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Abstract

Racial equality is an important theme of international

human rights law, but it has been largely obscured when the

overall face recognition accuracy is pursued blindly. More

facts indicate racial bias indeed degrades the fairness of

recognition system and the error rates on non-Caucasians

are usually much higher than Caucasians. To encourage

fairness, we introduce the idea of adaptive margin to learn

balanced performance for different races based on large

margin losses. A reinforcement learning based race bal-

ance network (RL-RBN) is proposed. We formulate the pro-

cess of finding the optimal margins for non-Caucasians as

a Markov decision process and employ deep Q-learning to

learn policies for an agent to select appropriate margin by

approximating the Q-value function. Guided by the agen-

t, the skewness of feature scatter between races can be re-

duced. Besides, we provide two ethnicity aware training

datasets, called BUPT-Globalface and BUPT-Balancedface

dataset, which can be utilized to study racial bias from both

data and algorithm aspects. Extensive experiments on RFW

database show that RL-RBN successfully mitigates racial

bias and learns more balanced performance.

1. Introduction

Recently, with the emergence of deep convolutional neu-

ral networks (CNN) [26, 43, 46, 19, 20], the performance of

face recognition (FR) [49, 45, 42] is dramatically boosted.

However, as its wider and wider application, its potential

for unfairness is raising alarm [8, 5, 1, 2]. For instance,

according to [14], a year-long research investigation across

100 police departments revealed that African-American in-

dividuals are more likely to be stopped by law enforcement.

As stated in the Universal Declaration Human Rights [7],

all are equal before the law and are entitled without any

discrimination to equal protection. Obviously, the develop-

ment and deployment of fair and unbiased FR systems is

crucial to prevent any unintended side effects and to ensure

the long-term acceptance of these FR algorithms. Previous

studies [50, 54] have shown that racial bias comes on both

data and algorithm aspects. Unfortunately, there are still no

sufficient research efforts on the fairness of face recogni-

tion algorithms [38, 39, 13], as well as building balanced

databases [50], in the literature.
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Figure 1. We provide two ethnicity aware training datasets and a

debiased algorithm to reduce bias from data and algorithm aspects.

A major driver of bias in face recognition, as well as

other AI tasks, is the training data. Deep face recognition

networks are often trained on large-scale training datasets,

such as CASIA-WebFace [52], VGGFace2 [10] and MS-

Celeb-1M [17], which are typically constructed by scraping

websites like Google Images. Such data collecting meth-

ods can unintentionally produce data that encode gender,

ethnic and culture biases. Thus, social awareness must be

brought to the building of datasets for training. In this work,

we take steps to ensure such datasets are diverse and do

not under represent particular groups by constructing two

new training datasets, i.e. BUPT-Globalface and BUPT-

Balancedface dataset. One is built up according to the pop-

ulation ratio of ethnicity in the world, and the other strictly

balances the number of samples in ethnicity.

Another source of bias can be traced to the algorithm-

s themselves. The state-of-the-art (SOTA) face recognition

methods, such as Sphereface [30], Cosface [48] and Arcface

[12], apply a margin between classes to maximize overall

prediction accuracy for the training data. If a specific group

of faces appears more frequently than others in the training

data, the method will optimize for those individuals because
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this boosts the accuracy on the test datasets with the same

bias, e.g. LFW [21, 27] and IJB-C [31]. Further, our experi-

ments show that even with balanced training set, the feature

separability of non-Caucasians is inferior to that of Cau-

casians. To address this problem, the algorithms must trade-

off the specific requirements of margins of various groups

of people, and produce more equitable recognition perfor-

mance.

Since racial bias is a complex problem caused by many

latent factors, including but not limited to the number, we

apply reinforcement learning (RL) [34] to learn an AutoM-

L tool on setting dynamic margins for different races. R-

L endows agents with the ability to perform experiments

to better understand biased learning process, enabling them

to learn high-level causal relationships leading to dataset-

independent policy on adaptive margins. In this paper, a

reinforcement learning based race-balance network (RL-

RBN) is proposed. First, we use deep Q-learning to

train an agent to generate adaptive margin policy for non-

Caucasians through maximizing the expected sum of re-

wards. The rewards are designed according to the skew-

ness of intra/inter-class distances between races. Then, we

train the balanced models guided by this adaptive margin

policy. Finally, RL-RBN balances the inter-class and intra-

class distance among different races, and thus achieves bal-

anced generalization ability. Besides racial bias showed in

our experiments, our method can also apply to remove other

demographic bias, e.g. gender and age.

Our contributions can be summarized into three aspects.

1) Two ethnicity aware training datasets are constructed and

released 1 for the study on reducing racial bias. 2) A new

debiased algorithm, RL-RBN, is proposed to learn adaptive

margins to mitigate bias between different races. RL tech-

nique is successfully applied to learn an adaptive margin

policy. 3) Extensive experiments on ethnicity aware train-

ing datasets and RFW [50] shows the effectiveness of our

RL-RBN. Combining balanced training and our debiased

algorithm, we obtain the fairest performance across races.

2. Related work

2.1. Racial bias in face recognition

Some studies [38, 16, 13, 39, 25] have uncovered that

non-deep face recognition algorithms inherit racial bias

from human and perform unequally on different races. The

2002 NIST Face Recognition Vendor Test (FRVT) is be-

lieved to be the first study that showed that non-deep FR

algorithms suffer from racial bias [38]. Phillips et al. [39]

utilized the images of the Face Recognition Vendor Test

2006 (FRVT 2006) to conduct cross training and matching

on White and Asian races, and suggested that training and

testing on different races results in severe performance drop.

1http://www.whdeng.cn/RFW/index.html

Klare et al. [25] collected mug shot face images of White,

Black and Hispanic from the Pinellas County Sheriff’s Of-

fice (PCSO) and concluded that the Black cohorts are more

difficult to recognize for all matchers. However, few effort-

s were made to study racial bias in deep face recognition.

Recently, Wang et al. [50] contributed a test dataset called

Racial Faces in-the-Wild (RFW) database, on which they

validated the racial bias of four commercial APIs and four

SOTA face recognition algorithms, and presented the solu-

tion using deep unsupervised domain adaptation to alleviate

this bias. But there is still vacancy in training datasets which

can be used to study racial bias.

2.2. Debiased algorithms

In many computer vision applications, there are some

works that seek to introduce fairness into networks and

mitigate data bias. These are respectively classified as

unbalanced-training [41, 9, 36, 53], attribute suppression

[5, 33, 37, 32] and domain adaptation [23, 22, 50, 44]. By

learning the underlying latent variables in an entirely unsu-

pervised manner, Debiasing Variational Autoencoder (DB-

VAE) [6] re-weighted the importance of certain data points

while training. Calmon et al. [9] transformed the given

dataset into a fair dataset by constraining the conditional

probability of network prediction to be similar for any t-

wo values of demographic information. SensitiveNets [35]

proposed to introduce sensitive information into triplet loss.

They minimized the sensitive information, while maintain-

ing distances between positive and negative embeddings.

2.3. Deep reinforcement learning

Mimicking humans’ decision making process, RL aims

to enable the agent to decide the behavior from its experi-

ences using a Markov decision process (MDP) [28]. Mnih

et al. [34] combined RL learning with CNN and bridged

the divide between high-dimensional sensory inputs and ac-

tions, resulting in human-level performance in Atari Games.

Recently, RL has been successfully applied in compute vi-

sion. Rao et al. [40] used RL to discard the confounding

frames and found the focuses of attentions for video recog-

nition. Haque et al. [18] utilized RL to identify small, dis-

criminative regions indicative of human identity in person

identification. Liu et al. [29] used RL to learn optimal mar-

gin to improve overall FR performance. In this paper, we

apply deep RL to address race balance problem in FR.

3. Ethnicity aware training datasets

A major driver of bias in face recognition is the training

data. Frequently, some race groups are over-represented and

others are under-represented. For example, East Asia and

India together contribute just 8% of commonly-used train-

ing datasets, even though these countries represent 44% of

the world’s population. In order to remove this source of
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bias and represent people of different regions equally, we

construct two ethnicity aware training datasets, i.e. BUPT-

Globalface and BUPT-Balancedface dataset. The identities

in these two datasets are grouped into 4 categories, i.e. Cau-

casian, Indian, Asian and African, according to their races.

As shown in Fig. 2, BUPT-Globalface contains 2M images

from 38K celebrities in total and its racial distribution is ap-

proximately the same as real distribution of world’s popu-

lation. BUPT-Balancedface dataset contains 1.3M images

from 28K celebrities and is approximately race-balanced

with 7K identities per race.

78%
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14%

25% 25%

25%25%

38%

13%

18%

31%

2M 

images

1.3M 

images

Caucasian
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(a) Existing training datasets (b) BUPT-Globalface (c) BUPT-Balancedface 

Figure 2. The percentage of different races in commonly-used

training datasets, BUPT-Globalface and BUPT-Balancedface.

Similar to RFW [50], we select images of different races

from MS-Celeb-1M [3] with help of the “Nationality” at-

tribute of FreeBase celebrities [15] and Face++ API. How-

ever, due to unbalanced distribution of MS-Celeb-1M [3],

we can only obtain 2K Indians and 5K Asians which are

not enough to construct a large scale dataset. As we know,

MS-Celeb-1M only selected the top 100K entities from one-

million FreeBase celebrity list [15]. Therefore, we down-

load the remaining images of Asians and Indians by Google

according to FreeBase celebrity list, and then clean them

both automatically and manually in the similar way as other

FR training datasets, such as VGGface2 [10] and Megaface

[24]. After obtaining enough images, we select images to

construct our ethnicity aware training datasets, and remove

their overlapping subjects in RFW [50].

4. Our method

4.1. Investigation and observation

To make learned features potentially separable and en-

hance the discrimination power, some methods proposed

to incorporate a margin between classes based on Softmax.

For example, Arcface [12] used an additive angular margin

m:

Larc = −
1

N

N
∑

j=1

log
e
sc

(

cos
(

θ
y(j)j

+m
))

e
sc

(

cos
(

θ
y(j)j

+m
))

+
∑n

i=1,i 6=y(j) e
sccosθij

(1)

and Cosface [48] used an additive cosine margin m:

Lcos = −
1

N

N
∑

j=1

log
e
sc

(

cos
(

θ
y(j)j

)

−m
)

e
sc

(

cos
(

θ
y(j)j

)

−m
)

+
∑n

i=1,i 6=y(j) e
sccosθij

(2)

where θij is the angle between the weight Wi and the fea-

ture xj . xj ∈ R
d denotes the deep feature of the j-th sam-

ple, belonging to the y(j)-th class, and Wi ∈ R
d denotes

the i-th column of the weight W ∈ R
d×n. N is the batch

size, n is the number of classes, and sc is the scale factor.

Although large margin losses successfully improve feature

discrimination, and get better performance on a series of

face recognition benchmarks, Wang et al. [50] experimen-

tally proved that they still fail to obtain balanced represen-

tations on different races under a uniform margin.

To get a better understanding, we train two ResNet-34

[19] models with the guidance of Arcface [12] and Soft-

max loss on the CASIA-Webface [52], and give the de-

tailed angle statistics of different races in Table 1. The

intra-class and inter-class angle are computed on set-1 and

RFW [50]. The set-1 contains 500 identities per race ran-

domly selected from our BUPT-Globalface dataset. Intra-

class angle refers to the mean of angles between feature and

the feature centre, which can be formulated as: Θintra =
1
Ng

∑Ng

i=1
1

|Ii|

∑

xj∈Ii
θxj ,ci , where Ng is the number of i-

dentities belonged to one race group, Ii is the set of al-

l images in i-th identity, and ci is the feature centre of i-

th identity computed by the mean vector of embeddings.

Inter-class angle refers to the mean of minimum angles be-

tween embedding feature centres, which can be formulated

as: Θinter = 1
Ng

∑Ng

i=1 min
k=1:Ng,k 6=i

θck,ci . In Table 1, we

find that non-Caucasians can not obtain as good intra-class

compactness and inter-class discrepancy as Caucasians do,

especially the inter-class angle. That is to say, the perfor-

mance of non-Caucasians is inferior to that of Caucasians

on test set, even if a uniform margin is performed on differ-

ent races when training.

loss functions Caucasian Indian Asian African

Softmax

Intra1 35.55 36.00 38.83 37.29

Inter1 62.67 50.89 46.17 54.26

Intra2 33.81 31.49 32.09 32.39

Inter2 59.09 50.15 46.41 48.42

Arcface [12]

Intra1 36.70 40.00 42.78 41.50

Inter1 67.72 59.73 55.34 62.90

Intra2 36.22 34.87 36.15 36.18

Inter2 65.76 59.72 56.46 58.54

Table 1. The angle statistics of different races ([CASIA [52],

ResNet34, loss*]). “Intra1” and “Intra2” refer to intra-class an-

gle on set-1 and RFW, respectively. “Inter1” and “Inter2” refer to

inter-class angle on set-1 and RFW, respectively.

Considering of poorer generalization ability of non-

Caucasians, we should take special care of these difficult

colored faces, and thus prefer an appropriate margin with

them to improve their generalization ability. Therefore,

we introduce the idea of adaptive margin into race balance

problem. The margin of Caucasians remains unchanged,

while optimal margins are selected adaptively for each col-
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Figure 3. An illustration of our method. Offline sampling: We vary margin for each race group to collect some training samples , i.e.

(st, at, rt, st+1), before training DQN. Details of (st, at, rt, st+1) refer to Section 4.2. Deep Q-learning network: With these samples,

DQN is trained to approximate the Q-value function, and the reward is determined by the skewness of inter/intra-class distance between

races. Then, adaptive margin policy for agent can be generated according to Q-value. Adaptive margin: We train a race balanced network

with a fixed margin for Caucasians and adaptive margins for each colored-face which changes at each training step guided by agent.

ored race in order to minimize the skewness of angles be-

tween races and learn balanced performance for different

races. We replace the fixed margin m in Eqn. 1 and E-

qn. 2 by a race-related and training step related parameter

mj(t), where t represents the stage of the training. In fact,

different races have different demands for the margins, and

the demands may change during the training. The proposed

adaptive margin loss function can be formulated as follows:

LRBN = −
1

N

N
∑

j=1

log
e
sc

(

cos
(

θ
y(j)j

+αj(t)
))

e
sc

(

cos
(

θ
y(j)j

+αj(t)
))

+
∑n

i=1,i 6=y(j) e
sccosθij

where, αj(t) =

{

m, if j ∈ Caucasian

mj(t), otherwise

(3)

The similar modification can be made for Cosface [48]. So

the key problem is to find an optimal adaptive margin policy

mj(t) for each non-Caucasian group to minimize the skew-

ness of angles between Caucasians and non-Caucasians. We

make Caucasians as the benchmark (anchor) here because

white subjects are overwhelmingly dominant in numbers in

existing FR datasets. According to different racial distribu-

tion, our RL-RBN can change the benchmark and replace

Caucasians by the most representative ethnic group.

4.2. Adaptive margin policy learning

In our method showed in Fig. 3, the problem of find-

ing mj(t) can be formulate as a Markov Decision Process

(MDP) [28], based on which we use deep Q-learning to ad-

just the margin at each iteration. Deep Q-learning aims to

enable the agent to decide the behavior from its experiences

using a MDP. At each time step t ∈ [1, T ], the agent takes

an action at from action space A according to the Q-value

Q(st, a) estimated by the deep Q-learning network (DQN)

with the state st as input. The environment gives a reward

r(st, at) for this action and then the agent updates its states

with st+1. According to this new state, the agent will go in-

to next time step and choose a new action. The goal of deep

Q-learning is to train an agent with policy π to maximize

the expected sum of rewards.

State. The state s of the MDP consists of three sepa-

rate parts {G,M,Binter}. G = {0, 1, 2} represents the

race group, i.e. Indian (group 0), Asian (group 1) and

African (group 2). M is equivalent of the adaptive margin

m. Binter means the bias (skewness) of inter-class distance

between g-th race group and Caucasians, which can be for-

mulated as follows:

Binter =
∣

∣d
g
inter − dCau

inter

∣

∣

where, d
g
inter =

1

Ng

Ng
∑

i=1

max
k=1:Ng,k 6=i

cos(ck, ci)
(4)

where d
g
inter and dCau

inter is the inter-class distance of g-th

race group and that of Caucasian, respectively. Ng is the

number of identities belonged to g-th race group and ci is

the feature centre of i-th identity computed by the mean

vector of embeddings. cos(·, ·) is the cosine distance func-

tion. dCau
inter can be computed by the same way as d

g
inter. We

suppose that different races have different demands for the

margins, and the demands may change according to their

Binter. When the bias (skewness) is larger, the race group

may need larger margin to improve its generalization abil-

ity, and vice versa. Therefore, we take both G and Binter

into consideration when designing state s. Each action will

be chosen based on race group and the current skewness.

Moreover, in order to make the space of states discrete,

we map M and Binter to discrete spaces M and B, where

M = {m1,m2, ...,mnM
} and B = {b1, b2, ..., bnB

}.

Action. The action A = {0, 1, 2} is the adjustment of

margin. We define 3 types of action as ‘staying the same’

(action 0), ‘shifting to larger value’ (action 1) and ‘shifting

to smaller value’ (action 2), and shifting step is set to be a

constant ǫ. The optimal action taken by the agent at time

step t is formulated by at = argmax
a

Q(st, a), where the
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Q-value Q(st, a) is the accumulated rewards of taking the

action a. For example, at time step t, the agent chooses

to take the action ‘1’ according to Q-value and state st =
{0,m2, b1}, then the margin of Indian will update to m3 =
m2 + ǫ.

Reward. The reward, as a function r(st, at), reflects

how good the action taken by the agent is with regard to the

state st. Since we suppose non-Caucasians should have the

same generalization ability as Caucasians and the skewness

between them should be minimized, we use the skewness

of inter/intra-class distance between them to design the re-

ward. The bias (skewness) of intra-class distance between

Caucasians and g-th group can be formulated as:

Bintra =
∣

∣d
g
intra − dCau

intra

∣

∣

where, d
g
intra =

1

Ng

Ng
∑

i=1

1

|Ii|

∑

xj∈Ii

cos(xj , ci)
(5)

where d
g
intra and dCau

intra is the intra-class distance of g-th

race group and that of Caucasian, respectively. Ng is the

number of identities belonged to g-th race group. Ii is the

set of all images in i-th identity, and ci is the feature cen-

tre of i-th identity computed by the mean vector of embed-

dings. And the bias (skewness) of inter-class distance can

be computed by Eqn. 4. When the agent takes the action

at to adjust the margin of g-th race group, the reward of the

action at is computed by:

r(st, at) = Rt+1 −Rt

where, R = − (Binter +Bintra)
(6)

Objective function. We choose to use deep Q-Learning

[34, 51] to learn an optimal policy for agent. A two-layer

fully connected network with a further hidden layer of 10

units is utilized to estimate the Q function. Each fully con-

nected layer is followed by a ReLU activation function. The

deep Q-learning network takes the state as input and pro-

duces the Q-value of all possible actions. We update the

network by the minimizing the following loss function:

Lq = Est,at

[

(

yt −Q
(

st, at
))2

]

where, yt = Est+1

[

rt + γ max
at+1

Q
(

st+1, at+1|st, at
)

]

(7)

where yt − Q (st, at) is the temporal difference er-

ror. yt is the target value of Q (st, at). rt is the re-

ward of taking the action at, computed by Eq.6, and

γ max
at+1

Q
(

st+1, at+1|st, at
)

is the future reward estimated

by the current deep Q-learning network with st+1.

To train DQN, we collect some offline samples in ad-

vance, i.e. {(st, at, rt, st+1)}, as input to feed network.

These offline samples are generated by a sample CNN as

shown in Algorithm 1. For each non-Caucasian group, we

manually adjust the margin by actions at and train the cur-

rent sample network for one epoch with new margin. After

one-epoch training, we compute the intra-class and inter-

class distance of this race group and obtain the next state

st+1 and reward rt. We keep doing this until all states have

been traversed. Then, we train DQN by these collected sam-

ples. After that, the adaptive margin policy can be generated

according to the output of trained DQN, i.e. Q-value.

Algorithm 1 Offline sampling.

Input:

The unbalanced data with four race groups.

Output:

The samples, i.e. {(st, at, rt, st+1)}, which are used

for training deep Q-learning network.

1: for g in all groups do

2: for a in all actions do

3: Compute Bt
inter of g-th group by Eqn. 4, and ob-

tain current state st = {G,M t, Bt
inter}.

4: Take the action a to adjust margin for g-th group.

5: Train the sample network for an epoch with the up-

dated margin M t+1 of g-th group; while margins

of other groups remain unchanged.

6: Compute Bt+1
inter of g-th group according to E-

qn. 4, and obtain updated state st+1 =
{G,M t+1, Bt+1

inter}.

7: Compute reward rt according to Eqn. 6.

8: Collect the sample {(st, at, rt, st+1)}.

9: end for

10: if st+1 is a new state that hasn’t appeared then

11: Go to step 2.

12: end if

13: end for

Recognition network. We utilize the policy to guide the

training process of our recognition network. At each time

step t, st is computed by recognition network according to

Eqn. 4 and sent to the agent, then the trained agent will

take action at to adjust the margins for each non-Caucasian

group. Then, we update the margin of non-Caucasians in

Eqn. 3, and use it to optimize the recognition network for

one epoch. We keep doing this until the end of training.

5. Experiments

5.1. Experimental settings

Datasets. Because existing datasets are not race-aware

except RFW [50], we use our BUPT-Globalface and BUPT-

Balancedface datasets to train our models and use RFW [50]

to fairly measure performance of different races. RFW [50]

consists of four testing subsets, namely Caucasian, Asian,
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Indian and African. Each subset contains about 10K images

of 3K individuals for face verification. Moreover, in order

to evaluate the generalization ability accurately, we addi-

tionally construct a validation set to compute intra-class and

inter-class distance in RL instead of directly using training

sets. The validation set contains 500 identities per race, and

has no overlapping subjects with BUPT-Globalface, BUPT-

Balancedface and RFW dataset [50].

Evaluation Protocol. Verification performance is mea-

sured by accuracy. We utilize average accuracy of four

races as metric to evaluate total performance of deep mod-

els. And standard deviation (STD) and skewed error ratio

(SER) are used as the fairness criterion. Standard devia-

tion reflects the amount of dispersion of accuracies of dif-

ferent races. Error skewness is computed by the ratio of the

highest error rate to the lowest error rate among different

races. It can be formulated as SER =
max

g
Errorg

min
g

Errorg
where

g ∈ {Caucasian,Indian,Asian,African} means race group.

Implementation details. For preprocessing, we use five

facial landmarks for similarity transformation, then crop

and resize the faces to 112×112. Each pixel ([0, 255]) in

RGB images is normalized by subtracting 127.5 and then

being divided by 128. MxNet [11] is utilized to implemen-

t adaptive margin loss and TensorFlow [4] is for Deep Q-

learning. We use ResNet34 [19] for training recognition C-

NN and sampling CNN. For the case of training recognition

CNN, the learning rate is started from 0.1 and decreased

with a factor of 10 when errors plateau. The batch size is

set as 256 for the small training dataset and 200 for the large

one. We set momentum as 0.9 and weight decay as 5e− 4.

The architecture of DQN is mentioned in Section 4.2. The

AdamOptimizer is used to optimize the whole network. The

learning rate is set to be 1e− 4 and the discount factor γ is

set to be 0.99.

First, we collect training samples {(st, at, rt, st+1)} for

deep Q-learning. In RL-RBN(soft), the margin of Cau-

casians is set to be 0 similar to N-Softmax [47], and the

margin of non-Caucasians varies from 0 to 0.6 in steps of

0.2 in which an additive angular margin is used similar to

Arcface [12]; In RL-RBN(cos) and RL-RBN(arc), the mar-

gin of Caucasians is set to be 0.15 and 0.3, and the mar-

gin of non-Caucasians varies from 0.15 to 0.45 in steps of

0.1 and varies from 0.3 to 0.6 in steps of 0.1, respective-

ly. After that, we feed the samples {(st, at, rt, st+1)} to

train deep Q-learning network and then generate an adap-

tive margin policy. Finally, the recognition CNN is trained

with the guidance of this policy.

5.2. Cause of racial bias

Some papers [50, 54, 25] verified that non-Caucasians

still perform poorly than Caucasians even with balanced

training and faces of colored skin are inherently difficult to

(a) Gaussian blur (b) Gaussian noise

Figure 4. Examples of images degraded by applying (a) gaussian

blur or (b) gaussian noise. The first columns are original images.

(a) Gaussian blur (Softmax) (b) Gaussian noise (Softmax)

(c) Gaussian blur (Arcface) (d) Gaussian noise (Arcface)

Figure 5. The performance of Caucasians and Africans tested on

blurred and noisy RFW [50].

recognize for existing algorithms. In order to go deep into

this phenomenon, we degrade images of RFW [50] by blur

and noise, and observe the influence of these image degra-

dations on the performance of Caucasians and Africans. To

apply Gaussian blur, the sigma value of the Gaussian filter is

1.5 and kernel size varied from 1 to 10 in steps of one (Fig.

4). And we add noise to images by using Gaussian noise

with zero mean and varying standard deviation from 5 to 50

in steps of 5. We train two ResNet-34 models with guidance

of Softmax and Arcface loss [12] using BUPT-Balancedface

dataset, and test them on the blurred and noisy RFW [50].

The accuracies of Caucasians and Africans are given in Fig.

5. We can see that the performance gap between African-

s and Caucasians still exists even with balanced training.

And both Caucasians and Africans are found to be sensitive

to image blur and noise. More importantly, when blur and

noise level increases, the performance gap between Cau-

casians and Africans widens. Therefore, we conclude that

colored faces are more susceptible to noise and image qual-

ity than Caucasians. This may be one of the reasons why

non-Caucasians are more difficult to recognize.

5.3. Experiments of our method

Results on simulated dataset. As we know, data bias in

training set severely affects fairness of algorithms. In order

to validate the effectiveness of our RL-RBN, we train our al-
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Test→
Caucasian Indian Asian African Avg

Fairness

Train↓ Method↓ STD SER

4 : 2 : 2 : 2
N-Softmax [47] 89.67 87.97 84.68 84.17 86.62 2.64 1.53

RL-RBN(soft) 91.35 90.77 89.87 90.13 90.53 0.66 1.17

5 : 5
3
: 5
3
: 5
3

N-Softmax [47] 89.88 88.52 85.13 83.42 86.74 2.98 1.64

RL-RBN(soft) 90.33 90.23 88.97 89.37 89.73 0.67 1.22

6 : 4
3
: 4
3
: 4
3

N-Softmax [47] 90.43 88.32 84.75 83.32 86.70 3.26 1.74

RL-RBN(soft) 90.17 90.02 87.67 88.27 89.03 1.25 1.25

7 : 1 : 1 : 1
N-Softmax [47] 90.67 87.77 84.37 82.97 86.44 3.46 1.83

RL-RBN(soft) 90.63 90.73 87.72 87.53 89.15 1.77 1.35

Table 2. Verification accuracy (%) on RFW [50] trained with varying racial distribution. We boldface STD (lower is better) and skewed

error ratio (SER) (1 is the best) since this is the important fairness criterion.

(a) Softmax (b) RL-RBN(soft) (c) Cosface (d) RL-RBN(cos) (e) Arcface (f) RL-RBN(arc)

Figure 6. The ROC curves of (a) Softmax, (b) RL-RBN(soft) (c) Cosface [48], (d) RL-RBN(cos), (e) Arcface [12] and (f) RL-RBN(arc)

evaluated on all pairs of RFW [50].

gorithms using training set with different racial distribution

and evaluate them on RFW [50]. We randomly pick images

from our BUPT-Globalface dataset to construct these train-

ing sets. Each training set contains 12K celebrities which

has the similar scale with CASIA-Webface database [52],

and is non-overlapping with RFW dataset. We make the

number of Indians, Asians and Africans the same for sim-

plicity, and change the ratio between Caucasians and non-

Caucasians, i.e. {4:6}, {5:5}, {6:4}, {7:3}. Norm-Softmax

[47], which normalizes weight and feature based on Soft-

max, is compared with our RL-RBN, as shown in Table 2.

From the results, we can see several important observa-

tions. First, it also shows that racial bias indeed exists in

existing algorithms. For example, when the racial distri-

bution is 4:2:2:2, the accuracy of Norm-Softmax reaches

89.69% on Caucasian testing subset, but its accuracy dra-

matically decreases to 84.17% on African subset. Second,

the results quantitatively verify our thought that the accu-

racy of each race is positively correlated with its number

in training set. For example, increasing ratio of Caucasian-

s (from 2/5 to 7/10) increases its accuracy from 89.67% to

90.67% in Norm-Softmax. Also, with the change of dis-

tribution, we observe a decrease in fairness between races.

Third, after adopting adaptive margin loss guided with R-

L, our RL-RBN(soft) significantly obtains more balanced

performance than Norm-Softmax on different races. When

racial distribution becomes more uneven, i.e. 7:1:1:1, our

method can still perform better and decrease the SER from

1.83 to 1.35.

Results on BUPT-Globalface dataset. Training on

BUPT-Globalface, we compare our RL-RBN with Softmax,

Methods Caucasian Indian Asian African Avg
Fairness

STD SER

Triplet [42] 95.80 92.77 91.03 90.47 92.52 2.40 2.27

Softmax 95.62 91.97 90.85 89.98 92.10 2.48 2.29

M-RBN(soft) 93.50 94.50 90.06 93.43 92.83 1.90 1.78

RL-RBN(soft) 94.53 95.03 94.20 94.05 94.45 0.44 1.20

Cosface [48] 96.63 94.68 93.50 92.17 94.25 1.90 2.33

M-RBN(cos) 96.15 95.73 93.43 94.76 95.02 1.21 1.70

RL-RBN(cos) 96.03 95.15 94.58 94.27 95.01 0.77 1.45

Arcface [12] 97.37 95.68 94.55 93.87 95.37 1.53 2.33

M-RBN(arc) 97.03 95.58 94.40 95.18 95.55 1.10 1.89

RL-RBN(arc) 97.08 95.63 95.57 94.87 95.79 0.93 1.76

Table 3. Verification accuracy (%) of our policy on RFW [50]

([BUPT-Globalface, ResNet34, loss*]). M-RBN is the method us-

ing different fixed margins for different races inversely proportion-

al to their number.

Cosface [48] and Arcface [12]. The scaling parameter is set

as 60 and the margin parameters are set as 0.2 and 0.3 for

Cosface [48] and Arcface [12], respectively. We show the

results in Table 3 and Fig. 6. First, our RL-RBN(soft) ob-

tains more perfect performance than Softmax. It achieves

about 2.35% gains for average accuracy, and STD decreas-

es from 2.48 to 0.44. Second, we find that large margin loss,

i.e. Cosface [48] and Arcface [12], can alleviate racial bias

to some extent through more separate inter-class. However,

racial bias cannot be eliminated completely. Third, our RL-

RBN(cos) and RL-RBN(arc) can find an optimal margin for

each race group and obtain more balanced performance than

Cosface and Arcface. It shows the superiority of our algo-

rithm on learning balanced features from a biased dataset.

Results on BUPT-Balancedface dataset. We also com-
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Methods Caucasian Indian Asian African Avg
Fairness

STD SER

Triplet [42] 94.58 93.17 91.48 91.60 92.71 1.47 1.57

Softmax 94.18 92.82 91.23 91.42 92.41 1.38 1.51

RL-RBN(soft) 94.30 94.13 93.87 94.45 94.28 0.20 1.08

Cosface [48] 95.12 93.93 92.98 92.93 93.74 1.03 1.45

RL-RBN(cos) 95.47 95.15 94.52 95.27 95.10 0.41 1.21

Arcface [12] 96.18 94.67 93.72 93.98 94.64 1.11 1.65

RL-RBN(arc) 96.27 94.68 94.82 95.00 95.19 0.93 1.42

Table 4. Verification accuracy (%) of our policy on RFW [50]

([BUPT-Balancedface, ResNet34, loss*]).

pare our RL-RBN with Softmax, Cosface [48] and Arcface

[12] on BUPT-Balancedface. The results are shown in Table

4. With balanced training, Softmax, Cosface and Arcface

indeed obtain more balanced performance compared with

trained on biased data. So training equally on all races can

help to reduce racial bias to some extent. This conclusion

is coincident with [50, 54]. However, even with balanced

training, we see that non-Caucasians still perform poorly

than Caucasians because some specific races are difficult

to recognize. When combining our debiased algorithm and

balanced data, we can obtain the fairest performance.

+
+
+

+
+
+

+
+

+
+
+

+
+
+

+
+

+
+
+
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+
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+ + + +
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b2

b3
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G1: Indian G2: Asian G3: African

Figure 7. The adaptive margin policy of RL-RBN(arc) from the

trained agent. Each symbol, i.e. ’o’, ’+’, ’-’, indicates an action

a = {0, 1, 2} based on current state s = {G,M,Binter}. M is

mapped to discrete spaces {0.3, 0.4, 0.5, 0.6}. Binter is mapped

to four discrete values b1 < b2 < b3 < b4.

Adaptive margin policy. In our RL-RBN, the adaptive

margin policy is given by a trained agent which can output

an action a = {0, 1, 2} with a state s = {G,M,Binter}
as input. Here, we illustrate the adaptive margin policy of

RL-RBN(arc) in Fig. 7. From the policy, we can see sev-

eral important observations. First, Asian and African group

have larger possibility of increasing their margin compared

with Indian group. This is consistent with our theoretical

analysis that we prefer stricter constraints for races which

are more difficult to recognize. Based on our experiments,

Asians and Africans have larger domain discrepancy with

Caucasians, and perform much worse even with balanced

training. Second, it is more likely for the state with larg-

er Binter to increase the margin, and vice versa. Large

Binter usually reflects less balanced performance between

Caucasians and this race group so that a larger margin is

supposed to improve the generalization ability of this group.

Distribution of margins. In Fig. 8, we illustrate the dis-

(a) RL-RBN(soft) (b) RL-RBN(arc)

Figure 8. Distribution of margins of non-Caucasians in RL-

RBN(soft) and RL-RBN(arc) training on BUPT-Balancedface.

tributions of margins of non-Caucasians in RL-RBN(soft)

and RL-RBN(arc) when trained on BUPT-Balancedface

dataset. Guided by the agent, the margins of Asians and

Africans are indeed larger than those of Indians, especial-

ly the Asians who are the most difficult to recognize when

trained with Softmax or Arcface. Moreover, RL-RBN(arc)

usually selects larger margins for non-Caucasians compared

with RL-RBN(soft). This is because the performance of

Caucasians is set to be the anchor and the performances of

other races are improved to get close to the anchor in our

method. In RL-RBN(soft), the margin of Caucasians is s-

mall and fixed at 0, overlarge margins of non-Caucasians

will lead to out-of-balance performance again. This result

proves the robustness and adaptability of our method.

Compared with manual margin. We also compare our

method with manual-margin based RBN (M-RBN). The M-

RBN simply sets different fixed margins for different races

inversely proportional to the number of their samples. From

Table 3, we can see that the performance of Asians is always

a drag on fairness in M-RBN and our method is superior to

M-RBN in fairness. This is because racial bias is a com-

plex problem in which the number is not only fact affecting

out-of-balance accuracy. Although the number of Asians

is much larger than that of Indians and Africans in BUPT-

Globalface dataset, this group still needs a larger margin

because it is the most difficult race to recognize even with

balanced training.

6. Conclusion

In this paper, we provide two ethnicity aware training

datasets, i.e. BUPT-Globalface and BUPT-Balancedface.

Then, a reinforcement learning based race-balance network

is proposed to alleviate racial bias and learn more balanced

features. It introduces the Markov decision process to adap-

tively find optimal margins for non-Caucasians. The com-

prehensive experiments prove the effectiveness of RL-RBN.
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