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(a) A frame in animation “Garden of words” (b) A real photo processed by our method

Figure 1: Comparison between a real cartoon image and an image processed by our method.

Abstract

This paper presents an approach for image cartooniza-

tion. By observing the cartoon painting behavior and

consulting artists, we propose to separately identify three

white-box representations from images: the surface rep-

resentation that contains a smooth surface of cartoon im-

ages, the structure representation that refers to the sparse

color-blocks and flatten global content in the celluloid style

workflow, and the texture representation that reflects high-

frequency texture, contours, and details in cartoon im-

ages. A Generative Adversarial Network (GAN) framework

is used to learn the extracted representations and to car-

toonize images.

The learning objectives of our method are separately

based on each extracted representations, making our frame-

work controllable and adjustable. This enables our ap-

proach to meet artists’ requirements in different styles and

diverse use cases. Qualitative comparisons and quanti-

tative analyses, as well as user studies, have been con-

ducted to validate the effectiveness of this approach, and

our method outperforms previous methods in all compar-

isons. Finally, the ablation study demonstrates the influence

of each component in our framework.

1. Introduction

Cartoon is a popular art form that has been widely ap-

plied in diverse scenes. Modern cartoon animation work-

flows allow artists to use a variety of sources to create con-

tent. Some famous products have been created by turning

real-world photography into usable cartoon scene materials,

where the process is called image cartoonization.

The variety of cartoon styles and use cases require task-

specific assumptions or prior knowledge to develop usable

algorithms. For example, some cartoon workflows pay

more attention to global palette themes, but the sharpness of

lines is a secondary issue. In some other workflows, sparse

and clean color blocks play a dominant role in artistic ex-

pression, but the themes are relatively less emphasized.

These variants pose non-trivial challenges to black-box

models, e.g., [20, 48, 6], when faced with diverse demands

of artists in different use cases, and simply change the train-

ing dataset does not help. Especially, CartoonGAN [6] is

designed for image cartoonization, in which a GAN frame-

work with a novel edge loss is proposed, and achieves good

results in certain cases. But using a black-box model to di-

rectly fit the training data decreased its generality and styl-

ization quality, causing bad cases in some situations.

To address the above-mentioned problems, we made ex-

tensive observations on human painting behaviors and car-

toon images of different styles, and also consulted several

cartoon artists. According to our observations, which is

shown in Figure 3, we propose to decompose images into

several cartoon representations, and list them as follows:

Firstly, we extract the surface representation to repre-

sent the smooth surface of images. Given an image I ∈
R

W×H×3, we extract a weighted low-frequency component

Isf ∈ R
W×H×3, where the color composition and surface

texture are preserved with edges, textures and details ig-

nored. This design is inspired by the cartoon painting be-
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Figure 2: A simple illustration of our method. Images are

decomposed into three cartoon representations, which guide

the network optimization to generate cartoonized photos.

havior where artists usually draw composition drafts before

the details are retouched, and is used to achieve a flexible

and learnable feature representation for smoothed surfaces.

Secondly, the structure representation is proposed to ef-

fectively seize the global structural information and sparse

color blocks in celluloid cartoon style. We extract a seg-

mentation map from the input image I ∈ R
W×H×3 and

then apply an adaptive coloring algorithm on each seg-

mented regions to generate the structure representation

Ist ∈ R
W×H×3. This representation is motivated to em-

ulate the celluloid cartoon style, which is featured by clear

boundaries and sparse color blocks. The structure repre-

sentation is of great significance for generating the sparse

visual effects, as well as for our method to be embedded in

the celluloid style cartoon workflow.

Thirdly, we use the texture representation to contain

painted details and edges. The input image I ∈ R
W×H×3 is

converted to a single-channel intensity map It ∈ R
W×H×1,

where the color and luminance are removed and relative

pixel intensity is preserved. This feature representation is

motivated by a cartoon painting method where artists firstly

draw a line sketch with contours and details, and then apply

color on it. It guides the network to learn the high-frequency

textural details independently with the color and luminance

patterns excluded.

The separately extracted cartoon representations enable

the cartooniaztion problem to be optimized end-to-end

within a Generative Neural Networks (GAN) framework,

making it scalable and controllable for practical use cases

and easy to meet diversified artistic demands with task-

specific fine-tuning. We test our method on a variety of real-

world photos on diverse scenes in different styles. Experi-

mental results show that our method can generate images

with harmonious color, pleasing artistic styles, sharp and

clean boundaries, and significantly fewer artifacts as well.

We also show that our method outperforms previous state-

of-the-art methods through qualitative experiments, quanti-

tative experiments, and user studies. Finally, ablation stud-

ies are conducted to illustrate the influence of each repre-

sentation. To conclude, our contributions are as follows:

Figure 3: Common features of cartoon images: 1. Global

structures composed of sparse color blocks; 2. Details out-

lined by sharp and clear edges; 3. Flat and smooth surfaces.

• We propose three cartoon representations based on our

observation of cartoon painting behavior: the surface

representation, the structure representation, and the

texture representation. Image processing modules are

then introduced to extract each representation.

• A GAN-based image cartoonization framework is op-

timized with the guide of extracted representations.

Users can adjust the style of model output by balancing

the weight of each representation.

• Extensive experiments have been conducted to show

that our method can generate high-quality cartoonized

images. Our method outperforms existing methods in

qualitative comparison, quantitative comparison, and

user preference.

2. Related Work

2.1. Image Smoothing and Surface Extraction

Image smoothing [37, 14, 10, 29, 5] is an extensively

studied topic. Early methods are mainly filtering based [37,

14] and optimization-based methods later became popular.

Farbman et al. [10] utilized weighted least square to con-

strain the edge-preserving operator, Min et al. [29] solved

global image smoothing by minimizing a quadratic energy

function, and Bi et al. [5] proposed an L1 transforma-

tion for image smoothing and flattening problem. Xu and

Fan et al. [44, 9] introduced end-to-end networks for image

smoothing. In this work, we adapt a differentiable guided

filter [42] to extract smooth, cartoon-like surface from im-

ages, enabling our model to learn structure-level composi-

tion and smooth surface that artists have created in cartoon

artworks.

2.2. Superpixel and structure Extraction

Super-pixel segmentation [11, 31, 30, 2] groups spatially

connected pixels in an image with similar color or gray

level. Some popular superpixel algorithms [11, 31, 30] are

graph-based, treating pixels as nodes and similarity between

pixels as edges in a graph. Gradient ascent based algo-

rithms [7, 40, 2] initialize the image with rough clusters

and iteratively optimize the clusters with gradient ascent un-

til convergence. In this work, we follow the felzenszwalb

algorithm [11] to develop a cartoon-oriented segmentation

method to achieve a learnable structure representation. This
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Figure 4: Our proposed image cartoonization system

representation is significant for deep models to seize global

content information and produce practically usable results

for celluloid style cartoon workflows.

2.3. Non­photorealistic Rendering

Non-photorealistic Rendering (NPR) methods represent

image content with artistic styles, such as pencil sketch-

ing [43, 28], paints [12, 20], watercolor [39]. Image car-

toonization is also extensively studied from filtering based

method [34] to end-to-end neural network [6], covering the

use cases of photos [6], videos [41], and portraits [45].

Neural Style Transfer methods [12, 20, 8, 16] are pop-

ular among NPR algorithms, which synthesis images with

artistic style by combining the content of one image and the

style of another image. Gatys et al. [12] jointly optimized

a style loss and a content loss to generate stylize images

with a style-content image pair. Johnson et al. [20] acceler-

ated stylization by training an end-to-end network with per-

ception loss. Several works [8, 16] later proposed different

methods to stylize images.

NPR methods are also widely used in image abstraction

[24, 21]. These methods highlight semantic edges while

filtering out image details, presenting abstracted visual in-

formation of original images, and are commonly used for

cartoon related applications. Our method, different from

style transfer methods that use a single image as reference

or image abstraction methods that simply consider content

images, learns the cartoon data distribution from a set of

cartoon images. This allows our model to synthesis high-

quality cartoonized images on diverse use cases.

2.4. Generative Adversarial Networks

Generative Adversarial Network(GAN) [13] is a state-

of-the-art generative model that can generate data with the

same distribution of input data by solving a min-max prob-

lem between a generator network and a discriminator net-

work. It is powerful in image synthesis by forcing the gener-

ated images to be indistinguishable from real images. GAN

has been widely used in conditional image generation tasks,

such as image inpainting [32], style transfer [33], image car-

toonization [6], image colorization [46]. In our method, we

adopt adversarial training architecture and use two discrim-

inators to enforce the generator network to synthesize im-

ages with the same distribution as the target domain.

2.5. Image­to­Image Translation

Image-to-Image Translation [19, 17, 25, 48] tackles the

problem of translating images from a source domain to an-

other target domain. Its applications include image qual-

ity enhancement [18], stylizing photos into paints [20, 33],

cartoon images [6] and sketches [26], as well as grayscale

photo colorization [47] and sketch colorizaiton [46]. Re-

cently, bi-directional models are also introduced for inter-

domain translation. Zhu et al. [48] performs transformation

of unpaired images(i.e. summer to winter, photo to paints).

In this paper, we adopt an unpaired image-to-image

translation framework for image cartoonization. Unlike

previous black-box models that guide network training with

loss terms, we decompose images into several represen-

tations, which enforces network to learn different features

with separate objectives, making the learning process con-

trollable and tunable.

3. Proposed Approach

We show our proposed image cartoonizaiton framework

in Figure 4. Images are decomposed into the surface repre-

sentation, the structure representation, and the texture rep-

resentations, and three independent modules are introduced

to extract corresponding representations. A GAN frame-

work with a generator G and two discriminators Ds and Dt
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is proposed, where Ds aims to distinguish between surface

representation extracted from model outputs and cartoons,

and Dt is used to distinguish between texture representa-

tion extracted from outputs and cartoons. Pre-trained VGG

network [35] is used to extract high-level features and to im-

pose spatial constrain on global contents between extracted

structure representations and outputs, and also between in-

put photos and outputs. Weight for each component can be

adjusted in the loss function, which allows users to control

the output style and adapt the model to diverse use cases.

3.1. Learning From the Surface Representation

The surface representation imitates cartoon painting

style where artists roughly draw drafts with coarse brushes

and have smooth surfaces similar to cartoon images. To

smooth images and meanwhile keep the global semantic

structure, a differentiable guided filter is adopted for edge-

preserving filtering. Denoted as Fdgf , it takes an image I as

input and itself as guide map, returns extracted surface rep-

resentation Fdgf (I, I) with textures and details removed.

A discriminator Ds is introduced to judge whether model

outputs and reference cartoon images have similar surfaces,

and guide the generator G to learn the information stored

in the extracted surface representation. Let Ip denote the

input photo and Ic denote the reference cartoon images, we

formulate the surface loss as:

Lsurface(G, Ds) = logDs(Fdgf (Ic, Ic))

+ log(1− Ds(Fdgf (G(Ip),G(Ip))))
(1)

3.2. Learning From the Structure representation

The Structure representation emulates flattened global

content, sparse color blocks, and clear boundaries in cel-

luloid style cartoon workflow. We at first use felzenszwalb

algorithm to segment images into separate regions. As su-

perpixel algorithms only consider the similarity of pixels

and ignore semantic information, we further introduce se-

lective search [38] to merge segmented regions and extract

a sparse segmentation map.

Standard superpixel algorithms color each segmented re-

gion with an average of the pixel value. By analyzing the

processed dataset, we found this lowers global contrast,

darkens images, and causes hazing effect on the final results

(shown in Figure 5). We thus propose an adaptive coloring

algorithm, and formulate it in Equation 2, where we find

γ1 = 20, γ2 = 40 and µ = 1.2 generate good results. The

colored segmentation maps and the final results trained with

adaptive coloring are shown in Figure 5, this effectively en-

hances the contrast of images and reduces hazing effect.

Si,j = (θ1 ∗ S̄ + θ2 ∗ S̃)
µ (2)

(θ1, θ2) =











(0, 1) σ(S) < γ1,

(0.5, 0.5) γ1 < σ(S) < γ2,

(1, 0) γ2 < σ(S).

(a) Segmentation with average color (b) Segmentation with adaptive color

(d) Result with adaptive color(c) Result with average color

Figure 5: Adaptive coloring algorithm. (a) and (b) show

segmentation maps with different coloring method, while

(c) and (d) shows results generated with different color-

ing method. Adaptive coloring generates results that are

brighter and free from hazing effects.

We use high-level features extracted by pre-trained

VGG16 network [35] to enforce spatial constrain between

our results and extracted structure representation. Let Fst

denote the structure representation extraction, the structure

loss Lstructure is formulated as:

Lstructure = ‖VGGn(G(Ip))− VGGn(Fst(G(Ip)))‖ (3)

3.3. Learning From the Textural Representation

The high-frequency features of cartoon images are key

learning objectives, but luminance and color information

make it easy to distinguish between cartoon images and

real-world photos. We thus propose a random color shift

algorithm Frcs to extract single-channel texture representa-

tion from color images, which retains high-frequency tex-

tures and decreases the influence of color and luminance.

Frcs(Irgb) = (1−α)(β1∗Ir+β2∗Ig+β3∗Ib)+α∗Y (4)

In Equation 4, Irgb represents 3-channel RGB color im-

ages, Ir, Ig and Ib represent three color channels, and Y

represents standard grayscale image converted from RGB

color image. We set α = 0.8, β1, β2 and β3 ∼ U(−1, 1).
As is shown in Figure 4, the random color shift can generate

random intensity maps with luminance and color informa-

tion removed. A discriminator Dt is introduced to distin-

guish texture representations extracted from model outputs

and cartoons, and guide the generator to learn the clear con-

tours and fine textures stored in the texture representations.

Ltexture(G,Dt) = logDt(Frcs(Ic))

+ log(1− Dt(Frcs(G(Ip))))
(5)

3.4. Full model

Our full model is a GAN based framework with one

generator and two discriminators. It is jointly optimized

with features learned from three cartoon representations and
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Figure 6: The sharpness of details could be adjusted by style

interpolation. δ = 0.0, 0.25, 0.5, 0.75, 1.0 from left to right.

could be formulated in Equation 6. By adjusting and bal-

ancing λ1, λ2, λ3 and λ4, it could be easily adapted to vari-

ous applications with different artistic style.

Ltotal = λ1 ∗ Lsurface + λ2 ∗ Ltexture

+ λ3 ∗ Lstructure + λ4 ∗ Lcontent + λ5 ∗ Ltv

(6)

The total-variation loss Ltv [4] is used to impose spa-

tial smoothness on generated images. It also reduces high-

frequency noises such as salt-and-pepper noise. In Equation

7, H, W, C represent spatial dimensions of images.

Ltv =
1

H ∗W ∗ C
‖ ▽x (G(Ip)) +▽y(G(Ip))‖ (7)

The content loss Lcontent is used to ensure that the car-

toonized results and input photos are semantically invariant,

and the sparsity of L1 norm allows for local features to be

cartoonized. Similar to the structure loss, it is calculated on

pre-trained VGG16 feature space:

Lcontent = ‖VGGn(G(Ip))− VGGn(Ip)‖ (8)

To adjust sharpness of output, we adopt a differentiable

guided filter Fdgf for style interpolation. Shown in Fig-

ure 6, it can effectively tune the sharpness of details and

edges without fine-turning the network parameters. Denote

the network input as Iin and network output as Iout, we

formulated the post-processing in Equation 9, where Iin is

used as guide map:

Iinterp = δ ∗ Fdgf (Iin,G(Iin)) + (1− δ) ∗ G(Iin) (9)

4. Experimental Results

4.1. Experimental Setup

Implementation. We implement our GAN method with

TensorFlow [1]. The generator and discriminator architec-

tures are described in the supplementary material. Patch

discriminator [19] is adopted to simplify calculation and en-

hance discriminative capacity. We use Adam [23] algorithm

Methods [20] [6] [48] Ours

LR, CPU(ms) 639.31 1947.97 1332.66 64.66

LR, GPU(ms) 16.53 13.76 9.22 3.58

HR, GPU(ms) 48.96 148.02 106.82 17.23

Parameter(M) 1.68 11.38 11.13 1.48

Table 1: Performance and model size comparison, LR

means 256*256 resolution, HR means 720*1280 resolution

to optimize both networks. Learning rate and batch size are

set to 2 ∗ 10−4 and 16 during training. We at first pre-train

the generator with the content loss for 50000 iterations, and

then jointly optimize the GAN based framework. Training

is stopped after 100000 iterations or on convergency.

Hyper-parameters All results shown in this paper, un-

less specially mentioned, are generated with λ1 = 1, λ2 =
10, λ3 = 2 ∗ 103, λ4 = 2 ∗ 103, λ5 = 104. The setting is

based on the statistic of the training dataset. As our method

is data-driven, the neural networks can adaptively learn the

visual constitutes even if parameters are coarsely defined.

Dataset. Human face and landscape data are collected

for generalization on diverse scenes. For real-world photos,

we collect 10000 images from the FFHQ dataset [22] for

the human face and 5000 images from the dataset in [48]

for landscape. For cartoon images, we collect 10000 images

from animations for the human face and 10000 images for

landscape. Producers of collected animations include Kyoto

animation, P.A.Works, Shinkai Makoto, Hosoda Mamoru,

and Miyazaki Hayao. For the validation set, we collect

3011 animation images and 1978 real-world photos. Im-

ages shown in the main paper are collected from the DIV2K

dataset [3], and images in user study are collected from the

Internet and Microsoft COCO [27] dataset. During train-

ing, all images are resized to 256*256 resolution, and face

images are feed only once in every five iterations.

Previous Methods. We compare our method with four

algorithms that represent Neural Style Transfer [20], Image-

to-Image Translation [48], Image Abstraction [21] and Im-

age Cartoonization [6] respectively.

Evaluation metrics. In qualitative experiments, we

present results with details of four different methods and

original images, as well as qualitative analysis. In quantita-

tive experiments, we use Frechet Inception Distance (FID)

[15] to evaluate the performance by calculating the distance

between source image distribution and target image distri-

bution. In the user study, candidates are asked to rate the

results of different methods between 1 to 5 in cartoon qual-

ity and overall quality. Higher scores mean better quality.

Time Performance and Model Size. Speeds of four

methods are compared on different hardware and shown in

Table 1. Our model is the fastest among four methods on

all devices and all resolutions, and has the smallest model

size. Especially, our model can process a 720*1280 image

on GPU within only 17.23ms, which enables it for real-time
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(e) City views (f) Scenery

(a) Person (b) Animals (c) Plants (d) Foods

Figure 7: Results of our method in different scenes. Zoom in for details

(b) More Texture (c) More Structure (d) More Surface(a) Input Photo

Figure 8: Output quality could be controlled by adjusting

weight of each representation. Zoom in for details.

High-Resolution video processing tasks.

Generality to diverse use cases. We apply our model on

diverse real-world scenes, including natural landscape, city

views, people, animals, and plants, and show the results in

Figure 7. More examples of different styles and diverse use

cases are shown in the supplementary material.

4.2. Validation of Cartoon Representations.

To validate our proposed cartoon representations reason-

able and effective, a classification experiment and a quan-

titative experiment based on FID are conducted, and the

results are shown in Table 2. We train a binary classifier

on our training dataset to distinguish between real-world

photos and cartoon images. The classifier is designed by

adding a fully-connected layer to the discriminator in our

framework. The trained classifier is then evaluated on the

validation set to validate the influence of each cartoon rep-

No. Surface Structure Texture Original

Acc 0.8201 0.6342 0.8384 0.9481

FID 113.57 112.86 112.71 162.89

Table 2: Classification accuracy and FID evaluation of our

proposed cartoon representation.

resentation.

We find the extracted representations successfully fool

the trained classifier, as it achieves lower accuracy in all

three extracted cartoon representations compared to the

original images. The calculated FID metrics also support

our proposal that cartoon representations help close the gap

between real-world photos and cartoon images, as all three

extracted cartoon representations have smaller FID com-

pared to the original images.

4.3. Illustration of Controllability

As is shown in Figure 8, the style of cartoonized results

could be adjusted by turning the weight of each representa-

tion in the loss function. Increase the weight of texture rep-

resentation adds more details in the images, rich details such

as grassland and stones are preserved. This is because it reg-

ulates dataset distributions and enhances high-frequency de-

tails stored in texture representation. Smoother textures and

fewer details are generated with a higher weight of surface

representation, the details of the cloud and the mountain

are smoothed. The reason is that guided filtering smooths

training samples and reduces densely textured patterns. To

get more abstract and sparse features, we can increase the

weight of structure representation, and the details of the
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(a) Photo (b) Fast Neural Style (c) Image Abstraction (d) CycleGAN (d) Ours

(e) Photo (f) Paprika Style (g) Shinkai Style (h) Hosoda Style (j) Ours(i) Hayao Style

Figure 9: Qualitative comparison, Second raw shows 4 different styles of CartoonGAN [6].

Methods Photo Fast Neural Style [20] CycleGAN [48] Image Abstraction [21] Ours

FID to Cartoon 162.89 146.34 141.50 130.38 101.31

FID to Photo N/A 103.48 122.12 75.28 28.79

Methods Shinkai style of [6] Hosoda style of [6] Hayao style of [6] Paprika style of [6] Ours

FID to Cartoon 135.94 130.76 127.35 127.05 101.31

FID to Photo 37.96 58.13 86.48 118.56 28.79

Table 3: Performance evaluation based on FID

mountains are abstracted into sparse color blocks. This is

because the selective search algorithm flattens the training

data and abstract them into structure representations. To

conclude, unlike black-box models, our white-box method

is controllable and can be easily adjusted.

4.4. Qualitative Comparison

Comparisons between our method and previous methods

are shown in Figure 9. The white-box framework helps gen-

erate clean contours. Image abstraction causes noisy and

messy contours, and other previous methods fail to gener-

ate clear borderlines, while our method has clear bound-

aries, such as human face and clouds. Cartoon represen-

tations also help keep color harmonious. CycleGAN gen-

erates darkened images and Fast Neural Style causes over-

smoothed color, and CartoonGAN distorts colors like hu-

man faces and ships. Our method, on the contrary, pre-

vents improper color modifications such as faces and ships.

Lastly, our method effectively reduces artifacts while pre-

serves fine details, such as the man sitting on the stone,

but all other methods cause over-smoothed features or dis-

tortions. Also, methods like CycleGAN, image abstrac-

tion and some style of CartoonGAN cause high-frequency

artifacts. To conclude, our method outperforms previous

methods in generating images with harmonious color, clean

boundaries, fine details, and fewer noises.

4.5. Quantitative Evaluation

Frechet Inception Distance (FID) [15] is wildly-used to

quantitatively evaluate the quality of synthesized images.

Pre-trained Inception-V3 model [36] is used to extract high-

level features of images and calculate the distance between

two image distributions. We use FID to evaluate the perfor-

mance of previous methods and our method. As Cartoon-

GAN models have not been trained on human face data, for

fair comparisons, we only calculate FID on scenery dataset.

As is shown in Table 3, our method generates images

with the smallest FID to cartoon image distribution, which

proves it generates results most similar to cartoon images.

The output of our method also has the smallest FID to real-

world photo distribution, indicating that our method loyally

preserves image content information.
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(a) Original Photo (b) W/O Texture Representation (c) W/O Structure Representation (d) W/O Surface Representation (e) Full Model

Figure 10: Ablation study by removing each component

Methods [20] [6] [48] Ours

Cartoon quality, mean 2.347 2.940 2.977 4.017

Cartoon quality, std 1.021 1.047 1.437 0.962

Overall quality, mean 2.38 2.937 2.743 3.877

Overall quality, std 0.993 1.046 1.321 0.982

Table 4: Result of User study, higher score means better

quality. Row 1 and 2 represent the mean and standard error

of Cartoon quality score, row 3 and 4 represent the mean

and standard error of Overall quality score.

4.6. User Study

The quality of Image cartoonization is highly subjective

and greatly influenced by individual preference. We con-

ducted user studies to show how users evaluate our method

and previous methods. The user study involves 30 images,

each processed by our proposed method and three previous

methods. Ten candidates are asked to rate every image be-

tween 1-5 in 2 dimensions, following the criterion below:

Cartoon quality: users are asked to evaluate how similar

are the shown images and cartoon images.

Overall quality: users are asked to evaluate whether there

are color shifts, texture distortions, high-frequency noises,

or other artifacts they dislike on the images.

We collect 1200 scores in total, and show the average

score and standard error of each algorithm Table 4. Our

method outperforms previous methods in both cartoon qual-

ity and overall quality, as we get higher scores in both cri-

teria. This is because our proposed representations effec-

tively extracted cartoon features, enabling the network to

synthesize images with good quality. The synthesis qual-

ity of our method is also the most stable, as our method

has the smallest standard error in both criteria. The reason

is that our method is controllable and can be stabilized by

balancing different components. To conclude, our method

outperforms all previous methods shown in the user study.

4.7. Analysis of Each Components

We show the results of ablation studies in Figure 10.

Ablating the texture representation causes messy details.

Shown in Figure 10(a), irregular textures on the grassland

and the dog’s leg remains. This is due to the lack of high-

frequency stored in the surface representation, which deteri-

orates the model’s cartoonization ability. Ablating the struc-

ture representation causes high-frequency noises in Figure

10(b). Severe pepper-and-salt appear on the grassland and

the mountain. This is because the structure representation

flattened images and removed high-frequency information.

Ablating the surface representation causes both noise and

messy details. Unclear edges of the cloud and noises on

the grassland appear in Figure 10(c). The reason is that

guided filtering suppresses high-frequency information and

preserves smooth surfaces. As a comparison, the results

of our full model are shown in Figure 10(d), which have

smooth features, clear boundaries, and much less noise. In

conclusion, all three representations help improve the car-

toonizaiton ability of our method.

5. Conclusion

In this paper, we propose a white-box controllable image

cartoonization framework based on GAN, which can gener-

ate high-quality cartoonized images from real-world photos.

Images are decomposed into three cartoon representations:

the surface representation, the structure representation, and

the texture representation. Corresponding image process-

ing modules are used to extract three representations for

network training, and output styles could be controlled by

adjusting the weight of each representation in the loss func-

tion. Extensive quantitative and qualitative experiments, as

well as user studies, have been conducted to validate the

performance of our method. Ablation studies are also con-

ducted to demonstrate the influence of each representation.
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