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Abstract

Existing weakly supervised fine-grained image recogni-

tion (WFGIR) methods usually pick out the discriminative

regions from the high-level feature maps directly. We dis-

cover that due to the operation of stacking local receptive

filed, Convolutional Neural Network causes the discrimina-

tive region diffusion in high-level feature maps, which leads

to inaccurate discriminative region localization. In this

paper, we propose an end-to-end Discriminative Feature-

oriented Gaussian Mixture Model (DF-GMM), to address

the problem of discriminative region diffusion and find bet-

ter fine-grained details. Specifically, DF-GMM consists

of 1) a low-rank representation mechanism (LRM), which

learns a set of low-rank discriminative bases by Gaussian

Mixture Model (GMM) to accurately select discriminative

details and filter more irrelevant information in high-level

semantic feature maps, 2) a low-rank representation reor-

ganization mechanism (LR2M) which resumes the space in-

formation of low-rank discriminative bases to reconstruct

the low-rank feature maps. By recovering the low-rank dis-

criminative bases into the same embedding space of high-

level feature maps, LR2M alleviates the discriminative re-

gion diffusion problem in high-level feature map and dis-

criminative regions can be located more precisely on the

new low-rank feature maps. Extensive experiments verify

that DF-GMM yields the best performance under the same

settings with the most competitive approaches, in CUB-

Bird, Stanford-Cars datasets, and FGVC Aircraft.

1. Introduction

Weakly Supervised Fine-grained Image Recognition

(WFGIR) focuses on distinguishing subtle visual differ-
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Figure 1. The motivation of Discriminative Feature-oriented Gaus-

sian Mixture Model (DF-GMM). DRD denotes the problem of dis-

criminative region diffusion. FHL denotes the high-level semantic

feature maps and FLR indicates the low-rank feature maps. (a) is

the original image, (b)(c) are the discriminative response maps to

guide network to sample the discriminative regions and (d) (e) are

localization results without and with DF-GMM learning, respec-

tively. We can see that after reducing DRD, (c) is more compact

and sparse than (b) and the resulted regions in (e) are more accu-

rate and discriminative than those in (d).

ences under more detailed categories and granularity with

only image-level annotations. WFGIR is still a challenging

task due to two reasons. First, the global geometry and ap-

pearances of sub-categories can be very similar, and how to

identify their subtle variances on the key regions is of vital

importance. Second, instead of object or part annotations,

WFGIR has only image-level annotations available which

brings more difficulty in extracting effective and discrimi-

native features to distinguish the subtle variances between

subcategories.

Picking out the accurate discriminative regions plays

the key role in addressing aforementioned two challenges

of WFGIR. From this point, existing fine-grained im-

age recognition approaches can be roughly grouped into
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three categories. One group localizes the object and local

parts/patches by heuristic schemes [12, 13, 24, 32]. The

limitation of heuristic schemes is that they cannot guarantee

the selected patches are discriminative enough. Therefore,

the second group tries to automatically localize the discrim-

inative regions by using learning mechanism in an unsuper-

vised or weakly supervised manner [8] [26] [30]. Instead

of picking out discriminative regions independently, more

recent works [27] [34] focus on designing end-to-end deep

learning process to discover discriminative region group au-

tomatically via appropriate loss functions or correlation-

guided discriminative learning.

All the previous works try to find discriminative re-

gions/patches from high-level feature maps directly and ne-

glect that the high-level feature map are constructed by fus-

ing both spatial and channel-wise information within lo-

cal receptive filed in CNN [15]. We argue that this could

cause certain spatial propagation of discriminative and less-

discriminative response and leads to the problem of dis-

criminative region diffusion (DRD) in WFGIR, which ag-

gravates the difficulty of discriminative region localization.

As we can see from Figure 1, the diffused high-level feature

map tends to distract the selection of discriminative regions,

making the selected regions contain much noisy or back-

ground information and therefore degrade the performance

of WFGIC.

Inspired by low-rank mechanism [7] [23] in natural

language processing, we design a Discriminative Feature-

oriented Gaussian Mixture Model (DF-GMM) framework

to solve the problem of discriminative region diffusion

and improve the WFGIR performance accordingly. The

proposed DF-GMM consists of a low-rank representation

mechanism (LRM) and a low-rank representation reorgani-

zation mechanism (LR2M). The LRM is designed to select

regions from the high-level feature maps to construct the

low-rank discriminative bases. However, learning low-rank

representation with LRM only forces the network to focus

on the discriminative details rather than to consider the spa-

tial context of discriminative regions. And the network has

difficulty in selecting discriminative patches/regions with-

out spatial information. Based on these consideration, the

LR2M is designed to resume the space information of low-

rank discriminative bases and construct a new low-rank fea-

ture maps by linear weighted combining all low-rank dis-

criminative bases. Comparing with the high-level feature

maps, DF-GMM focuses on the discriminative details and

distills the useless information on low-rank feature maps,

which alleviates DRD problem and achieves better recogni-

tion accuracy.

The main contributions of this paper are listed as follows:

• To the best of our knowledge, we are the first to dis-

cover the problem of discriminative region diffusion in

WFGIR.

• We propose an end-to-end discriminative feature-

oriented Gaussian Mixture Model (DF-GMM) to

learns low-rank feature maps to alleviate discrimina-

tive region diffusion problem and improve the WFGIR

performance accordingly. This work also provides a

generic framework to use other low-rank algorithms

for WFGIR.

• We evaluate the proposed method on three challenging

datasets (CUB-Bird, Stanford Cars, and FGVC Air-

craft), and the results demonstrate that our DF-GMM

achieves state-of-the-art.

2. Related Work

In the following, we will briefly review two lines of re-

lated work: feature representation and discriminative region

localization.

Feature representation: End-to-end encoding ap-

proaches [9, 21, 16, 2, 5] encode the CNN features into

high-order information. More recent advances reduce the

high feature dimensionality [9] [16] and extract higher

order information with kernel modules[2] [5]. Kernel-

Pooling [2] defines Tayler series kernel and shows its ex-

plicit feature map can be compactly approximated. Kernel-

Activation [5] designs the convolutional filter to select parts

by the convolutional activations in a single spatial position.

Due to the invariance to translation and posture of the ob-

ject, these methods achieve better recognition accuracy.

Discriminative region localization: Recent WFGIR

works mainly focus on designing end-to-end learning

frameworks [6, 30, 33, 35]. S3Ns [6] produces sparse at-

tention to localize object and discriminative parts by col-

lecting local maximums of class response maps. TASN

[35] learns subtle feature representations from hundreds

of part proposals and uses an attention-based sampler to

highlight attention regions. DCL [4] automatically detects

the discriminative regions by region confusion mechanism.

More recent [27] [34]works try to find discriminative re-

gion groups to improve discriminative ability for WFGIR.

MA-CNN [34] proposes a part learning approach to implic-

itly select discriminative region group by a channel group

loss, where part generation and feature learning can rein-

force each other. CDL [27] establishes correlation between

regions to discover the more discriminative region groups

for WFGIR.

However, all the previous works try to find discrim-

inative details from high-level feature maps directly and

the problem of discriminative region diffusion is neglected.

To address this, we propose an end-to-end Discriminative

Feature-oriented Gaussian Mixture Model (DF-GMM) to

reconstruct the low-rank feature maps. To our best knowl-

edge, this is the first work to discover the problem of dis-

criminative region diffusion for WFGIR and the first work
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Figure 2. The framework of the proposed Discriminative Feature-oriented Gaussian Mixture Model (DF-GMM). DF-GMM first produces

discriminative bases and linear weight correlation coefficient map by the low-rank representation mechanism (LRM). Then the low-rank

representation reorganization mechanism (LR2M) constructs the new low-rank feature maps by linear weighted combining all low-rank

discriminative bases. At the sampling phase, the discriminative object patches are located by collecting local maximums from new low-

rank feature maps. Next, we crop and resize the patches to 224×224 from the original image. Finally, the features of all branches are

aggregated to produce the final recognition vectors. Note that the CNN parameters for all branches are shared.

to recognize the fine-grained image through exploring low-

rank mechanism.

3. Proposed Method

As shown in Figure 2, the network of DF-GMM learns

a set of discriminative bases from high-level semantic fea-

ture maps by Gaussian Mixture Model (GMM) in Low-

rank Representation Mechanism (LRM), and then utilizes

them to reconstruct low-rank discriminative feature maps

by Low-rank Representation Reorganization Mechanism

(LR2M), which can be considered as the low-rank matrix

recovery for alleviating discriminative region diffusion in

high-level feature maps.

3.1. Low­rank Representation Mechanism

Our proposed Low-rank Representation Mechanism

(LRM) is designed to learn regions from the high-level fea-

ture maps to construct the low-rank discriminative bases

through Gaussian Mixture Model (GMM). The GMM con-

sists of 1) feature-guided base initialization module, which

makes low-rank bases more unique for each image in

WFGIC, 2) expectation step (E-step) module, which com-

putes the expected value of the linear weight correlation

coefficients, 3) maximization step (M-step) module, which

updates the low-rank bases by using the linear weight cor-

relation coefficients weighted summation of high-level fea-

ture maps. M-step makes the low-rank bases lie in a low

dimensional manifold.

Specifically, given an image X , we feed X into the CNN

backbone and extract the high-level feature maps from the

top convolutional layer. The high-level feature maps are

indicated as MI ∈ R
C×H×W , where C, H and W denote

the channel, height and width of feature maps. Then, MI is

fed into a Gaussian Mixture Model (GMM) function to get

the low-rank discriminative bases µ and the linear weight

correlation coefficients Z:

(µ,Z) = GMM(MI), (1)

where µ ∈ R
C×K denotes the low-rank discriminative

bases, K is the number of bases. Z ∈ R
N×K indicates

the linear weight correlation coefficients, and N equals to

W × H . Here Z is applied to select the discriminative re-

gions to construct the low-rank discriminative bases.

Base Initialization: For fine-grained image recognition,

there are thousand of images in the datasets. As each im-

age has different discriminative region feature distributions

from others, it is not suitable to use unified bases com-

puted upon one image. We propose the initialization of

low-rank bases is guided by high-level feature maps MI .

Concretely, MI is fed to a Global Average Pooling (GAP)

layer followed by a copy operation to obtain the feature

matrix V ∈ R
K×C . With the weight matrix in GMM

Wm ∈ R
K×C , we can compute the initialization of low-
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rank bases µ by element-wise multiplication as follows:

µij = Rij ⊙Wm
ij , (2)

where µij denotes the jth element in ith base, Rij is the jth

element in ith vector and Wm
ij denotes the ith row and the

jth column weight coefficient. Note that Wm is initialized

by Kaiming’s initialization [10].

Gaussian Mixture Model: Let MI be reshaped into

MI ∈ R
C×N , where N equals to W × H . Note that the

discriminative bases µ can be regarded as the mean param-

eters in GMM and the linear weight correlation coefficients

Z as latent variables. Then our task-related GMM can be

defined as a linear superposition of Gaussian according to

the distribution of data MI :

p(Mn
I ) =

K
∑

k=1

ZnkN (Mn
I |µk, σ

2
k), (3)

where the covariance σ2
k is parameter for the k-th Gaussian

basis, Mn
I ∈ R

C×1 denotes the nth vectors in high-level

semantic feature maps MI . The likelihood of the complete

data {MI , Z} is formulated as:

ln p(MI , Z|µ, σ) =
N
∑

n=1

ln

[

K
∑

k=1

ZnkN (Mn
I |µk, σ

2
k)

]

,

(4)

where σ2
k×Znk = 1, Znk can be viewed as the responsibil-

ity that the k-th basis takes for the observation Mn
I . Con-

cretely, we choose inner dot K as the general kernel function

in GMM. Using K, Eq. (4) is simplified to

ln p(Mn
I |µk) =

N
∑

n=1

lnK(Mn
I , µk), (5)

where ln p(Mn
I |µk) indicates the posterior probability of

Mn
I given µk.

For GMM, it contains two steps: an expectation step (E-

step) and a maximization step (M-step).

E-Step: It aims to estimate the posterior distributions

of the latent variables Z, i.e. Znk = P (Mn
I |µm, θold), by

using the current estimated parameters θold : {µ(old), σ2}.

Specifically, the new expected value of Znk is given by:

Znew
nk =

N (Mn
I |µ

(old)
k , σ2)

∑K

k=1 N (Mn
I |µ

old
k , σ2)

(6)

According to Eq. (5), Eq. (6) can be reformulated into a

more general from:

Znk = γ ·
lnK(Mn

I , µk)
∑K

k=1 lnK(Mn
I , µk)

(7)

where γ is a learning rate parameter and is gradually learned

to regulate the distribution of correlation weight coefficient

matrix. In practice, there is a learning rate parameter γ for

each Gaussian component.

K indicates the matrix multiplication between Mn
I and

µk, while
∑K

k=1 lnK(Mn
I , µk) = 1. Now, Eq. (7) can be

simplified to

Z(new) = γ ·MI ⊙ (µ(old))T . (8)

Then Z is passed through a softmax layer to normalize

the weight correlation coefficient Znk in the nth row and

the kth column of correlation weight coefficient matrix Z:

Z
(new)
nk =

eZ
(new)
nk

∑N

n=1

∑K

k=1 e
Z

(new)
nk

. (9)

M-Step: The parameters of GMM are re-estimated by

likelihood maximization as follows:

µnew
k =

1

Nk

N
∑

n=1

Z
(new)
nk Mn

I , (10)

σ2 =
1

Nk

N
∑

n=1

Z
(new)
nk (Mn

I − µold
k )(Mn

I − µold
k )T , (11)

where

Nk =

N
∑

n=1

Z
(new)
nk . (12)

M-step updates the low-rank discriminative bases µ by

maximizing the complete data ln p(MI , Z, θ), where θ is

the set of all parameters of GMM. We re-estimated the low-

rank bases µ through using the weighted summation of MI

with the latent variables Z(new). Therefore, Eq. (10) can be

rewritten as:

µ
(new)
k =

Z
(new)
nk ·Mn

I
∑N

n=1 Z
(new)
nk

. (13)

The Low-rank Representation Mechanism (LRM) exe-

cutes the expectation step and maximization step alternately

until the low-rank bases are the most discriminative.

3.2. Low­rank Representation Reorganization

Learning low-rank representation with LRM only forces

the network to focus on the discriminative details rather

than to consider the spatial context of discriminative re-

gions. The network has difficulty in selecting discrimina-

tive patches/regions without spatial information. To deal

with this limitation, we propose a Low-rank Reorganization

Representation Mechanism (LR2M) to resume the spatial

information from the low-rank discriminative bases.

After the Gaussian Mixture Model is convergent, we re-

shape Z ∈ R
N×K into Z ∈ R

W×H×K to make linear

weight coefficients correspond with the space localization
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Table 1. The stride, patch scale size, scale step and aspect ratios

of the three different layers. M
1

D and M
2

D are feature maps after

down-sampling MD from the output of base decomposition. Note

that the stride is the original image scaling ratio. Patch width &

height = scale × scale step × aspect ratio.

Feature Map Stride Scale Scale Step Aspect ratio

MD 32 32 2
1
3 , 2

2
3

2
3 , 1,

3
2

M1
D 64 64 2

1
3 , 2

2
3

2
3 , 1,

3
2

M2
D 128 128 1, 2

1
3 , 2

2
3

2
3 , 1,

3
2

of original feature maps MI . Given the low-rank discrimi-

native bases µ and the linear weight coefficients Z, the vec-

tors Mwh
D located at (w, h) in re-estimation feature maps

MD can be calculated as follows:

Mwh
D =

K
∑

k=1

Zwhk · µk, (14)

where Zwhk denotes the linear weight coefficient located

at (w, h) and kth channel value in Z. After all Mwh
D are

computed, MD is constructed from discriminative bases.

MD has the low-rank property compared with the origi-

nal input MI . As Z keeps the mapping correlation between

MI and µ, MD can resume the discriminative details with

corresponding spacial information. Meanwhile, each fea-

ture vector in channel direction integrates all low-rank dis-

criminative bases with different linear combinations, which

can emphasize the discriminative regions while distill the

false positive highlighting in original feature maps MI .

3.3. Discriminative Information Sampling

We use the low-rank feature maps with three different

scales to generate default patches, inspired by Feature Pyra-

mid Network [20]. Table 1 shows the design details, con-

taining the scale size, scale step and aspect ratio of default

patches.

Let’s take feature map MD as an example. We feed the

low-rank features MD into a score layer. Concretely, we

add a 1 × 1 × N convolution layer and a sigmoid function

σ to learn discriminative response maps R ∈ R
N×H×W ,

which indicates the impact of discriminative regions on the

final classification, as follows:

R = σ(WR ∗MD + bR), (15)

where WR ∈ R
C×1×1×H represents the convolution ker-

nels, H is the number of the default patches at a given lo-

cation in the feature maps, and bR denotes the bias. Mean-

while, we assign the discriminative response value to each

default patch pijk:

pijk = [tx, ty, tw, th, Rijk], (16)

where sijk denotes the value of the ith row, the jth col-

umn and the kth channel, and (tx, ty, tw, th) denotes each

patch’s coordinates. Finally, the network picks the top-

M patches with a response value, where M is a hyper-

parameter.

3.4. Loss Function

The full multi-task loss L can be represented as the fol-

lowing:

L = Lcls + λ1 · Lgud + λ2 · Lrela + λ3 · Lrank, (17)

where Lcls represents the fine-grained classification loss.

Lgud, Lrela and Lrank represent the guided loss, correla-

tion loss and rank loss, respectively. The balance among

these losses is controlled by hyper-parameter λ1, λ2, λ3.

We denote the selected discriminative patches as P =
{P1, P2, ..., PN} and the corresponding discriminative re-

sponse values as R = {R1, R2, ..., RN}. Then the guided

loss and the correlation loss as well as the rank loss are de-

fined as follows:

Lgud(X,P ) =

N
∑

i

(max{0, logC(X)− logC(Pi)}), (18)

Lrela(Pc, P ) =

N
∑

i

(max{0, logC(Pi)− logC(Pc)}),

(19)

Lrank(R,P ) =
∑

logC(Pi)<logC(Pj)

(max{0, (Ri −Rj)}),

(20)

where X is the original image and the function C is the con-

fidence function which reflects the probability of classifica-

tion into the correct category, Pc is the concatenation of all

selected patch features.

The guided loss is designed to guide the network to se-

lect the more discriminative regions. The correlation loss

can guarantee that the prediction probability of combined

features is greater than that of single patch features. The

rank loss strives for consistency of the discriminative scores

and the final classification probability values of the selected

patches, encouraging them in the same order.

3.5. Back­propagation in GMM

As the proposed DF-GMM is an end-to-end framework,

the loss L in sec.3.4 can directly influence the parameter in

GMM. Concretely, we calculate the derivatives of weight

matrix Wm in low-rank bases µ:

∂L

∂Wm
=

∂L

∂MD

·
∂MD

∂Mn
I

·
∂Mn

I

∂Wm
, (21)

where the weight matrix can be modified through back-

propagation to improve the internal discriminative ability

of base elements.
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Table 2. The ablative recognition results and speed of different

variants of our method. We test the models on CUB-200-2011.
Method Accuracy Speed

BL [19] 84.5% n/a

BL + Sample 86.2% 50 fps

BL + Sample + DF-GMM 88.8% 41 fps

We use Q to represent GMM module, which is a self-

supervised clustering algorithm. According to Eq. (10) and

Eq.(11), we have:

∂Q

∂µk

=

N
∑

n=1

1

σ2
k

(Mn
I − µk), (22)

∂Q

∂σ2
k

= −
N
∑

n=1

1

2σ2
k

+

N
∑

n=1

1

2σ4
k

(Mn
I − µk)

2, (23)

It is obvious that covariance σ2 and mean µ both can be

adjusted indirectly by the learning process of network with

feature Mn
I .

4. Experiments

4.1. Datasets

We comprehensively evaluate our algorithm on Caltech-

UCSD Birds [1] (CUB-200-2011), Stanford Cars [18]

(Cars) and FGVC Aircraft (Airs) [22] datasets, which are

widely used benchmark for fine-grained image recognition.

The CUB-200-2011 dataset contains 11,788 images span-

ning 200 sub-species. The ratio of train data and test data

is roughly 1:1. The Cars dataset has 16,185 images from

196 classes officially split into 8,144 training and 8,041 test

images. The Airs dataset contains 10,000 images over 100

classes, and the train and test sets split ratio is around 2 : 1.

4.2. Implementation Details

In all our experiments, all images are resized to 448 ×
448, and we crop and resize the patches to 224× 224 from

the original image. We use fully-convolutional network

ResNet-50 as feature extractor and apply Batch Normal-

ization as regularizer. We also use Momentum SGD with

initial learning rate 0.001 and multiplied by 0.1 after 60

epochs. We use weight decay 1e−4. To reduce patch re-

dundancy, we adopt the non-maximum suppression (NMS)

on default patches based on their discriminative scores, and

the NMS threshold is set to 0.25. According to the results

of multiple experiments, the loss balance parameter can be

set into λ1 = λ2 = λ3 = 1. Note that the architecture

in principle contains multiple CNN modules and for clarity,

these CNN modules share the same parameters.

4.3. Ablation Experiments

We conduct ablation studies to understand the influence

of different components in our proposed method. We design

Table 3. Comparison of different methods on CUB-200-2011.

Method Box Part Accuracy

PN-DCN [1] BBox Parts 85.4%

M-CNN [29] n/a Parts 84.2%
PG [17] BBoxs n/a 82.8%

SCDA [28] n/a n/a 80.1%
AutoBD [31] n/a n/a 81.6%
OPAM [24] n/a n/a 85.8%

Bilinear [21] n/a n/a 84.0%
Kernel-Pooling [5] n/a n/a 86.2%

NTS-Net [30] n/a n/a 87.5%
PA-CNN [36] n/a n/a 87.8%

DCL [4] n/a n/a 87.8%

TASN [35] n/a n/a 87.9%

CDL [27] n/a n/a 88.4%

S3Ns [6] n/a n/a 88.5%

StackDRL [14] n/a n/a 86.6%
KERL [3] n/a n/a 87.0%

Our DF-GMM n/a n/a 88.8%

different runs on CUB-200-2011 dataset using ResNet-50

as the backbone network and report the results in Table 2.

First, the features are extracted from the original image

through ResNet-50 [11] without any object or partial an-

notation for fine-grained recognition, and we set it as the

baseline (BL) of our model. Then the default patches are

selected as local features to improve recognition accuracy.

However, massive redundant default patches result in the

low recognition speed. When we introduce the score mech-

anism (Sample) to only preserve the highly discriminative

patches and reduce the number of patches to single-digit,

the top-1 recognition accuracy on CUB-200-2011 dataset

improves 1.7% and achieves a real-time recognition speed

of 50 fps. Finally, we take account into the problem of dis-

criminative region diffusion through DF-GMM, and achieve

the state-of-the-art result of 88.8%. Ablation experiments

have verified that the proposed DF-GMM indeed learns the

low-rank discriminative bases to precisely localizes the dis-

criminative regions by solving the problem of discrimina-

tive region diffusion, thus effectively improves the recogni-

tion accuracy.

4.4. Performance Comparison

Accuracy comparison. Our comparisons focus on the

weakly supervised methods because the proposed model

only utilizes image-level annotations. Table 3, Table 4

and Table 5 show the performance of different methods

on CUB-200-2011 dataset, Stanford Cars-196 dataset and

FGVC-Aircraft dataset, respectively. In each table from

top to bottom, the methods are separated into six groups,

which are (1) supervised multi-stage methods, (2) weakly

supervised multi-stage frameworks, (3) weakly supervised
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Table 4. Comparison of different methods on Stanford Cars-196.

Method Annotation Accuracy

PG [17] BBoxs 92.8%

SCDA [28] n/a 85.1%
AutoBD [31] n/a 88.9%
OPAM [24] n/a 92.2%

Bilinear [21] n/a 91.3%
Kernel-Pooling [5] n/a 92.4%

PA-CNN [36] n/a 93.3%

NTS-Net [30] n/a 93.9%
TASN [35] n/a 93.8%

CDL [27] n/a 94.2%

DCL [4] n/a 94.5%

S3Ns [6] n/a 94.7%

DT-RAM [19] n/a 93.1%

Our DF-GMM n/a 94.8%

Table 5. Comparison of different methods on FGVC-Aircraft.

Method Annotation Accuracy

BoT [25] BBoxs 88.4%

SCDA [28] n/a 79.5%

Kernel-Pooling [5] n/a 85.7%

LB-CNN [16] n/a 87.3%
Kernel-Activation [2] n/a 88.3%

PA-CNN [36] n/a 91.0%

NTS-Net [30] n/a 91.4%
DFL-CNN [26] n/a 92.0%

S3Ns [6] n/a 92.8%

DCL [4] n/a 93.0%

- - -

Our DF-GMM n/a 93.8%

end-to-end feature encoding, (4) end-to-end localization-

classification sub-networks, (5) other methods (e.g. rein-

forcement learning [14], knowledge representation [3]) and

(6) our DF-GMM.

Earlier multi-stage methods rely on the object and even

part annotations to achieve comparable results. However,

using the object or part annotations limits the performance

due to the fact that human annotations only give the co-

ordinates of important parts rather than the accurate dis-

criminative region location. Weakly supervised multi-stage

frameworks gradually exceed the strong supervised meth-

ods though picking out discriminative regions. The end-to-

end feature encoding methods have good performance via

encoding the CNN feature vectors into high-order informa-

tion, while they result in high computational cost. Although

the localization-classification sub-networks works well on

various datasets, they neglect the problem of discriminative

region diffusion and have difficulty in picking out the ac-

curate discriminative regions. Other methods also achieve

comparable performance due to using the extra information

Table 6. Comparison with the efficiency and effectiveness of other

method on CUB-200-2011. K means the number of selected dis-

criminative regions for each image.

Method Annotation Accuracy Speed

M-CNN(K=2) [29] Parts 84.20% 12.90

WSDL(K=1) [13] n/a 83.45% 10.07

Bilinear(K=0) [21] n/a 84.00% 30.00

Our DF-GMM(K=2) n/a 88.10% 43.00

Our DF-GMM(K=4) n/a 88.80% 41.00

Table 7. Effect of Global Max Pooling vs. Global Average Pooling

on base initialization, the recognition accuracy on CUB-200-2011.

Initialization Method Accuracy

Random initialization 87.1%

Global Max Pooling 87.9%

Global Average Pooling 88.8%

Table 8. The recognition accuracy on CUB-200-2011 of model

trained with different number of GMM iterations.
k 1 2 3 4 5

Accuracy 86.9% 87.5% 88.8% 88.4% 88.1%

(e.g. the semantic embedding).

As shown in Table 3, Table 4 and Table 5, our approach

outperforms these strong supervised methods in the first

group, which indicates that the proposed method can find

the discriminative patches without any fine-grained anno-

tations. Compared with recent weakly supervised end-to-

end methods, which find discriminative patches from high-

level feature maps directly. We run DF-GMM to learn low-

rank feature maps to alleviate discriminative region diffu-

sion problem and achieves the new state-of-the-arts.

Speed Comparison. Table 6 shows the speed compari-

son with other methods. All the experiments are under the

setting with batch size 8 using a graphics card of Titan X.

While selecting 2 discriminative patches according to the

discriminative score maps, we outperform other methods

both in speed and accuracy. When we increase the discrim-

inative patches from 2 to 4, the proposed model achieves

the state-of-the-art recognition precision, and still stay real-

time at 41 fps.

4.5. Visualization Analysis

Insights about the influence of our proposed approach

can be obtained by visualizing the effects of feature maps

MI and MD, i.e. the feature maps without and with DF-

GMM respectively. As shown in Figure 3, the feature map

response can be shrank to pay attention to the accurate dis-

criminative regions with DF-GMM, which improves the ac-

curacy of localizing discriminative regions. We also visual-

ize the latent variables in GMM, as shown in Figure 4. The

linear weight coefficients can be displayed at the area of ob-

ject that indicates the network focuses on the discriminative
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Figure 3. Visualization of intermediate results in DF-GMM. (a) is

the original images, (b)(d)indicate the original feature maps MI

and (c)(d) denote the reconstructing feature maps of the special

channel, respectively. (b)(c) are the same channel feature map.

(d)(e) are also the same channel feature map.

Figure 4. Visualization of the latent variables at the last iteration

in GMM. (a) is the original images. (b)(c)(d)(e) indicate the latent

variables corresponding certain-th base.

regions. We draw the discriminative regions and display the

discriminative response map predicted by our model with-

out and with DF-GMM in Figure 5, respectively. It can

be seen that the discriminative response maps without DF-

GMM focus on the wide area which results in the problem

of hard localization, as shown in Figure 5(b). However, Our

DF-GMM could pay attention to a small area in discrimi-

native response maps, where the discriminative patches can

be located more easily and accurately. For more intuitive

presentation, we display the localization results in original

images, as shown in Figure 5(d)(e).

4.6. Discussions

The deeper, the better? We show the recognition re-

sults with different iterative number of GMM, as shown in

Figure 5. Visualization of discriminative response maps and lo-

calization results with and without DF-GMM.(a) is the original

images. (b)(c) are the discriminative response maps through sam-

pling stage without and with the DF-GMM, respectively. (d)(e) are

the localization results without and with DF-GMM, respectively.

Table 8. It is obvious that the performance of DF-GMM

drops when the iterative number increases to 4. The possi-

ble reason of the performance drop is that after using more

E-step and M-step, the propagation between bases µ and

latent variables Z will be overwhelmed.

GMP vs. GAP: As it can be seen in Table 5, switching

the pooling method from GAP to GMP leads to a signifi-

cant performance drop. Therefore, although the low-rank

bases are initialized to same state, GAP makes discrimi-

native bases focus on all discriminative information by en-

couraging the GMM to have high response over the whole

discriminative regions and the gradients affect every spa-

tial location of discriminative regions during training pro-

cedure. On the other side, GMP makes filters pay attention

to the most discriminative region to have a single response

at a certain location of the feature map and the gradients

will only be back-propagated to that location.

5. Conclusion

In this paper, we first discover the discriminative region

diffusion problem of high-level feature maps in WFGIR

methods. We argue that DRD problem aggravates the diffi-

culty of discriminative region localization for existing meth-

ods. We propose an end-to-end Discriminative Feature-

oriented Gaussian Mixture Model method to learn low-rank

feature maps to address DRD problem. Extensive experi-

ments show that the recognition accuracy can be improved

significantly by localizing patches on the new low-rank fea-

ture maps, which proves the DRD problem does play a key

role in WFGIR. The last but the most important, our algo-

rithm is end-to-end trainable and achieves state-of-the-art in

CUB-Bird, FGVC Aircraft and Stanford Cars datasets.
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