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Abstract

We aim to detect human interactions with novel objects

through zero-shot learning. Different from previous works,

we allow unseen object categories by using its semantic

word embedding. To do so, we design a human-object re-

gion proposal network specifically for the human-object in-

teraction detection task. The core idea is to leverage hu-

man visual clues to localize objects which are interacting

with humans. We show that our proposed model can out-

perform existing methods on detecting interacting objects,

and generalize well to novel objects. To recognize objects

from unseen categories, we devise a zero-shot classification

module upon the classifier of seen categories. It utilizes the

classifier logits for seen categories to estimate a vector in

the semantic space, and then performs nearest search to

find the closest unseen category. We validate our method

on V-COCO and HICO-DET datasets, and obtain superior

results on detecting human interactions with both seen and

unseen objects.

1. Introduction

Human-object interaction (HOI) detection [12, 5, 11, 27]

is important for human-centric visual understanding. The

goal is to detect interactions between humans and ob-

jects, and use verbs to describe their relationships (e.g.,

sit on bench, carry suitcase, etc.). Although recent stud-

ies [4, 21, 44, 48, 43, 40, 39] have achieved good progress,

current HOI methods are limited to interactions with 80 ob-

ject categories as defined in MS-COCO dataset [23].

Previous attempts [17, 37, 1, 30] to scale HOIs only fo-

cus on detecting human interactions with known objects. It

aims to generalize the knowledge obtained from seen in-

teractions (e.g., sit on chair, carry suitcase) to unseen inter-

actions (e.g., sit on suitcase). In comparison, as shown in

Figure 1, we aim to detect human interactions with unseen

object categories (i.e., categories without any annotated vi-

sual samples in the training set).

Most existing HOI methods [4, 21, 44, 48, 43, 40, 39]

applied an off-the-shelf object detector to first generate hu-

Figure 1: We aim to scale the object space in HOI detection via

zero-shot learning. This figure depicts the output of our model.

Apart from the 80 object categories (green boxes) as defined in

MS-COCO, our model can detect human interactions with unseen

object categories, e.g., rose (red box) in this image.

man and object candidates, and then applied an interaction

model to predict their relationships. However, the com-

monly used object detectors [35, 22, 7] are designed for

detecting all objects in the given image. As a result, many

non-interacting human-object pairs are produced. Besides,

those object detectors treat humans as an independent cate-

gory like other object categories. In this way, the detection

of objects cannot exploit the information of human appear-

ance.

To alleviate the above limitations, we propose a detec-

tor (as shown in Figure 2) specifically for the HOI detection

task. Our main idea is to leverage human visual clues to

find interacting objects. The proposed detector follows the

pipeline of Faster RCNN [35], while we replace the orig-

inal region proposal network (RPN) with a novel human-

object region proposal network (HO-RPN). It scores region

proposals based on its interactiveness with the detected hu-

mans, and generalizes well to novel objects if they are in-

teracting with humans (e.g., the red box in Figure 1). This

enables us to detect human interactions with unseen object

categories.
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Figure 2: Overview of our model. It consists of three main mod-

ules. (1) Our proposed human-object region proposal network

(HO-RPN) first localizes humans and interacting objects. It es-

timates an interactiveness score for each object proposal. (2) The

zero-shot classification module classifies the generated region pro-

posals. It can recognize both seen and unseen object categories.

(3) It then estimates the probability of verbs between every human-

object pair. The score from three modules will be aggregated as

the final score for the interaction.

To recognize novel objects, we assume each object cate-

gory has a corresponding semantic embedding vector which

is learned from text corpus [29, 26]. We build a zero-shot

classification module upon the softmax classifier of seen

categories. Based on the logit outputs of the classifier, we

estimate a semantic embedding vector for the input region

proposal and then search for the nearest unseen category in

the semantic space.

Extensive experiments on V-COCO [12] and HICO-

DET [4] datasets show that: (1) The proposed HO-RPN

can learn to localize objects based on their interactiveness

with humans; (2) By leveraging on human visual clues,

our model significantly outperforms zero-shot object de-

tection [2] on detecting novel objects; (3) Our model can

outperform existing HOI methods on detecting human in-

teractions with both seen and unseen objects. Besides, we

construct a test set from Visual Genome [18] with 110 ob-

ject categories (80 MS-COCO + 30 new) to show the ability

of our model on detecting human-novel-object interactions.

Our contributes are summarized below. (1) This is the

first attempt to detect human interactions with novel objects.

(2) We propose a novel human-object region proposal net-

work for the HOI detection task. (3) We design a zero-shot

classification module to recognize novel objects. (4) Our

approach1 achieves superior results of HOI detection on V-

COCO [12] and HICO-DET [2] datasets.

2. Related Work

Human-Object Interaction (HOI) The goal of HOI is

to detect interactions between humans and objects. It is

closely related to visual relationship detection [46, 6, 25, 31,

45], while HOI detection requires more fine-grained verbs

1https://github.com/scwangdyd/zero_shot_hoi

to describe the relationships. Existing HOI works [4, 10,

44, 43, 40, 30] usually take advantage of pre-trained ob-

ject detectors [35, 22], and focus their attention on improv-

ing the verb predictions. In their frameworks, the verb pre-

diction model needs to differentiate noninteracting human-

object pairs since noninteracting objects are also detected

by object detectors. Gkioxari et al. [11] proposed to use

human appearance to predict the potential location of inter-

acting objects and then re-weight object candidates based

on their distances to the prediction. Li et al. [21] learned

a binary classifier to estimate the interactiveness of human-

object pairs and filter out noninteracting ones. Qi et al. [32]

proposed to build a graph network among all human and

object candidates and then parse their relationships. Human

body language often includes strong clues for the interac-

tion. Many recent works [48, 39, 13, 8] leveraged on human

pose to improve the robustness of verb predictions such that

they can reduce the false positive predictions on noninter-

acting human-object pairs.

Instead of improving the verb prediction, our main goal

is to detect more interactions by extending novel objects.

Shen et al. [37] have scaled HOIs to 600 classes by in-

creasing the number of verbs. However, current HOIs are

still limited to the 80 MS-COCO object categories [23].

Previous attempts to scale HOIs using zero-shot learn-

ing [17, 1, 37] mainly focus on the unseen interactions with

known objects. When scaling HOIs by adding new object

categories, they require the bounding box annotations of

new object categories to re-train their detector. In compari-

son, we do not require annotations of new object categories

except their semantic word embeddings learned from text

corpus [29, 26]. Hence, our method can scale HOIs more

easily without the need of much human labor.

Zero-Shot Learning (ZSL) Most ZSL works focus on

the zero-shot image recognition problem [41, 47, 42, 49],

which aims to recognize unseen classes by generalizing the

knowledge learned from seen classes. For ZSL, additional

side information is required. Early works [9, 19, 24] uti-

lize attributes to link various classes. This requires much

human labor to design attributes, especially for large-scale

datasets. An easier way is to use the semantic word embed-

ding of category names [3, 28, 38]. Based on the distance

in the semantic space, we can implicitly gauge the relation-

ships among classes.

Apart from zero-shot image recognition, zero-shot object

detection [33, 2, 34] has received much attention recently.

It aims to detect unseen objects from the given image using

annotations of seen object categories. Existing methods [33,

2, 34] usually choose semantic embedding vectors as side

information. This task is different from our focus in this

paper since it aims to detect all novel objects in the images,

while we focus on the novel objects in the interaction with

humans.
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3. Approach

3.1. Problem Statement

The goal of human-object interaction (HOI) detection is

to find one or multiple tuples <human, verb, object>

from the given image. Formally, human-object interaction

can be defined as <bh, v, bo, y>, where the bounding box

bh, bo ∈ R
4 indicates the location of humans and objects,

verb v ∈ V = {V1, . . . , Vm} denotes the action performed

by the human, and y ∈ Y denotes the object category.

In this paper, our main focus is to scale HOIs by extend-

ing the object category space via zero-shot learning. Let

YS = {1, . . . , c1} and YU = {c1 + 1, . . . , c1 + c2} denote

the seen and unseen object category space respectively. We

aim to develop a model which can detect human interactions

<bh, v, bo, y> with both seen and unseen object categories,

i.e., y ∈ Y = YS ∪ YU . To make this a feasible task, we

assume that each object category y ∈ Y has a semantic em-

bedding vector qy ∈ R
p such that we can leverage on the

relations in the semantic space to detect human interactions

with unseen objects.

3.2. Formulation

Existing HOI detection methods [12, 11, 44, 13] con-

sist of two main components, i.e., an off-the-shelf object

detector [35, 7, 20, 22] followed by an interaction model.

Given an input image x, the object detector first detects

bh and bo, and predicts box score p(bh, y = “person”|x)
and p(bo, y|x). Without the loss of clarity, we replace

p(bh, y = “person”|x) with p(bh|x) in the following dis-

cussion for concise representation. Given bh and bo, the

interaction model then estimates the probability of verbs de-

noted by p(v|bh, bo, y, x). The final score for the interaction

<bh, v, bo, y> is given as

p(bh, v, bo, y|x) = p(v|bh, bo, y, x)p(bo, y|x)p(bh|x) (1)

In this way, the original problem is reduced to 3 tasks,

i.e., human detection, object detection, and verb predic-

tion. Notice that the framework in Eq.(1) treats the detec-

tion of humans and objects as two independent processes,

i.e., p(bh, bo, y|x) = p(bo, y|x)p(bh|x). This assumption

leads to the following limitations.

First, isolating the detection of objects with humans

makes it impossible to detect only interacting objects. In

this framework, the object detection will detect both inter-

acting and noninteracting objects as candidates. Previous

methods [11, 32, 21] often perform post-processing to sup-

press noninteracting ones. In comparison, we propose a

more efficient way, i.e., producing only interacting objects

at the detection stage. Second, the framework in Eq.(1) can-

not handle novel objects well, even with zero-shot object

detection [2, 34], since it is difficult to differentiate unseen

objects with the background using only its visual feature.
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Figure 3: Overview of HO-RPN. Each cell in the feature map

represents a sliding window position. The features of top k human

anchor boxes will be used to score the object anchor boxes using

a relational network.

However, the human body language usually implies the lo-

cation of interacting objects. For instance, as shown in Fig-

ure 1, we can rely on human visual clues to localize the

unseen novel object “rose”.

To alleviate the above limitations, we propose to score

the object box based on its interactiveness with the detected

human boxes, i.e., p(bo, y|bh, x). Then the score of interac-

tion p(bh, v, bo, y|x) can be expressed as

p(v|bh, bo, y, x)p(bo, y|bh, x)p(bh|x) (2)

Our model is shown in Figure 2. It is composed of a novel

human-object region proposal network, a zero-shot classifi-

cation module, and a verb prediction module. We will elab-

orate them in Sec.3.3, Sec.3.4 and Sec.3.5 respectively.

3.3. Human­Object Region Proposal Network

We have two separate branches for generating human

and object region proposals. We use the original region pro-

posal network (RPN) [35] to generate human region propos-

als. For object region proposals, we design a novel human-

object region proposal network (HO-RPN).

The original RPN estimates the score of anchor boxes

based on the objectiveness. Intuitively, a high score will be

assigned to an anchor box if it well covers an object. How-

ever, this criterion does not well match the goal of HOI de-

tection, since we are only interested in interacting objects.

In our case, we expect that a high score is assigned if the

anchor box well covers an object and, more importantly,

the object is interacting with humans. To achieve this goal,

we propose a human-object region proposal network (HO-

RPN). It scores the anchor boxes based on its interactive-

ness with humans.

The architecture of HO-RPN is shown in Figure 3. In

addition to the convolutional feature maps from the back-

bone network, HO-RPN also takes as input the feature of

the top K detected human anchor boxes from the RPN

hidden layer. HO-RPN first performs a 2D convolution

on the backbone feature maps to obtain a hidden feature
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map. Then, at each sliding window position, we apply

a relational network (RN) [36] to reason about the inter-

activeness score of n anchor boxes with different shape,

sr = [s
(1)
r , . . . , s

(n)
r ] ∈ R

n, based on its visual features and

relationships with detected humans. Let x
(j)
o ∈ R

d denote

the feature of j-th sliding window position in HO-RPN, and

x
(k)
h ∈ R

d denote the feature of k-th human anchor box

from human RPN. Specifically, the relational network com-

putes the score by

sr = σ
(

f
(

K
∑

k=1

g(x(j)
o ,x

(k)
h )

)

)

(3)

where σ(·) is a sigmoid function. Here g(·) : R2d 7→ R
d

is a simple multi-layer perceptron (MLP), which processes

the concatenated feature of x
(j)
o and x

(k)
h . The role of g(·)

is to infer if the object and human are interacting. Here

f(·) : R
d 7→ R

n is another MLP, which aggregates the

relations with K human boxes. This predicted score will be

used to generate object region proposals.

3.4. Zero­Shot Object Classification

Once human and object region proposals are generated

by HO-RPN, a head network is used to predict p(bh|x) and

p(bo, y|x), and regress the box bh and bo. To be compatible

with novel object categories, here we use a class agnostic

bounding box regressor instead of class-specific regressors.

To recognize unseen categories, we follow the idea from

ConSE [28] and design a zero-shot classification module

for our task. The objective behind our module is that it

should not change the architecture of detectors such that we

can take advantage of the well-trained weights on seen cat-

egories. The benefit of doing so is that if we can add new

object categories into the object space, we do not need to

re-train the network.

Our zero-shot classification module is shown in Figure 4.

It uses the logit output of the softmax classifier for seen

categories to estimate the probability of unseen categories.

Suppose fy(bo) ∈ R is the probability of region proposal

bo belonging to seen category y ∈ YS predicted by a clas-

sifier. Given {fy(bo)}y∈YS
, we denote the most likely seen

category as

ŷ1 := argmax
y∈YS

fy(bo) (4)

Similarly, let ŷj denote the j-th most likely seen cate-

gory, i.e., the category with the j-th largest value among

{fy(bo)}y∈YS
. Based on the top K predicted seen cate-

gories and their semantic word embedding {qŷ1
, . . . ,qŷK

},

we estimate a semantic embedding vector e ∈ R
p for the in-

put region proposal bo by

e =
1

Z

K
∑

j=1

fŷj
(bo) · qŷj

(5)

...

Background

Skateboard

Snowboard

Boat

Seen Classes Scores

0.973

0.012

0.005

0.001

Visual
embeddings

x
x
x

Semantic
embedding of
seen classes

Classifier
Semantic

embedding of
unseen classes

Predicted
semantic

embedding

Search Nearest
Neighborhood

...

Estimate semantic
embeddings

Suitcase (0.2)

Surfboard (0.6)

Racket (0.1)

Figure 4: The pipeline of zero-shot classification. The softmax

classifier for seen categories (including the background) first clas-

sifies the region proposal. If the background category has a high

response, we then identify if it belongs to unseen categories. We

estimate a semantic embedding using Eq.(5). The nearest unseen

category in the semantic space will be chosen as the prediction.

where Z =
∑K

j=1 fŷj
(bo), which is a normalization factor.

Besides the categories in YS , the background is also a

category in the softmax classifier. If the softmax classifier

is very confident in its prediction for y = “background”, it

will not be a seen object. Then, we estimate if it belongs to

unseen categories. To do so, we compute the similarity of e

to the semantic embedding vector of unseen categories as

sy = cos(e,qy), y ∈ YU (6)

where cos(·, ·) is the cosine similarity. If sy < τ for any y ∈
YU , the region proposal bo will be predicted as background.

For seen categories, we take the output of the softmax

classifier as the prediction, i.e., sy = fy(bo), y ∈ YS . By

doing so, our proposed zero-shot classification module en-

ables the detector to detect unseen categories without the

loss of performance on seen categories. Finally, the score

of object boxes is obtained as

p(bo, y|bh, x) := sr × sy (7)

3.5. Verb Prediction

Once humans and objects are detected, verb branch will

predict the probability of verbs for every human-object pair.

Except for the visual appearance within box bo and bh, we

also take as input the union region of bo and bh, since there

may be additional context information. Consider that each

human can simultaneously perform multiple actions for an

object, e.g., looking at and holding, we formulate the verb

prediction as multiple binary classification problem. For a

verb category v ∈ V , we predict its probability by

p(v|bh, bo, y, x) := σ
(

hv(xo,xh,xh,o)
)

(8)

where xo, xh, xh,o ∈ R
d are the visual features extracted

from box bo, bh, and their union region using RoIAlign [14].

Here, hv(·, ·, ·) : R3d 7→ R is a MLP which processes the

concatenated feature and σ(·) is a sigmoid function.
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Figure 5: Qualitative comparison of HO-RPN (bottom row) with RPN (upper row) on unseen novel objects. In this figure, tennis

racket, suitcase, surfboard, baseball glove, and frisbee are unseen by the model based on our seen/unseen split. For RPN (upper row),

we visualize the top 5 object region proposals (except proposals have an IoU > 0.5 with humans). For our proposed HO-RPN, the top 2

object region proposals are enough to capture novel objects in the example images.

Figure 6: Qualitative results of interacting object detection. Compared with Faster RCNN (top row), our model (bottom row) only

detects interacting objects. Boxes with a score > 0.7 are visualized.

4. Experiments

We mainly evaluate our method using V-COCO [12] and

HICO-DET [4] datasets, which have exhaustive annotations

of human interactions with 80 MS-COCO categories [23].

There are 25 and 117 verbs on V-COCO and HICO-DET

respectively to describe human-object interactions. We also

construct a test set from Visual Genome [18] with 30 novel

categories apart from the 80 MS-COCO categories to eval-

uate our method.

4.1. Evaluation Protocol

Seen/unseen split We simulate the zero-shot scenario on

V-COCO [12] and HICO-DET [4] by partitioning the 80

object categories into seen and unseen sets. All images

including unseen object categories will be removed from the

training set. Existing seen/unseen splits [2, 33, 34] are

mainly constructed based on the statistics of COCO, which

cannot be applied to the above HOI datasets. For example,

in previous work [33], “vase” is a seen class with 4,623 in-

stances in the COCO train2014 set, while no HOI with

“vase” exists in the V-COCO train set. For this reason,

we propose a new seen/unseen split following the steps

in [33]. We sort the classes per supercategory in ascending

order based on the total number of instances in V-COCO

train set and HICO-DET train set. For each supercat-

egory, we pick 20% rare classes as unseen classes, which

results in 43 seen classes and 37 unseen classes (see sup-

plementary materials for details). In this way, we construct

a training set of 1,878 images in V-COCO [12] and 30,854

images in HICO-DET [4] with only seen object categories.

Implementation details Our model is built upon the

ResNet50 [15] with Feature Pyramid Network (FPN) [22].

We adopt synchronized SGD training on 4 GPUs with 2

images per GPU. The learning rate is 0.005 with a weight

decay of 0.0001 and a momentum of 0.9. We first search

the best hyper-parameters on V-COCO val set. Then we

train our model for 6k iterations on V-COCO trainval
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Recall@k Train set k = 100 k = 500
Methods COCO VCOCO all seen unseen all seen unseen

RPN w/ FPN X 83.6 88.7 50.3 90.2 93.5 68.6

RPN w/ FPN X X 87.1 90.7 63.8 94.4 96.1 83.5

HO-RPN (ours) X 89.8 92.2 74.6 95.5 96.6 88.5

(a) Generated region proposals. Results are evaluated on V-COCO val set. We train

network with only annotations of seen categories. A true positive is considered if the

generated region proposals have an IoU > 0.5 with ground truth bounding boxes.

Methods VCOCO HICO-DET

Faster RCNN 28.2 33.2

InteractNet [11] 36.2 39.3

Interactiveness [21] 36.6 41.4

HOID w/o sr 29.4 33.6

HOID (ours) 42.7 45.7

(b) Interacting object detection. Results

are AP@IoU=0.5 among 79 object categories

(except “person”).

#boxes VCOCO HICO-DET Time (s)

4 36.2 43.7 0.214

8 42.7 45.7 0.287

12 42.8 45.9 0.356

(c) Ablation on #human boxes. Results

are AP@IoU=0.5 and the average infer-

ence time per image.

Methods VCOCO HICO-DET

ZSOD [2] 3.3 5.1

ZS-HOID w/o sr 3.4 5.3

ZS-HOID (ours) 11.5 11.3

(d) Novel object detection. Results are

AP@IoU=0.5 over all unseen categories

based on our seen/unseen split.

Embeddings VCOCO HICO-DET

GloVe [29] 10.4 9.1

FastText [16] 10.2 9.9

GoogleNews [26] 11.5 11.3

(e) Ablation on semantic embedding. Re-

sults are AP@IoU=0.5 over all unseen ob-

ject categories.

Table 1: Ablation studies on various components in our proposed model.

set and 20k iterations on HICO-DET train set, and report

the results on their test set.

Evaluation metrics Our central interest is to detect tu-

ples <bh, v, bo, y>. We evaluate the detection performance

using mean Average Precision (mAP) following previous

works [11, 44, 37, 21]. The Average Precision is first calcu-

lated per interaction class {v, y}v∈V,y∈Y and then we take

the mean. Formally, a detected tuple is considered as true

positive if (1) the predicted human and object bounding

box have an Intersection-over-Union (IoU) of 0.5 or higher

with the ground truth, (2) the verb prediction is correct, and

(3) the object category is correct. In the ablation studies,

we use the COCO-style Average Precision at IoU = 0.5

(AP@IoU=0.5) to evaluate the performance of interacting

object detection.

4.2. Ablation Analysis

In the following experiments, we call our HOI detection

model using HO-RPN as HOID for short. When the pro-

posed zero-shot classification module is used to detect novel

objects, we call it as ZS-HOID.

Generated region proposals In Table 1a, we evaluate the

quality of region proposals generated by our proposed HO-

RPN using the recall at the top k proposals. We compare

against the original RPN [35] built with FPN [22], where

no human clues are used to generate object proposals. Here

the ground truth only includes the objects interacting with

humans. A true positive is considered if the proposal has an

IoU > 0.5 with ground truth.

The first row in Table 1a refers to the model trained on

COCO trainval set (∼37k images excluding V-COCO

val and test set and images with unseen classes). It

shows the worst performance since it captures many nonin-

teracting objects. For a fair comparison, we also finetune it

on V-COCO train set with seen interacting objects. As

reported, our HO-RPN can cover 1.5% more seen objects

and 10.8% more unseen objects than RPN with FPN at the

top 100 proposals. This result suggests the benefits of us-

ing human visual clues to localize objects. Figure 5 de-

picts some qualitative results on unseen object categories.

As shown, our HO-RPN can better capture novel objects

than the RPN.

Interacting object detection In Table 1b, we investigate

the performance of our model, HOID, on detecting inter-

acting objects. We compare against Faster RCNN [35] and

two competitive baselines, InteractNet [11] and Interactive-

ness [21]. Given the boxes detected by Faster RCNN, Inter-

actNet and InteractivenessNet perform post-processing to

suppress noninteracting objects. In this experiment, all 80

MS-COCO object categories are used for training models.

To study the impact of interactiveness score sr, we ablate it

from the object box score in Eq.(7).

We evaluate the detected boxes on V-COCO test set

and HICO-DET test set using AP@IoU=0.5. Notice that

here detections of noninteracting objects will be seen as

false positives. As shown, our method can outperform the

best baseline by 6.6 and 4.3 points on V-COCO and HICO-

DET. We observe that the ablation of sr drops the AP by

13.3 and 12.1 points. It suggests that the interactiveness

score predicted by HO-RPN makes the main contribution

to our improvement. In Figure 6, we show some detection

results of our method.

Number of human boxes in Eq.(3) In Table 1c, we

change the number of human boxes in HO-RPN (i.e., K in

Eq.(3)). We observe that as involving more human boxes,

the performance on detecting interacting objects increases.

However, it will cost more inference time. As a trade-off

between performance and speed, we choose 8 human boxes

in our experiments.
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Figure 7: Ablation on various seen/unseen splits. Each point

corresponds to an experiment. The x-axis represents the aver-

age number of training samples per class. The y-axis is the

AP@IoU=0.5 (%) over unseen classes.

Novel object detection In Table 1d, we evaluate the per-

formance of our model, ZS-HOID, on detecting unseen

novel objects. As this task is closely related to zero-

shot object detection, we compare against a state-of-the-

art zero-shot object detector (ZSOD) [2]. Here we use

word2vec [26] trained on GoogleNews corpus as the seman-

tic word embedding. As shown, our method can achieve 8.2

and 6.2 points improvement over ZSOD. This improvement

is mainly due to the interactiveness score produced by HO-

RPN, since the AP drops to 3.4 and 5.3 when we ablate it

from our model.

Semantic embeddings In Table 1e, we test three seman-

tic embeddings, GloVe [29] trained on Wikipedia 2014 and

Gigaword 5 corpus, word2vec [26] on GoogleNews corpus,

and FastText [16] on Wikipedia 2017 and UMBC corpus.

It shows that word2vec on GoogleNews achieves the over-

all best performance. Thus, in the rest of experiments with

zero-shot classification, we use the word2vec on Google-

News as the semantic embedding.

Comparison of various seen/unseen splits In our exper-

iments, we observe that the successes of zero-shot classifi-

cation strongly rely on the related seen categories. For in-

stance, the novel category “surfboard” can be recognized if

the classifier for seen categories “skateboard”, “snowboard”

and “boat” has a relatively higher response than other seen

categories. To investigate the influences of seen/unseen

splits, we perform two different random splits: Split-A

and Split-B. Split-A conducts splits per supercate-

gory (e.g., animals, sports, vehicles). It ensures that each

unseen category can have at least one seen category from

the same supercategory. In comparison, Split-B selects

an entire supercategory as seen or unseen. In this way, there

is no common supercategory between seen and unseen.

Figure 7 depicts the experimental results. As shown, the

results of Split-B are generally worse than Split-A,

even though it has more training samples. It suggests that

Methods
No pose HICO-DET (default)

estimator Full Rare Non-rare

VSRL [12] X 9.09 7.02 9.71

InteractNet [11] X 9.94 7.16 10.77

GPNN [32] X 13.11 9.34 14.23

iCAN [10] X 14.84 10.45 16.15

Knowledge [44] X 14.70 13.26 15.13

Contextual Attention [40] X 16.24 11.16 17.75

No-Frills (no pose) [13] X 16.96 11.95 18.46

HOID (ours) X 17.85 12.85 19.34

No-Frills (with pose) [13] 17.18 12.17 18.68

Interactiveness [21] 17.22 13.51 18.32

PMFNet [39] 17.46 15.65 18.00

Table 2: HOI detection. We compare against state-of-the-art

HOI detection methods. Results are mAP (%) evaluated on HICO-

DET test set. In this experiment, all 80 MS-COCO categories

are used for training.

Methods Seen Unseen All

ZSOD + InteractNet [11] 38.64 10.97 27.88

ZSOD + Interactiveness [21] 39.70 13.67 29.58

ZS-HOID w/o sr (our baseline) 37.53 10.61 27.06

ZS-HOID (ours) 43.13 19.88 34.09

Table 3: Experimental comparison of human-novel-object in-

teraction detection. Results are mAP (%) evaluated on V-COCO

test set based on our seen/unseen split.

having related seen categories is a key factor for detecting

novel objects.

HOI detection In Table 2, we compare against state-of-

the-art HOI detection methods. Here all annotated samples

of 80 MS-COCO categories are used to train our model. We

evaluate on HICO-DET dataset using the provided evalua-

tion protocol. It shows that our method can achieve state-

of-the-art performance on full and non-rare interactions. We

believe that the promotion is due to the good performance

of our detector, which produces only interacting objects and

indirectly reduces the false positive interaction detections.

It is worth noting that we do not utilize extra pose estima-

tors to extract the human skeleton. But we believe that using

the pose estimator can further improve our performance.

4.3. Human­Novel­Object Interaction Detection

In this section, we evaluate the performance of human-

novel-object interaction detection on V-COCO and HICO-

DET datasets using our seen/unseen split. For compar-

ison with existing HOI detection methods, we replace their

object detectors with a zero-shot object detector (ZSOD) [2]

which is trained with seen categories. Here we choose In-

teractNet [11] and Interactiveness [21] as competitors since

their models can utilize human visual information to sup-

press noninteracting objects produced by the object detec-

tor. We re-train their interaction models using annotations

of seen categories and evaluate on the full test set with

11658



Figure 8: Results of our model on human-novel-object interaction detection. Our model is trained with annotations of all 80 MS-

COCO object categories (green boxes), while it can detect interactions with unseen object categories (red boxes).

Methods accessory animal appliance electronic food furniture indoor kitchen outdoor sports vehicle all

S
e
e
n

ZSOD+InteractNet [11] 9.55 16.09 4.82 8.88 5.54 6.12 9.67 6.30 11.02 12.93 14.64 12.31

ZSOD+Interactiveness[21] 15.04 19.10 7.90 12.23 7.59 6.76 10.33 10.66 25.84 15.63 17.40 15.92

ZS-HOID w/o sr (our baseline) 9.05 14.40 4.60 7.94 5.17 7.20 9.16 5.88 11.08 11.57 12.98 11.11

ZS-HOID (ours) 19.51 25.76 11.56 16.23 11.69 10.30 18.71 12.11 30.70 21.51 20.88 21.19

U
n
s
e
e
n ZSOD+InteractNet [11] 0.82 1.64 0.23 0.00 0.82 3.87 0.67 0.07 0.00 2.41 2.20 1.62

ZSOD+Interactiveness[21] 2.13 3.10 0.07 0.61 0.24 0.82 0.64 0.69 1.97 2.60 1.67 1.52

ZS-HOID w/o sr (our baseline) 0.92 1.44 0.13 0.00 0.75 3.41 0.58 0.06 0.00 2.05 2.18 1.45

ZS-HOID (ours) 5.32 4.98 4.63 0.34 1.48 4.04 0.01 0.44 3.31 3.50 3.71 3.02

Table 4: Experimental comparison of human-novel-object interaction detection. Results are mAP (%) evaluated on HICO-DET

test set based on our seen/unseen split.

both seen and unseen categories.

The results on V-COCO and HICO-DET datasets are

shown in Table 3 and Table 4. We separately report the

mean Average Precision (mAP) over (1) interactions with

seen categories and (2) interactions with unseen cate-

gories. Our main focus is on detecting human-novel-object

interactions. For V-COCO dataset, as shown in Table 3,

our method outperforms the best baseline by 6.21 points

on unseen categories. For the challenging HICO-DET

dataset, we increase the mAP by nearly 1.86× over the best

baseline on interactions with unseen categories.

4.4. Scaling HOIs by Extending Object Space

To further demonstrate the ability of our method on de-

tecting HOIs with novel object categories, we collect more

images from Visual Genome [18] to test our model (see

more details in supplementary materials). Besides the 80

MS-COCO categories, we collect 30 novel object categories

(e.g., camera, fishing pole, guitar, pen, etc.). Here we use

the model trained on HICO-DET train set with the anno-

tations of all 80 MS-COCO categories to detect human in-

teractions with novel objects. In this experiment, we mainly

use qualitative evaluation. Some results of our model are

shown in Figure 8.

5. Conclusion

In this paper, we propose a novel human-object region
proposal network for the human-object interaction detec-
tion task. It leverages human visual clues to find objects.
We show that our proposed model can well detect interact-
ing objects, even though they belong to unseen object cat-
egories. Furthermore, we design a zero-shot classification
module to recognize novel objects. These contributions al-
low us to detect human interactions with unseen object cat-
egories.
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