford2D3D and Matterport3D.

They use path tracing renderer to render four datasets and

place spherical cameras in the virtual environment to ac-

quire photo-realistic panoramas with the resolutions 256 ×
512. For each panorama, they apply augmentation by 90◦,

180◦ and 270◦. In total, 360D contains 35,977 panoramas,

where 34,679 of them are used for training and the rests are

for testing.

4.2. Overall Performance

We first present results of using two baselines, each with

a single branch, and compare them with our proposed two-

branch framework: 1) Equi: the equirectangular branch Be

without bi-projection fusion; 2) Cube: the cubemap branch

Bc with cube padding [4] without our fusion scheme; 3)

Ours w/ fusion: our final model of applying the proposed

spherical padding to the cubemap branch Bc and integrating

our bi-projection fusion to both branches.

In Table 1 and 2, we show quantitative comparisons

on four datasets as mentioned above. Overall, our fusion

model performs favorably against FCRN [16] and Om-

niDepth [38], as well as our baselines using the single

branch (i.e., Equi or Cube). This validates the effectiveness

of the proposed two-branch network, in which the equirect-

angular view provides a larger field-of-view and the cube-

map one focuses on non-distorted regions.

Moreover, on Matterport3D and Stanford2D3D, we find

that the official implementation of OmniDepth (originally

designed for the 360D [38] dataset) has difficulty to con-

verge on these two datasets, and thus we add batch normal-

ization [13] to successfully train the model, which is de-

noted as OmniDepth (bn) in Table 1.

Qualitative Comparisons. From Fig. 6 to 9, we present

qualitative results of depth maps on four datasets. Com-

pared to the FCRN and OmniDepth methods, our model is
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Figure 6. Qualitative results of Matterport3D. The black area in the ground truth depth map indicates invalid pixels.

Figure 7. Qualitative results of Stanford2D3D. The black area in the ground truth depth map indicates invalid pixels.

Table 3. Comparison of padding methods on the cubemap branch.

Dataset Method MRE MAE RMSE

Matterport3D

Cube w/ zp 0.2577 0.4136 0.6934

Cube w/ cp 0.2505 0.3929 0.6628

Cube w/ sp 0.2254 0.3660 0.6327

Stanford2D3D

Cube w/ zp 0.1457 0.2667 0.4511

Cube w/ cp 0.1332 0.2588 0.4407

Cube w/ sp 0.1259 0.2388 0.4269

PanoSUNCG

Cube w/ zp 0.1195 0.1367 0.3441

Cube w/ cp 0.0628 0.0891 0.2946

Cube w/ sp 0.0600 0.0840 0.2874

360D

Cube w/ zp 0.0761 0.1382 0.2819

Cube w/ cp 0.0610 0.1163 0.2722

Cube w/ sp 0.0588 0.1145 0.2614

able to produce sharper results around boundaries. This can

be attributed by the foveal view capturing detailed infor-

mation, while the peripheral view with larger FoV provides

global context.

4.3. More Results and Ablation Study

Effect of Spherical Padding. To further study the effects

of spherical padding in the cubemap, we compare the pro-

posed spherical padding (SP) with the other two padding

methods, i.e., zero padding (ZP) and cube padding (CP).

Quantitative results on only the cubemap branch are

Table 4. Qualitative results of fusion methods on Matterport3D.

Method MRE MAE RMSE

Yang et al. [31] 0.2662 0.4842 0.7364

Average 0.2658 0.4405 0.7202

Ours 0.2048 0.3470 0.6259

shown in Table 3. By applying our spherical padding, the

cubemap branch Bc outperforms other padding methods

significantly. In addition, Fig. 10 shows qualitative com-

parisons of applying different padding methods. When us-

ing zero padding, the depth maps of six faces have obvious

boundary artifacts. After using cube padding, the bound-

ary effect becomes more smooth, but it is still observable

because the cube padding does not follow the geometric re-

lationship. By applying the proposed spherical padding, we

are able to maintain the boundary as spherical padding is

calculated using the spherical projection.

Fusion Schemes. To validate our fusion module, we

conduct two baselines on Matterport3D using the fusion

method proposed in [31] via directly adding up two feature

maps and the feature averaging scheme. We show this abla-

tion study in Table 4. From the results, our method is con-

sistently better than the baselines. For instance, the MAE is

improved by 28% and 23% comparing with Yang et al. [31]

and Average. In addition, we find the training of this base-

line is unstable and has the convergence problem as the
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Figure 8. Qualitative results of PanoSUNCG. The black area in the ground truth depth map indicates invalid pixels.

Figure 9. Qualitative results of 360D. The black area in the ground truth depth map indicates invalid pixels.

ZP

CP

SP

Figure 10. Qualitative result of different padding methods. For

clear visualization, we plot the inverse depth to compare different

padding methods.

gradients from different branches cannot be well balanced.

This shows the benefit of integrating our bi-projection fu-

sion scheme which applies several masks to balance fea-

tures of two branches.

5. Conclusions

In this paper, we propose an end-to-end 360◦ depth es-

timation network which incorporates both equirectangular

and cubemap projections to mimic peripheral and foveal vi-

sion as the human eye. Since the two projections have the

complementary property, we fuse their features by our bi-

projection fusion module. Furthermore, to extend the field-

of-view of the cubemap projection and eliminate the bound-

ary inconsistency of each cube face, we propose spherical

padding which connects features from neighboring faces.

Experimental results demonstrate that our method achieves

state-of-the-art performance.
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