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Abstract

Existing weakly supervised fine-grained image recogni-
tion (WFGIR) methods usually pick out the discriminative
regions from the high-level feature maps directly. We dis-
cover that due to the operation of stacking local receptive
filed, Convolutional Neural Network causes the discrimina-
tive region diffusion in high-level feature maps, which leads
to inaccurate discriminative region localization. In this
paper, we propose an end-to-end Discriminative Feature-
oriented Gaussian Mixture Model (DF-GMM), to address
the problem of discriminative region diffusion and find bet-
ter fine-grained details. Specifically, DF-GMM consists
of 1) a low-rank representation mechanism (LRM), which
learns a set of low-rank discriminative bases by Gaussian
Mixture Model (GMM) to accurately select discriminative
details and filter more irrelevant information in high-level
semantic feature maps, 2) a low-rank representation reor-
ganization mechanism (LR2M) which resumes the space in-
formation of low-rank discriminative bases to reconstruct
the low-rank feature maps. By recovering the low-rank dis-
criminative bases into the same embedding space of high-
level feature maps, LR>M alleviates the discriminative re-
gion diffusion problem in high-level feature map and dis-
criminative regions can be located more precisely on the
new low-rank feature maps. Extensive experiments verify
that DF-GMM vyields the best performance under the same
settings with the most competitive approaches, in CUB-
Bird, Stanford-Cars datasets, and FGVC Aircraft.

1. Introduction

Weakly Supervised Fine-grained Image Recognition
(WFGIR) focuses on distinguishing subtle visual differ-
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Figure 1. The motivation of Discriminative Feature-oriented Gaus-
sian Mixture Model (DF-GMM). DRD denotes the problem of dis-
criminative region diffusion. Fy1, denotes the high-level semantic
feature maps and F g indicates the low-rank feature maps. (a) is
the original image, (b)(c) are the discriminative response maps to
guide network to sample the discriminative regions and (d) (e) are
localization results without and with DF-GMM learning, respec-
tively. We can see that after reducing DRD, (c) is more compact
and sparse than (b) and the resulted regions in (e) are more accu-
rate and discriminative than those in (d).

ences under more detailed categories and granularity with
only image-level annotations. WFGIR is still a challenging
task due to two reasons. First, the global geometry and ap-
pearances of sub-categories can be very similar, and how to
identify their subtle variances on the key regions is of vital
importance. Second, instead of object or part annotations,
WFGIR has only image-level annotations available which
brings more difficulty in extracting effective and discrimi-
native features to distinguish the subtle variances between
subcategories.

Picking out the accurate discriminative regions plays
the key role in addressing aforementioned two challenges
of WFGIR. From this point, existing fine-grained im-
age recognition approaches can be roughly grouped into
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three categories. One group localizes the object and local
parts/patches by heuristic schemes [12, 13, 24, 32]. The
limitation of heuristic schemes is that they cannot guarantee
the selected patches are discriminative enough. Therefore,
the second group tries to automatically localize the discrim-
inative regions by using learning mechanism in an unsuper-
vised or weakly supervised manner [8] [26] [30]. Instead
of picking out discriminative regions independently, more
recent works [27] [34] focus on designing end-to-end deep
learning process to discover discriminative region group au-
tomatically via appropriate loss functions or correlation-
guided discriminative learning.

All the previous works try to find discriminative re-
gions/patches from high-level feature maps directly and ne-
glect that the high-level feature map are constructed by fus-
ing both spatial and channel-wise information within lo-
cal receptive filed in CNN [15]. We argue that this could
cause certain spatial propagation of discriminative and less-
discriminative response and leads to the problem of dis-
criminative region diffusion (DRD) in WFGIR, which ag-
gravates the difficulty of discriminative region localization.
As we can see from Figure 1, the diffused high-level feature
map tends to distract the selection of discriminative regions,
making the selected regions contain much noisy or back-
ground information and therefore degrade the performance
of WFGIC.

Inspired by low-rank mechanism [7] [23] in natural
language processing, we design a Discriminative Feature-
oriented Gaussian Mixture Model (DF-GMM) framework
to solve the problem of discriminative region diffusion
and improve the WFGIR performance accordingly. The
proposed DF-GMM consists of a low-rank representation
mechanism (LRM) and a low-rank representation reorgani-
zation mechanism (LR?M). The LRM is designed to select
regions from the high-level feature maps to construct the
low-rank discriminative bases. However, learning low-rank
representation with LRM only forces the network to focus
on the discriminative details rather than to consider the spa-
tial context of discriminative regions. And the network has
difficulty in selecting discriminative patches/regions with-
out spatial information. Based on these consideration, the
LR?M is designed to resume the space information of low-
rank discriminative bases and construct a new low-rank fea-
ture maps by linear weighted combining all low-rank dis-
criminative bases. Comparing with the high-level feature
maps, DF-GMM focuses on the discriminative details and
distills the useless information on low-rank feature maps,
which alleviates DRD problem and achieves better recogni-
tion accuracy.

The main contributions of this paper are listed as follows:

e To the best of our knowledge, we are the first to dis-
cover the problem of discriminative region diffusion in
WEFGIR.

e We propose an end-to-end discriminative feature-
oriented Gaussian Mixture Model (DF-GMM) to
learns low-rank feature maps to alleviate discrimina-
tive region diffusion problem and improve the WFGIR
performance accordingly. This work also provides a
generic framework to use other low-rank algorithms
for WFGIR.

e We evaluate the proposed method on three challenging
datasets (CUB-Bird, Stanford Cars, and FGVC Air-
craft), and the results demonstrate that our DF-GMM
achieves state-of-the-art.

2. Related Work

In the following, we will briefly review two lines of re-
lated work: feature representation and discriminative region
localization.

Feature representation: End-to-end encoding ap-
proaches [9, 21, 16, 2, 5] encode the CNN features into
high-order information. More recent advances reduce the
high feature dimensionality [9] [I6] and extract higher
order information with kernel modules[2] [5]. Kernel-
Pooling [2] defines Tayler series kernel and shows its ex-
plicit feature map can be compactly approximated. Kernel-
Activation [5] designs the convolutional filter to select parts
by the convolutional activations in a single spatial position.
Due to the invariance to translation and posture of the ob-
ject, these methods achieve better recognition accuracy.

Discriminative region localization: Recent WFGIR
works mainly focus on designing end-to-end learning
frameworks [6, 30, 33, 35]. S3Ns [6] produces sparse at-
tention to localize object and discriminative parts by col-
lecting local maximums of class response maps. TASN
[35] learns subtle feature representations from hundreds
of part proposals and uses an attention-based sampler to
highlight attention regions. DCL [4] automatically detects
the discriminative regions by region confusion mechanism.
More recent [27] [34]works try to find discriminative re-
gion groups to improve discriminative ability for WFGIR.
MA-CNN [34] proposes a part learning approach to implic-
itly select discriminative region group by a channel group
loss, where part generation and feature learning can rein-
force each other. CDL [27] establishes correlation between
regions to discover the more discriminative region groups
for WFGIR.

However, all the previous works try to find discrim-
inative details from high-level feature maps directly and
the problem of discriminative region diffusion is neglected.
To address this, we propose an end-to-end Discriminative
Feature-oriented Gaussian Mixture Model (DF-GMM) to
reconstruct the low-rank feature maps. To our best knowl-
edge, this is the first work to discover the problem of dis-
criminative region diffusion for WFGIR and the first work
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Figure 2. The framework of the proposed Discriminative Feature-oriented Gaussian Mixture Model (DF-GMM). DF-GMM first produces
discriminative bases and linear weight correlation coefficient map by the low-rank representation mechanism (LRM). Then the low-rank
representation reorganization mechanism (LR*M) constructs the new low-rank feature maps by linear weighted combining all low-rank
discriminative bases. At the sampling phase, the discriminative object patches are located by collecting local maximums from new low-
rank feature maps. Next, we crop and resize the patches to 224 X224 from the original image. Finally, the features of all branches are
aggregated to produce the final recognition vectors. Note that the CNN parameters for all branches are shared.

to recognize the fine-grained image through exploring low-
rank mechanism.

3. Proposed Method

As shown in Figure 2, the network of DF-GMM learns
a set of discriminative bases from high-level semantic fea-
ture maps by Gaussian Mixture Model (GMM) in Low-
rank Representation Mechanism (LRM), and then utilizes
them to reconstruct low-rank discriminative feature maps
by Low-rank Representation Reorganization Mechanism
(LR?M), which can be considered as the low-rank matrix
recovery for alleviating discriminative region diffusion in
high-level feature maps.

3.1. Low-rank Representation Mechanism

Our proposed Low-rank Representation Mechanism
(LRM) is designed to learn regions from the high-level fea-
ture maps to construct the low-rank discriminative bases
through Gaussian Mixture Model (GMM). The GMM con-
sists of 1) feature-guided base initialization module, which
makes low-rank bases more unique for each image in
WEFGIC, 2) expectation step (E-step) module, which com-
putes the expected value of the linear weight correlation
coefficients, 3) maximization step (M-step) module, which
updates the low-rank bases by using the linear weight cor-
relation coefficients weighted summation of high-level fea-
ture maps. M-step makes the low-rank bases lie in a low

dimensional manifold.

Specifically, given an image X, we feed X into the CNN
backbone and extract the high-level feature maps from the
top convolutional layer. The high-level feature maps are
indicated as M; € REXHXW where C, H and W denote
the channel, height and width of feature maps. Then, M is
fed into a Gaussian Mixture Model (GMM) function to get
the low-rank discriminative bases p and the linear weight
correlation coefficients Z:

where 1 € RE*K denotes the low-rank discriminative
bases, K is the number of bases. Z € RYN*E indicates
the linear weight correlation coefficients, and N equals to
W x H. Here Z is applied to select the discriminative re-
gions to construct the low-rank discriminative bases.

Base Initialization: For fine-grained image recognition,
there are thousand of images in the datasets. As each im-
age has different discriminative region feature distributions
from others, it is not suitable to use unified bases com-
puted upon one image. We propose the initialization of
low-rank bases is guided by high-level feature maps M.
Concretely, M7 is fed to a Global Average Pooling (GAP)
layer followed by a copy operation to obtain the feature
matrix V' € REXC. With the weight matrix in GMM
wm e REXC we can compute the initialization of low-
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rank bases u by element-wise multiplication as follows:
Hij = R” ® erjn, (2)

element in i'" base, R;; is the j*"
" row and the

where /1;; denotes the j"
element in i*" vector and W denotes the i
4t column weight coefﬁment Note that W™ is initialized
by Kaiming’s initialization [ 10].

Gaussian Mixture Model: Let M} be reshaped into
M; € RE*N where N equals to W x H. Note that the
discriminative bases . can be regarded as the mean param-
eters in GMM and the linear weight correlation coefficients
Z as latent variables. Then our task-related GMM can be
defined as a linear superposition of Gaussian according to
the distribution of data M7:

K
Mp) =" ZukN (M} |, 07), 3)

k=1

where the covariance o} is parameter for the k-th Gaussian
basis, M7 € RS> denotes the n'* vectors in high-level
semantic feature maps M;. The likelihood of the complete
data {M;, Z} is formulated as:

N K
In p(va Z|p,, U) = Z In Z anN(M}nLuk; 01%)] s

n=1 k=1

“4)
where a,% X Znk = 1, Z,, can be viewed as the responsibil-
ity that the k-th basis takes for the observation M. Con-
cretely, we choose inner dot K as the general kernel function
in GMM. Using K, Eq. (4) is simplified to

N

n=1

In p(M7'|pur.)

where In p(M7]|uy) indicates the posterior probability of
M7 given p.

For GMM, it contains two steps: an expectation step (E-
step) and a maximization step (M-step).

E-Step: It aims to estimate the posterior distributions
of the latent variables Z, i.e. Znx = P(M}|pm,0°?), by
using the current estimated parameters 9°/¢ : {;(°!4) 52},
Specifically, the new expected value of Z,,, is given by:

N(MPp' ,0?)
Zk:l (Mn"uold 02)

According to Eq. (5), Eq. (6) can be reformulated into a
more general from:

new __
nk T

(6)

lnIC(MI 7/1'16)
Zk L IKC(MP, )

where + is a learning rate parameter and is gradually learned
to regulate the distribution of correlation weight coefficient

an

)

matrix. In practice, there is a learning rate parameter ~y for
each Gaussian component.

K indicates the matrix multiplication between M and
1k, while Zszl InkC(M7, ;) = 1. Now, Eq. (7) can be
simplified to

20 = My o ()T, ®)

Then Z is passed through a softmax layer to normalize
the weight correlation coefficient Z,, in the nt" row and
the k" column of correlation weight coefficient matrix Z:

(new)

Z(new) eZnk 9

nk (new) ( )
Zn 1Zk p €7k

M-Step: The parameters of GMM are re-estimated by
likelihood maximization as follows:

Z new M[n , (10)

N
1 new
0,2 - szlk )(M}L old)(Mn _ old)T’ (11)

Ny = Z Z5. (12)

M-step updates the low-rank discriminative bases p by
maximizing the complete data In p(M;, Z,0), where 0 is
the set of all parameters of GMM. We re-estimated the low-
rank bases p through using the weighted summation of My
with the latent variables Z (™€) Therefore, Eq. (10) can be
rewritten as:

( ) Z(new) . MT
knew = 71]\]/? (nei}) : (13)
Zn:l Z nk

The Low-rank Representation Mechanism (LRM) exe-
cutes the expectation step and maximization step alternately
until the low-rank bases are the most discriminative.

3.2. Low-rank Representation Reorganization

Learning low-rank representation with LRM only forces
the network to focus on the discriminative details rather
than to consider the spatial context of discriminative re-
gions. The network has difficulty in selecting discrimina-
tive patches/regions without spatial information. To deal
with this limitation, we propose a Low-rank Reorganization
Representation Mechanism (LR?M) to resume the spatial
information from the low-rank discriminative bases.

After the Gaussian Mixture Model is convergent, we re-
shape Z € RV*K into Z € RWXH*K to make linear
weight coefficients correspond with the space localization
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Table 1. The stride, patch scale size, scale step and aspect ratios
of the three different layers. M, and M3 are feature maps after
down-sampling M p from the output of base decomposition. Note
that the stride is the original image scaling ratio. Patch width &
height = scale x scale step X aspect ratio.

Feature Map  Stride Scale Scale Step  Aspect ratio
Mp 32 32 23,23 21,3
M}, 64 64 25,25 L3
M?, 128 128  1,25,23 21,3

of original feature maps M;. Given the low-rank discrimi-
native bases p and the linear weight coefficients Z, the vec-
tors M%" located at (w, h) in re-estimation feature maps
M can be calculated as follows:

K
ME" =" Zunk - 11, (14)
k=1

where Z, denotes the linear weight coefficient located
at (w,h) and k*" channel value in Z. After all M%" are
computed, M p is constructed from discriminative bases.
Mp has the low-rank property compared with the origi-
nal input M;. As Z keeps the mapping correlation between
M7y and p, Mp can resume the discriminative details with
corresponding spacial information. Meanwhile, each fea-
ture vector in channel direction integrates all low-rank dis-
criminative bases with different linear combinations, which
can emphasize the discriminative regions while distill the
false positive highlighting in original feature maps M.

3.3. Discriminative Information Sampling

We use the low-rank feature maps with three different
scales to generate default patches, inspired by Feature Pyra-
mid Network [20]. Table 1 shows the design details, con-
taining the scale size, scale step and aspect ratio of default
patches.

Let’s take feature map Mp as an example. We feed the
low-rank features Mp into a score layer. Concretely, we
addal x 1 x N convolution layer and a sigmoid function
o to learn discriminative response maps R € RV*XHXW
which indicates the impact of discriminative regions on the
final classification, as follows:

RZU(WR*MD+Z)R)7 (15)

where Wx € RE*1X1XH represents the convolution ker-
nels, H is the number of the default patches at a given lo-
cation in the feature maps, and br denotes the bias. Mean-
while, we assign the discriminative response value to each
default patch p;;z:

Pijk = [te, by, tws th, Rijkl, (16)

where s;;5, denotes the value of the ith row, the jth col-
umn and the k*" channel, and (¢, ty, tw,tn) denotes each

patch’s coordinates. Finally, the network picks the top-
M patches with a response value, where M is a hyper-
parameter.

3.4. Loss Function

The full multi-task loss £ can be represented as the fol-
lowing:

L= Ecls + A1 ﬁgud + g - Erela + /\3 : Erank; (17)

where L.;; represents the fine-grained classification loss.
Lgud> Lrela and L.qp represent the guided loss, correla-
tion loss and rank loss, respectively. The balance among
these losses is controlled by hyper-parameter A1, Ao, As.

We denote the selected discriminative patches as P =
{Py, Py, ..., Py} and the corresponding discriminative re-
sponse values as R = {R1, R, ..., Ry }. Then the guided
loss and the correlation loss as well as the rank loss are de-
fined as follows:

Lyua(X,P) =Y (max{0,logC(X) —logC(P)}), (18)

3

N
Lyeia(Pey P) = Z(mam{o, logC(P;) — logC(P.)}),

19)
Lyank(R, P) = > (maz{0, (R; — R;)}),
logC(P;)<logC(Pj)

(20)
where X is the original image and the function C is the con-
fidence function which reflects the probability of classifica-
tion into the correct category, P, is the concatenation of all
selected patch features.

The guided loss is designed to guide the network to se-
lect the more discriminative regions. The correlation loss
can guarantee that the prediction probability of combined
features is greater than that of single patch features. The
rank loss strives for consistency of the discriminative scores
and the final classification probability values of the selected
patches, encouraging them in the same order.

3.5. Back-propagation in GMM

As the proposed DF-GMM is an end-to-end framework,
the loss £ in sec.3.4 can directly influence the parameter in
GMM. Concretely, we calculate the derivatives of weight
matrix W™ in low-rank bases p:

oL 9L OMp OMy
ow™ — OMp oMy ow™’

ey

where the weight matrix can be modified through back-
propagation to improve the internal discriminative ability
of base elements.
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Table 2. The ablative recognition results and speed of different
variants of our method. We test the models on CUB-200-2011.

Method Accuracy | Speed
BL [19] 84.5% n/a
BL + Sample 86.2% | 50 fps
BL + Sample + DF-GMM | 88.8% | 41 fps

We use @ to represent GMM module, which is a self-
supervised clustering algorithm. According to Eq. (10) and
Eq.(11), we have:

Q

AN
== =N (MY =), 22
s ;ai( =) (22)

N N
oQ 1 1 9
5o =257 T2 g (MP —m)? (23)
do? nz::l 203 n; 207}
It is obvious that covariance o2 and mean y both can be
adjusted indirectly by the learning process of network with

feature M7

4. Experiments
4.1. Datasets

We comprehensively evaluate our algorithm on Caltech-
UCSD Birds [I] (CUB-200-2011), Stanford Cars [18]
(Cars) and FGVC Aircraft (Airs) [22] datasets, which are
widely used benchmark for fine-grained image recognition.
The CUB-200-2011 dataset contains 11,788 images span-
ning 200 sub-species. The ratio of train data and test data
is roughly 1:1. The Cars dataset has 16,185 images from
196 classes officially split into 8,144 training and 8,041 test
images. The Airs dataset contains 10,000 images over 100
classes, and the train and test sets split ratio is around 2 : 1.

4.2. Implementation Details

In all our experiments, all images are resized to 448 x
448, and we crop and resize the patches to 224 x 224 from
the original image. We use fully-convolutional network
ResNet-50 as feature extractor and apply Batch Normal-
ization as regularizer. We also use Momentum SGD with
initial learning rate 0.001 and multiplied by 0.1 after 60
epochs. We use weight decay le~*. To reduce patch re-
dundancy, we adopt the non-maximum suppression (NMS)
on default patches based on their discriminative scores, and
the NMS threshold is set to 0.25. According to the results
of multiple experiments, the loss balance parameter can be
set into Ay = Ay = A3 = 1. Note that the architecture
in principle contains multiple CNN modules and for clarity,
these CNN modules share the same parameters.

4.3. Ablation Experiments

We conduct ablation studies to understand the influence
of different components in our proposed method. We design

Table 3. Comparison of different methods on CUB-200-2011.

Method Box Part | Accuracy
PN-DCN [1] BBox | Parts 85.4%
M-CNN [29] n/a Parts 84.2%

PG [17] BBoxs | n/a 82.8%

SCDA [28] n/a n/a 80.1%
AutoBD [31] n/a n/a 81.6%
OPAM [24] n/a n/a 85.8%
Bilinear [21] n/a n/a 84.0%
Kernel-Pooling [5] n/a n/a 86.2%
NTS-Net [30] n/a n/a 87.5%
PA-CNN [36] n/a n/a 87.8%
DCL [4] n/a n/a 87.8%
TASN [35] n/a n/a 87.9%
CDL [27] n/a n/a 88.4%
S3Ns [6] n/a n/a 88.5%
StackDRL [14] n/a n/a 86.6%
KERL [3] n/a n/a 87.0%
Our DF-GMM n/a n/a 88.8%

different runs on CUB-200-2011 dataset using ResNet-50
as the backbone network and report the results in Table 2.

First, the features are extracted from the original image
through ResNet-50 [11] without any object or partial an-
notation for fine-grained recognition, and we set it as the
baseline (BL) of our model. Then the default patches are
selected as local features to improve recognition accuracy.
However, massive redundant default patches result in the
low recognition speed. When we introduce the score mech-
anism (Sample) to only preserve the highly discriminative
patches and reduce the number of patches to single-digit,
the top-1 recognition accuracy on CUB-200-2011 dataset
improves 1.7% and achieves a real-time recognition speed
of 50 fps. Finally, we take account into the problem of dis-
criminative region diffusion through DF-GMM, and achieve
the state-of-the-art result of 88.8%. Ablation experiments
have verified that the proposed DF-GMM indeed learns the
low-rank discriminative bases to precisely localizes the dis-
criminative regions by solving the problem of discrimina-
tive region diffusion, thus effectively improves the recogni-
tion accuracy.

4.4. Performance Comparison

Accuracy comparison. Our comparisons focus on the
weakly supervised methods because the proposed model
only utilizes image-level annotations. Table 3, Table 4
and Table 5 show the performance of different methods
on CUB-200-2011 dataset, Stanford Cars-196 dataset and
FGVC-Aircraft dataset, respectively. In each table from
top to bottom, the methods are separated into six groups,
which are (1) supervised multi-stage methods, (2) weakly
supervised multi-stage frameworks, (3) weakly supervised
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Table 4. Comparison of different methods on Stanford Cars-196.

Method Annotation | Accuracy
PG [17] BBoxs 92.8%
SCDA [28] n/a 85.1%
AutoBD [31] n/a 88.9%
OPAM [24] n/a 92.2%
Bilinear [21] n/a 91.3%
Kernel-Pooling [5] n/a 92.4%
PA-CNN [30] n/a 93.3%
NTS-Net [30] n/a 93.9%
TASN [35] n/a 93.8%
CDL [27] n/a 94.2%
DCL [4] n/a 94.5%
S3Ns [6] n/a 94.7%
DT-RAM [19] n/a 93.1%
Our DF-GMM n/a 94.8 %

Table 5. Comparison of different methods on FGVC-Aircraft.

Method Annotation | Accuracy
BoT [25] BBoxs 88.4%
SCDA [28] n/a 79.5%
Kernel-Pooling [5] n/a 85.7%
LB-CNN [16] n/a 87.3%
Kernel-Activation [2] n/a 88.3%
PA-CNN [306] n/a 91.0%
NTS-Net [30] n/a 91.4%
DFL-CNN [26] n/a 92.0%
S3Ns [6] n/a 92.8%
DCL [4] n/a 93.0%
Our DF-GMM n/a 93.8%

end-to-end feature encoding, (4) end-to-end localization-
classification sub-networks, (5) other methods (e.g. rein-
forcement learning [14], knowledge representation [3]) and
(6) our DF-GMM.

Earlier multi-stage methods rely on the object and even
part annotations to achieve comparable results. However,
using the object or part annotations limits the performance
due to the fact that human annotations only give the co-
ordinates of important parts rather than the accurate dis-
criminative region location. Weakly supervised multi-stage
frameworks gradually exceed the strong supervised meth-
ods though picking out discriminative regions. The end-to-
end feature encoding methods have good performance via
encoding the CNN feature vectors into high-order informa-
tion, while they result in high computational cost. Although
the localization-classification sub-networks works well on
various datasets, they neglect the problem of discriminative
region diffusion and have difficulty in picking out the ac-
curate discriminative regions. Other methods also achieve
comparable performance due to using the extra information

Table 6. Comparison with the efficiency and effectiveness of other
method on CUB-200-2011. K means the number of selected dis-
criminative regions for each image.

Method Annotation | Accuracy | Speed
M-CNN(K=2) [29] Parts 84.20% | 12.90
WSDL(K=1) [13] n/a 83.45% | 10.07
Bilinear(K=0) [21] n/a 84.00% | 30.00

Our DF-GMM(K=2) n/a 88.10% | 43.00
Our DF-GMM(K=4) n/a 88.80% | 41.00

Table 7. Effect of Global Max Pooling vs. Global Average Pooling
on base initialization, the recognition accuracy on CUB-200-2011.

Initialization Method Accuracy

Random initialization 87.1%

Global Max Pooling 87.9%
Global Average Pooling 88.8%

Table 8. The recognition accuracy on CUB-200-2011 of model
trained with different number of GMM iterations.

k 1 2 3 4 5

Accuracy | 86.9% 87.5% 88.8% 88.4% 88.1%

(e.g. the semantic embedding).

As shown in Table 3, Table 4 and Table 5, our approach
outperforms these strong supervised methods in the first
group, which indicates that the proposed method can find
the discriminative patches without any fine-grained anno-
tations. Compared with recent weakly supervised end-to-
end methods, which find discriminative patches from high-
level feature maps directly. We run DF-GMM to learn low-
rank feature maps to alleviate discriminative region diffu-
sion problem and achieves the new state-of-the-arts.

Speed Comparison. Table 6 shows the speed compari-
son with other methods. All the experiments are under the
setting with batch size 8 using a graphics card of Titan X.
While selecting 2 discriminative patches according to the
discriminative score maps, we outperform other methods
both in speed and accuracy. When we increase the discrim-
inative patches from 2 to 4, the proposed model achieves
the state-of-the-art recognition precision, and still stay real-
time at 41 fps.

4.5. Visualization Analysis

Insights about the influence of our proposed approach
can be obtained by visualizing the effects of feature maps
M; and Mp, i.e. the feature maps without and with DF-
GMM respectively. As shown in Figure 3, the feature map
response can be shrank to pay attention to the accurate dis-
criminative regions with DF-GMM, which improves the ac-
curacy of localizing discriminative regions. We also visual-
ize the latent variables in GMM, as shown in Figure 4. The
linear weight coefficients can be displayed at the area of ob-
ject that indicates the network focuses on the discriminative
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Figure 3. Visualization of intermediate results in DF-GMM. (a) is
the original images, (b)(d)indicate the original feature maps M,
and (c)(d) denote the reconstructing feature maps of the special
channel, respectively. (b)(c) are the same channel feature map.
(d)(e) are also the same channel feature map.

=
-

(c) (d) (e)

Figure 4. Visualization of the latent variables at the last iteration
in GMM. (a) is the original images. (b)(c)(d)(e) indicate the latent
variables corresponding certain-th base.

regions. We draw the discriminative regions and display the
discriminative response map predicted by our model with-
out and with DF-GMM in Figure 5, respectively. It can
be seen that the discriminative response maps without DF-
GMM focus on the wide area which results in the problem
of hard localization, as shown in Figure 5(b). However, Our
DF-GMM could pay attention to a small area in discrimi-
native response maps, where the discriminative patches can
be located more easily and accurately. For more intuitive
presentation, we display the localization results in original
images, as shown in Figure 5(d)(e).

4.6. Discussions

The deeper, the better? We show the recognition re-
sults with different iterative number of GMM, as shown in

Figure 5. Visualization of discriminative response maps and lo-
calization results with and without DF-GMM.(a) is the original
images. (b)(c) are the discriminative response maps through sam-
pling stage without and with the DF-GMM, respectively. (d)(e) are
the localization results without and with DF-GMM, respectively.

Table 8. It is obvious that the performance of DF-GMM
drops when the iterative number increases to 4. The possi-
ble reason of the performance drop is that after using more
E-step and M-step, the propagation between bases p and
latent variables Z will be overwhelmed.

GMP vs. GAP: As it can be seen in Table 5, switching
the pooling method from GAP to GMP leads to a signifi-
cant performance drop. Therefore, although the low-rank
bases are initialized to same state, GAP makes discrimi-
native bases focus on all discriminative information by en-
couraging the GMM to have high response over the whole
discriminative regions and the gradients affect every spa-
tial location of discriminative regions during training pro-
cedure. On the other side, GMP makes filters pay attention
to the most discriminative region to have a single response
at a certain location of the feature map and the gradients
will only be back-propagated to that location.

5. Conclusion

In this paper, we first discover the discriminative region
diffusion problem of high-level feature maps in WFGIR
methods. We argue that DRD problem aggravates the diffi-
culty of discriminative region localization for existing meth-
ods. We propose an end-to-end Discriminative Feature-
oriented Gaussian Mixture Model method to learn low-rank
feature maps to address DRD problem. Extensive experi-
ments show that the recognition accuracy can be improved
significantly by localizing patches on the new low-rank fea-
ture maps, which proves the DRD problem does play a key
role in WFGIR. The last but the most important, our algo-
rithm is end-to-end trainable and achieves state-of-the-art in
CUB-Bird, FGVC Aircraft and Stanford Cars datasets.

9756



References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

[13]

Steve Branson, Grant Van Horn, Serge J. Belongie, and
Pietro Perona. Bird species categorization using pose nor-
malized deep convolutional nets. CoRR, abs/1406.2952,
2014.

Sijia Cai, Wangmeng Zuo, and Lei Zhang. Higher-order in-
tegration of hierarchical convolutional activations for fine-
grained visual categorization. In ICCV 2017, Venice, Italy,
October 22-29, 2017, pages 511-520, 2017.

Tianshui Chen, Liang Lin, Riquan Chen, Yang Wu, and Xi-
aonan Luo. Knowledge-embedded representation learning
for fine-grained image recognition. In IJCAI, pages 627—
634, 2018.

Yue Chen, Yalong Bai, Wei Zhang, and Tao Mei. Destruc-
tion and construction learning for fine-grained image recog-
nition. In IEEE Conference on Computer Vision and Pattern
Recognition, CVPR 2019, Long Beach, CA, USA, June 16-
20, 2019, pages 5157-5166, 2019.

Yin Cui, Feng Zhou, Jiang Wang, Xiao Liu, Yuanqing Lin,
and Serge J. Belongie. Kernel pooling for convolutional neu-
ral networks. In CVPR 2017, Honolulu, HI, USA, July 21-26,
2017, pages 3049-3058, 2017.

Yao Ding, Yanzhao Zhou, Yi Zhu, Qixiang Ye, and Jianbin
Jiao. Selective sparse sampling for fine-grained image recog-
nition. In The IEEE International Conference on Computer
Vision (ICCV), October 2019.

Daniel Fried, Tamara Polajnar, and Stephen Clark. Low-
rank tensors for verbs in compositional distributional seman-
tics. In Proceedings of the 53rd Annual Meeting of the As-
sociation for Computational Linguistics and the 7th Interna-
tional Joint Conference on Natural Language Processing of
the Asian Federation of Natural Language Processing, ACL
2015, July 26-31, 2015, Beijing, China, Volume 2: Short Pa-
pers, pages 731-736, 2015.

Jianlong Fu, Heliang Zheng, and Tao Mei. Look closer to see
better: Recurrent attention convolutional neural network for
fine-grained image recognition. In CVPR 2017, Honolulu,
HI, USA, July 21-26, 2017, pages 4476-4484, 2017.

Yang Gao, Oscar Beijbom, Ning Zhang, and Trevor Darrell.
Compact bilinear pooling. In CVPR 2016, Las Vegas, NV,
USA, June 27-30, 2016, pages 317-326, 2016.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Delving deep into rectifiers: Surpassing human-level perfor-
mance on imagenet classification. In 2015 IEEE Interna-
tional Conference on Computer Vision, ICCV 2015, Santi-
ago, Chile, December 7-13, 2015, pages 1026—1034, 2015.
Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In CVPR
2016, Las Vegas, NV, USA, June 27-30, 2016, pages 770-
7178, 2016.

Xiangteng He and Yuxin Peng. Weakly supervised learn-
ing of part selection model with spatial constraints for fine-
grained image classification. In AAAI February 4-9, 2017,
San Francisco, California, USA., pages 4075-4081, 2017.
Xiangteng He, Yuxin Peng, and Junjie Zhao. Fine-grained
discriminative localization via saliency-guided faster R-

(14]

(15]

(16]

(17]

(18]

(19]

(20]

(21]

(22]

(23]

(24]

(25]

(26]

(27]

9757

CNN. InACM MM 2017, Mountain View, CA, USA, October
23-27, 2017, pages 627-635, 2017.

Xiangteng He, Yuxin Peng, and Junjie Zhao. Stackdrl:
Stacked deep reinforcement learning for fine-grained visual
categorization. In IJCAI 2018, July 13-19, 2018, Stockholm,
Sweden., pages 741-747, 2018.

Jie Hu, Li Shen, and Gang Sun. Squeeze-and-excitation net-
works. In 2018 IEEE Conference on Computer Vision and
Pattern Recognition, CVPR 2018, Salt Lake City, UT, USA,
June 18-22, 2018, pages 7132-7141, 2018.

Shu Kong and Charless C. Fowlkes. Low-rank bilinear pool-
ing for fine-grained classification. In CVPR 2017, Honolulu,
HI, USA, July 21-26, 2017, pages 7025-7034, 2017.
Jonathan Krause, Hailin Jin, Jianchao Yang, and Fei-Fei Li.
Fine-grained recognition without part annotations. In CVPR
2015, Boston, MA, USA, June 7-12, 2015, pages 55465555,
2015.

Jonathan Krause, Michael Stark, Jia Deng, and Li Fei-Fei.
3d object representations for fine-grained categorization. In
ICCV Workshops 2013, Sydney, Australia, December -8,
2013, pages 554-561, 2013.

Zhichao Li, Yi Yang, Xiao Liu, Feng Zhou, Shilei Wen, and
Wei Xu. Dynamic computational time for visual attention. In
ICCV Workshops 2017, Venice, Italy, October 22-29, 2017,
pages 1199-1209, 2017.

Tsung-Yi Lin, Piotr Dollar, Ross B. Girshick, Kaiming He,
Bharath Hariharan, and Serge J. Belongie. Feature pyramid
networks for object detection. In CVPR 2017, Honolulu, HI,
USA, July 21-26, 2017, pages 936-944, 2017.

Tsung-Yu Lin, Aruni Roy Chowdhury, and Subhransu Maji.
Bilinear CNN models for fine-grained visual recognition. In
ICCV 2015, Santiago, Chile, December 7-13, 2015, pages
1449-1457, 2015.

Subhransu Maji, Esa Rahtu, Juho Kannala, Matthew B.
Blaschko, and Andrea Vedaldi. Fine-grained visual classi-
fication of aircraft. CoRR, abs/1306.5151, 2013.

Jiaqi Mu, Suma Bhat, and Pramod Viswanath. Representing
sentences as low-rank subspaces. In Proceedings of the 55th
Annual Meeting of the Association for Computational Lin-
guistics, ACL 2017, Vancouver, Canada, July 30 - August 4,
Volume 2: Short Papers, pages 629-634, 2017.

Yuxin Peng, Xiangteng He, and Junjie Zhao. Object-part
attention model for fine-grained image classification. TIP,
27(3):1487-1500, 2018.

Yaming Wang, Jonghyun Choi, Vlad I. Morariu, and Larry S.
Davis. Mining discriminative triplets of patches for fine-
grained classification. In CVPR 2016, Las Vegas, NV, USA,
June 27-30, 2016, pages 1163-1172, 2016.

Yaming Wang, Vlad I. Morariu, and Larry S. Davis. Learn-
ing a discriminative filter bank within a CNN for fine-grained
recognition. In CVPR 2018, Salt Lake City, UT, USA, June
18-22, 2018, pages 4148-4157, 2018.

Zhihui Wang, Shijie Wang, Pengbo Zhang, Haojie Li, Wei
Zhong, and Jianjun Li. Weakly supervised fine-grained
image classification via correlation-guided discriminative
learning. In Proceedings of the 27th ACM International Con-
ference on Multimedia, MM 2019, Nice, France, October 21-
25, 2019, pages 1851-1860, 2019.



(28]

[29]

(30]

(31]

(32]

(33]

(34]

(35]

[36]

Xiu-Shen Wei, Jian-Hao Luo, Jianxin Wu, and Zhi-Hua
Zhou. Selective convolutional descriptor aggregation for
fine-grained image retrieval. TIP, 26(6):2868-2881, 2017.
Xiu-Shen Wei, Chen-Wei Xie, and Jianxin Wu. Mask-cnn:
Localizing parts and selecting descriptors for fine-grained
image recognition. CoRR, abs/1605.06878, 2016.

Ze Yang, Tiange Luo, Dong Wang, Zhigiang Hu, Jun Gao,
and Liwei Wang. Learning to navigate for fine-grained clas-
sification. In ECCV, Germany, September 8-14, 2018, Pro-
ceedings, Part XIV, pages 438-454, 2018.

Hantao Yao, Shiliang Zhang, Chenggang Yan, Yongdong
Zhang, Jintao Li, and Qi Tian. Autobd: Automated bi-level
description for scalable fine-grained visual categorization.
TIP, 27(1):10-23, 2018.

Xiaopeng Zhang, Hongkai Xiong, Wengang Zhou, Weiyao
Lin, and Qi Tian. Picking deep filter responses for fine-
grained image recognition. In CVPR 2016, Las Vegas, NV,
USA, June 27-30, 2016, pages 1134—-1142, 2016

Yu Zhang, Xiu-Shen Wei, Jianxin Wu, Jianfei Cai, Jiangbo
Lu, Viet Anh Nguyen, and Minh N. Do. Weakly supervised
fine-grained categorization with part-based image represen-
tation. T7P, 25(4):1713-1725, 2016

Heliang Zheng, Jianlong Fu, Tao Mei, and Jiebo Luo. Learn-
ing multi-attention convolutional neural network for fine-
grained image recognition. In ICCV 2017, Venice, Italy, Oc-
tober 22-29, 2017, pages 5219-5227, 2017.

Heliang Zheng, Jianlong Fu, Zheng-Jun Zha, and Jiebo Luo.
Looking for the devil in the details: Learning trilinear atten-
tion sampling network for fine-grained image recognition. In
IEEE Conference on Computer Vision and Pattern Recogni-
tion, CVPR 2019, Long Beach, CA, USA, June 16-20, 2019,
pages 5012-5021, 2019

Heliang Zheng, Jianlong Fu, Zheng-Jun Zha, Jiebo Luo, and
Tao Mei. Learning rich part hierarchies with progressive at-
tention networks for fine-grained image recognition. /EEE
Trans. Image Processing, 29:476-488, 2020.

9758



