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Abstract

Consider end-to-end training of a multi-modal vs. a uni-

modal network on a task with multiple input modalities:

the multi-modal network receives more information, so it

should match or outperform its uni-modal counterpart. In

our experiments, however, we observe the opposite: the best

uni-modal network often outperforms the multi-modal net-

work. This observation is consistent across different combi-

nations of modalities and on different tasks and benchmarks

for video classification.

This paper identifies two main causes for this perfor-

mance drop: first, multi-modal networks are often prone

to overfitting due to their increased capacity. Second, dif-

ferent modalities overfit and generalize at different rates, so

training them jointly with a single optimization strategy is

sub-optimal. We address these two problems with a tech-

nique we call Gradient-Blending, which computes an op-

timal blending of modalities based on their overfitting be-

haviors. We demonstrate that Gradient Blending outper-

forms widely-used baselines for avoiding overfitting and

achieves state-of-the-art accuracy on various tasks includ-

ing human action recognition, ego-centric action recogni-

tion, and acoustic event detection.

1. Introduction

Consider a late-fusion multi-modal network, trained end-

to-end to solve a task. Uni-modal solutions are a strict sub-

set of the solutions available to the multi-modal network;

a well-optimized multi-modal model should, in theory, al-

ways outperform the best uni-modal model. However, we

show here that current techniques do not always achieve

this. In fact, what we observe is contrary to common sense:

the best uni-modal model often outperforms the joint model,

across different modalities (Table 1) and datasets (details in

section 3). Anecdotally, the performance drop with mul-

tiple input streams appears to be common and was noted

in [24, 3, 38, 44]. This (surprising) phenomenon warrants

investigation and solution.

Upon inspection, the problem appears to be overfitting:

Dataset Multi-modal V@1 Best Uni V@1 Drop

Kinetics

A + RGB 71.4 RGB 72.6 -1.2

RGB + OF 71.3 RGB 72.6 -1.3

A + OF 58.3 OF 62.1 -3.8

A + RGB + OF 70.0 RGB 72.6 -2.6

Table 1: Uni-modal networks consistently outperform multi-

modal networks. Best uni-modal networks vs late fusion multi-

modal networks on Kinetics using video top-1 validation accuracy.

Single stream modalities include video clips (RGB), Optical Flow

(OF), and Audio (A). Multi-modal networks use the same archi-

tectures as uni-modal, with late fusion by concatenation at the last

layer before prediction.
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Figure 1: Standard regularizers do not provide a good im-

provement over the best Uni-modal network. Best uni-modal

network (RGB) vs standard approaches on a multi-modal net-

work (RGB+Audio) on Kinetics. Various methods to avoid over-

fitting (orange: Pre-training, Early-stopping, and Dropout) do

not solve the issue. Different fusion architectures (red: Mid-

concatenation fusion, SE-gate, and NL-gate) also do not help.

Dropout and Mid-concatenation fusion approaches provide small

improvements (+0.3% and +0.2%), while other methods degrade

accuracy.

multi-modal networks have higher train accuracy and lower

validation accuracy. Late fusion audio-visual (A+RGB)

network has nearly two times the parameters of a visual net-

work, and one may suspect that the overfitting is caused by

the increased number of parameters.

There are two ways to approach this problem. First, one

can consider solutions such as dropout [43], pre-training, or

early stopping to reduce overfitting. On the other hand, one

may speculate that this is an architectural deficiency. We

experiment with mid-level fusion by concatenation [37] and

fusion by gating [31], trying both Squeeze-and-Excitation

(SE) [26] gates and Non-Local (NL) [50] gates.

Remarkably, none of these provide an effective solu-
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tion. For each method, we record the best audio-visual

results on Kinetics in Figure 1. Pre-training fails to of-

fer improvements, and early stopping tends to under-fit the

RGB stream. Mid-concat and dropout provide only mod-

est improvements over RGB model. We note that dropout

and mid-concat (with 37% fewer parameters compared to

late-concat) make 1.5% and 1.4% improvements over late-

concat, confirming the overfitting problem with late-concat.

We refer to supplementary materials for details.

How do we reconcile these experiments with previous

multi-modal successes? Multi-modal networks have suc-

cessfully been trained jointly on tasks including sound

localization [58], image-audio alignment [5], and audio-

visual synchronization [37, 34]. However, these tasks can-

not be performed with a single modality, so there is no uni-

modal baseline and the performance drop found in this pa-

per does not apply. In other work, joint training is avoided

entirely by using pre-trained uni-modal features. Good ex-

amples include two-stream networks for video classifica-

tion [41, 48, 19, 12] and image+text classification [6, 31].

These methods do not train multiple modalities jointly, so

they are again not comparable, and their accuracy may

likely be sub-optimal due to independent training.

Our contributions in this paper include:

• We empirically demonstrate the significance of overfit-

ting in joint training of multi-modal networks, and we

identify two causes for the problem. We show the prob-

lem is architecture agnostic: different fusion techniques

can also suffer the same overfitting problem.

• We propose a metric to understand the problem quanti-

tatively: the overfitting-to-generalization ratio (OGR),

with both theoretical and empirical justification.

• We propose a new training scheme which minimizes

OGR via an optimal blend (in a sense we make precise

below) of multiple supervision signals. This Gradient-

Blending (G-Blend) method gives significant gains in

ablations and achieves state-of-the-art (SoTA) accuracy

on benchmarks including Kinetics, EPIC-Kitchen, and

AudioSet by combining audio and visual signals.

We note that G-Blend is task-agnostic, architecture-agnostic

and applicable to other scenarios (e.g. used in [39] to com-

bine point cloud with RGB for 3D object detection)

1.1. Related Work

Video classification. Video understanding has been one

of the most active research areas in computer vision re-

cently. There are two unique features with respect to videos:

temporal information and multi-modality. Previous works

have made significant progress in understanding tempo-

ral information [27, 45, 49, 40, 47, 54, 17]. However,

videos are also rich in multiple modalities: RGB frames,

motion vectors (optical flow), and audio. Previous works

that exploit the multi-modal natures primarily focus on

RGB+Optical Flow, with the creation of two-stream fusion

networks [41, 19, 18, 48, 12], typically using pre-trained

features and focusing on the fusion [27, 19] or aggregation

architectures [56]. In contrast, we focus on joint training of

the entire network. Instead of focusing on the architectural

problem, we study model optimization: how to jointly learn

and optimally blend multi-modal signals. With proper opti-

mization, we show audio is useful for video classification.

Multi-modal networks. Our work is related to previous re-

search on multi-modal networks [7] for classifications [41,

48, 19, 21, 12, 6, 10, 31], which primarily uses pre-training

in contrast to our joint training. On the other hand, our work

is related to cross-modal tasks [53, 20, 42, 4, 57, 24, 9] and

cross-modal self-supervised learning [58, 5, 37, 34]. These

tasks either take one modality as input and make prediction

on the other modality (e.g. Visual-Q&A [4, 57, 24], im-

age captioning [9], sound localization [37, 58] in videos)

or uses cross-modality correspondences as self-supervision

(e.g. image-audio correspondence [5], video-audio syn-

chronization [34]). Instead, we try to address the problem

of joint training of multi-modal networks for classification.

Multi-task learning. Our proposed Gradient-Blending

training scheme is related to previous works in multi-task

learning in using auxiliary loss [33, 16, 30, 13]. These

methods either use uniform/manually tuned weights, or

learn the weights as parameters during training (no notion

of overfitting prior used), while our work re-calibrates su-

pervision signals using a prior OGR.

2. Multi-modal training via Gradient-Blending

2.1. Background

Uni-modal network. Given train set T = {X1...n, y1...n},

where Xi is the i-th training example and yi is its true label,

training on a single modality m (e.g. RGB frames, audio,

or optical flows) means minimizing an empirical loss:

L (C (ϕm(X)) , y) (1)

where ϕm is normally a deep network with parameter Θm,

and C is a classifier, typically one or more fully-connected

(FC) layers with parameter Θc. For classification problems

considered here, L is the cross entropy loss. Minimizing

Eq. 1 gives a solution Θ∗
m and Θ∗

c . Fig. 2a shows indepen-

dent training of two modalities m1 and m2.

Multi-modal network. We train a late-fusion model on M

different modalities ({mi}
k
1). Each modality is processed

by a different deep network ϕmi
with parameter Θmi

, and

their features are fused and passed to a classifier C. For-

mally, training is done by minimizing the loss:

Lmulti = L (C (ϕm1
⊕ ϕm2

⊕ · · · ⊕ ϕmk
) , y) (2)

where ⊕ denotes a fusion operation (e.g. concatenation).

Fig. 2b shows an example of a joint training of two modal-

ities m1 and m2. The multi-modal network in Eq. 2 is a
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Figure 2: Uni- vs. multi-modal joint training. a) Uni-modal training of two different modalities. b) Naive joint training of two modalities by late fusion.

c) Joint training of two modalities with weighted blending of supervision signals. Different deep network encoders (white trapezoids) produce features (blue

or pink rectangles) which are concatenated and passed to a classifier (yellow rounded rectangles).
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Figure 3: Overfitting-to-Generalization Ratio. Between any two

training checkpoints, we can measure the change in overfitting and

generalization. When ∆O

∆V
is small, the network is learning well

and not overfitting much.

super-set of the uni-model network in Eq. 1: for any so-

lution to Eq. 1 on any modality mi, one can construct an

equally-good solution to Eq. 2 by choosing parameters Θc

that mute all modalities other than mi. In practice, this so-

lution is not found, and we next explain why.

2.2. Generalizing vs. Overfitting

Overfitting is typically understood as learning patterns

in a train set that do not generalize to the target distribution.

Given model parameters at epoch N , let LT
N be the model’s

average loss over the fixed train set, and L∗
N be the “true”

loss w.r.t the hypothetical target distribution. (In what fol-

lows, L∗ is approximated by a held-out validation loss LV .)

We define overfitting at epoch N as the gap between LT
N

and L∗
N (approximated by ON in fig. 3). The quality of

training between two model checkpoints can be measured

by the change in overfitting and generalization (∆O, ∆G in

fig. 3). Between checkpoints N and N + n, we can define

the overfitting-to-generalization-ratio (OGR):

OGR ≡

∣

∣

∣

∣

∆ON,n

∆GN,n

∣

∣

∣

∣

=

∣

∣

∣

∣

ON+n −ON

L∗
N − L∗

N+n

∣

∣

∣

∣

(3)

OGR between checkpoints measures the quality of

learned information (with cross-entropy loss, it is the ratio

of bits not generalizable to bits which do generalize). We

propose minimizing OGR during training. However, opti-

mizing OGR globally would be very expensive (e.g. vari-

ational methods over the whole optimization trajectory). In

addition, very underfit models, for example, may still score

quite well (difference of train loss and validation loss is very

small for underfitting models; in other words, O is small).

Therefore, we propose to solve an infinitesimal problem:

given several estimates of the gradient, blend them to mini-

mize an infinitesimal OGR2. We apply this blend to our op-

timization process (e.g. SGD with momentum). Each gra-

dient step now increases generalization error as little as pos-

sible per unit gain on the validation loss, minimizing over-

fitting. In a multi-modal setting, this means we combine

gradient estimates from multiple modalities and minimize

OGR2 to ensure each gradient step now produces a gain no

worse than that of the single best modality. As we will see

in this paper, this L2 problem admits a simple, closed-form

solution, is easy to implement, and works well in practice.

Consider a single parameter update step with estimate ĝ

for the gradient. As the distance between two checkpoints

is small (in the neighborhood in which a gradient step is

guaranteed to decrease the train loss), we use the first-order

approximations: ∆G ≈ 〈∇L∗, ĝ〉 and ∆O ≈ 〈∇LT −
L∗, ĝ〉. Thus, OGR2 for a single vector ĝ is

OGR2 =

(

〈∇LT −∇L∗, ĝ〉

〈∇L∗, ĝ〉

)2

(4)

See supplementary materials for details on OGR.

2.3. Blending of Multiple Supervision Signals by
OGR Minimization

We can obtain multiple estimates of gradient by attach-

ing classifiers to each modality’s features and to the fused

features (see fig 2c). Per-modality gradient {ĝi}
k
i=1 are ob-

tained by back-propagating through each loss separately (so

per-modality gradients contain many zeros in other parts of

the network). Our next result allows us to blend them all

into a single vector with better generalization behavior.

Proposition 1 (Optimal Gradient Blend). Let {vk}
M
0 be

a set of estimates for ∇L∗ whose overfitting satisfies

E
[

〈∇LT −∇L∗, vk〉〈∇LT −∇L∗, vj〉
]

= 0 for j 6= k.

Given the constraint
∑

k wk = 1 the optimal weights wk ∈
R for the problem

w∗ = argmin
w

E

[

(

〈∇LT −∇L∗,
∑

k wkvk〉

〈∇L∗,
∑

k wkvk〉

)2
]

(5)
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are given by

w∗
k =

1

Z

〈∇L∗, vk〉

σ2
k

(6)

where σ2
k ≡ E[〈∇LT −∇L∗, vk〉

2] and Z =
∑

k
〈∇L∗,vk〉

2σ2

k

is a normalizing constant.

Assumption E
[

〈∇LT −∇L∗, vk〉〈∇LT −∇L∗, vj〉
]

=
0 will be false when two models’ overfitting is very cor-

related. However, if this is the case then very little can

be gained by blending their gradients. In informal exper-

iments we have indeed observed that these cross terms

are often small relative to the E
[

〈∇LT −∇L∗, vk〉
2
]

.

This is likely due to complementary information across

modalities, and we speculate that this happens naturally as

joint training tries to learn complementary features across

neurons. Please see supplementary materials for proof of

Proposition 1, including formulas for the correlated case.

Proposition 1 may be compared with well-known re-

sults for blending multiple estimators; e.g. for the mean, a

minimum-variance estimator is obtained by blending uncor-

related estimators with weights inversely proportional to the

individual variances (see e.g. [1]). Proposition 1 is similar,

where variance is replaced by O2 and weights are inversely

proportional to the individual O2 (now with a numerator G).

2.4. Use of OGR and Gradient­Blending in practice

We adapt a multi-task architecture to construct an ap-

proximate solution to the optimization above (fig 2c).

Optimal blending by loss re-weighting At each back-

propagation step, the per-modality gradient for mi is ∇Li,

and the gradient from the fused loss is given by Eq. 2 (de-

note as ∇Lk+1). Taking the gradient of the blended loss

Lblend =
k+1
∑

i=1

wiLi (7)

thus produces the blended gradient
∑k+1

i=1
wi∇Li. For ap-

propriate choices of wi this yields a convenient way to im-

plement gradient blending. Intuitively, loss reweighting re-

calibrates the learning schedule to balance the generaliza-

tion/overfitting rate of different modalities.

Measuring OGR in practice. In practice, ∇L∗ is not

available. To measure OGR, we hold out a subset V of

the training set to approximate the true distribution (i.e.

LV ≈ L∗). We find it is equally effective to replace the

loss measure by an accuracy metric to compute G and O

and estimate optimal weights from Gradient-Blending. To

reduce computation costs, we note that weights estimation

can be done on a small subset of data, without perturbing

the weights too much (see supplementary materials).

Gradient-Blending algorithms take inputs of training

data T , validation set V , k input modalities {mi}
k
i=1 and a

joint head mk+1 (Fig. 2c). In practice we can use a subset of

training set T ′ to measure train loss/ accuracy. To compute

the Gradient-Blending weights when training from N for

n epochs, we provide a Gradient-Blending weight estima-

tion in Algorithm 1. We propose two versions of gradient-

blending:

1. Offline Gradient-Blending is a simple version of

gradient-blending. We compute weights only once,

and use a fixed set of weights to train entire epoch.

This is very easy to implement. See Algorithm 2.

2. Online Gradient-Blending is the full version. We

re-compute weights regularly (e.g. every n epochs –

called a super-epoch), and train the model with new

weights for a super-epoch. See Algorithm 3.

Empirically, offline performs remarkably well. We compare

the two in section 3, with online giving additional gains.

Algorithm 1: G-B Weight Estimation: GB Estimate

input: ϕN , Model checkpoint at epoch N

n, # of epochs

Result: A set of optimal weights with for k+1 losses.

for i = 1, ..., k + 1 do
Initialize uni-modal/ naive multi-modal network

ϕN
mi

from corresponding parameters in ϕN ;

Train ϕN
mi

for n epochs on T , resulting model

ϕN+n
mi

;

Compute amount of overfitting Oi = ON,n,

generalization Gi = GN,n according to Eq.3

using V and T ′ for modality mi;

end

Compute a set of loss {w∗
i }

k+1

i=1
= 1

Z
Gi

Oi2
;

Algorithm 2: Offline Gradient-Blending

input: ϕ0, Initialized model

N , # of epochs

Result: Trained multi-head model ϕN

Compute per-modality weights

{wi}
k
i=1 = GB Estimate(ϕ0, N) ;

Train ϕ0 with {wi}
k
i=1 for N epochs to get ϕN ;

Algorithm 3: Online Gradient-Blending

input: ϕ0, Initialized model

N , # of epochs

n, super-epoch length

for i = 0, ..., N
n
− 1 do

Current epoch Ni = i ∗ n ;

Compute per-modality weights

{wi}
k
i=1 = GB Estimate(ϕNi , Ni + n) ;

Train ϕNi with {wi}
k
i=1 for n epochs to ϕNi+n ;

end
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3. Ablation Experiments

3.1. Experimental setup

Datasets. We use three video datasets for ablations: Kinet-

ics, mini-Sports, and mini-AudioSet. Kinetics is a standard

benchmark for action recognition with 260k videos [28] of

400 human action classes. We use the train split (240k)

for training and the validation split (20k) for testing. Mini-

Sports is a subset of Sports-1M [27], a large-scale clas-

sification dataset with 1.1M videos of 487 different fine-

grained sports. We uniformly sampled 240k videos from

train split and 20k videos from the test split. Mini-

AudioSet is a subset of AudioSet [22], a multi-label dataset

consisting of 2M videos labeled by 527 acoustic events. Au-

dioSet is very class-unbalanced, so we remove tiny classes

and subsample the rest (see supplementary). The balanced

mini-AudioSet has 418 classes with 243k videos.

Input preprocessing & augmentation. We consider three

modalities: RGB, optical flow and audio. For RGB and

flow, we use input clips of 16×224×224 as input. We fol-

low [46] for visual pre-processing and augmentation. For

audio, we use log-Mel with 100 temporal frames by 40 Mel

filters. Audio and visual are temporally aligned.

Backbone architecture. We use ResNet3D [47] as our vi-

sual backbone for RGB and flow and ResNet [25] as our

audio model, both with 50 layers. For fusion, we use a two-

FC-layer network on concatenated features from visual and

audio backbones, followed by one prediction layer.

Training and testing. We train our models with

synchronous distributed SGD on GPU clusters using

Caffe2 [11], with setup as [47]. We hold out a small por-

tion of training data for weight estimate (8% for Kinetics

and mini-Sports, 13% for mini-AudioSet). The final video

prediction is made by using center crops of 10 uniformly-

sampled clips and averaging the 10 predictions.

3.2. Overfitting Problems in Naive Joint Training

We first compare naive audio-RGB joint training with

unimodal audio-only and RGB-only training. Fig. 4 plots

the training curves on Kinetics (left) and mini-Sports

(right). On both datasets, the audio model overfits the most

and video overfits least. The naive joint audio-RGB model

has lower training error and higher validation error com-

pared with the video-only model; i.e. naive audio-RGB

joint training increases overfitting, explaining the accuracy

drop compared to video alone.

We extend the analysis and confirm severe overfitting

on other multi-modal problems. We consider all 4 pos-

sible combinations of the three modalities (audio, RGB,

and optical flow). In every case, the validation accuracy of

naive joint training is significantly worse than the best sin-

gle stream model (Table 1), and training accuracy is almost

always higher (see supplementary materials).

Method Clip V@1 V@5

Naive Training 61.8 71.7 89.6

RGB Only 63.5 72.6 90.1

Offline G-Blend 65.9 74.7 91.5

Online G-Blend 66.9 75.8 91.9

Table 2: Both offline and online Gradient-Blending outperform Naive

late fusion and RGB only. Offline G-Blend is lightly less accurate com-

pared with the online version, but much simpler to implement.

3.3. Gradient­Blending is an effective regularizer

In this ablation, we first compare the performance of on-

line and offline versions of G-Blend. Then we show that

G-Blend works with different types of optimizers, includ-

ing ones with adaptive learning rates. Next, we show G-

Blend improves the performance on different multi-modal

problems (different combinations of modalities), different

model architectures and different tasks.

Online G-Blend Works. We begin with the complete ver-

sion of G-Blend, online G-Blend. We use an initial super-

epoch size of 10 (for warmup), and a super-epoch size

of 5 thereafter. On Kinetics with RGB-audio setting, on-

line Gradient-Blending surpasses both uni-modal and naive

multi-modal baselines, by 3.2% and 4.1% respectively. The

weights for online are in fig. 5a. In general, weights tend

to be stable at first with slightly more focused on visual;

then we see a transition at epoch 15 where the model does

“pre-training” on visual trunk; at epoch 20 A/V trunk got all

weights to sync the learning from visual trunk. After that,

weights gradually stabilize again with a strong focus on vi-

sual learning. We believe that, in general, patterns learned

by neural network are different at different stage of training

(e.g.[36]), thus the overfitting / generalization behavior also

changes during training; this leads to different weights at

different stages of the training.

Moreover, we observe that G-Blend always outperforms

naive training in the online setting (Fig. 5b). With the same

initialization (model snapshots at epoch 0,10,15,...,40), we

compare the performance of G-Blend model and naive

training after a super-epoch (at epoch 10,15,20,...,45), and

G-Blend models always outperform naive training. This

shows that G-Blend always provides more generalizable

training information, empirically proving proposition 1.

Additionally, it shows the relevance of minimizing OGR, as

using weights that minimize OGR improves performance

of the model. For fair comparison, we fix the main trunk

and finetune the classifier for both Naive A/V and G-Blend

as we want to evaluate the quality of their backbones. At

epoch 25, the gain is small since G-Blend puts almost all

weights on A/V head, making it virtually indistinguishable

from naive training for that super-epoch.

Offline G-Blend Also Works. Although online G-Blend

gives significant gains and addresses overfitting well, it is

more complicated to implement, and somewhat slower due
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Figure 4: Severe overfitting of naive audio-video models on Kinetics and mini-Sports. The learning curves (error-rate) of audio model (A), video model

(V), and the naive joint audio-video (AV) model on Kinetics (left) and mini-Sports (right). Solid lines plot validation error while dashed lines show train

error. The audio-video model overfits more than visual model and is inferior to the video-only model on validation loss.
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Figure 5: Online G-Blend. (a) Online G-Blend weights for each head.

(b) Online G-Blend outperforms naive training on each super-epoch.

For each super-epoch (5 epochs), we use the same snapshot of the model

learned by G-Blend, and compare the performance of the models trained

by G-Blend and naive at the next 5 epochs. G-Blend always outperforms

naive training. This proves that G-Blend always learn more generalize

information at a per-step level.

to the extra weight computations. As we will now see, Of-

fline G-Blend can be easily adopted and works remarkably

well in practice. On the same audio-RGB setting on Kinet-

ics, offline G-Blend also outperforms uni-modal baseline

and naive joint training by a large margin, 2.1% and 3.0%

respectively (Table 2), and is only slightly worse than online

(-1.1%). Based on such observation, we opt to use offline G-

Blend in the rest of the ablations, demonstrating its perfor-

mance across different scenarios. We speculate the online

version will be particularly useful for some cases not cov-

ered here, for example a fast-learning low-capacity model

(perhaps using some frozen pre-trained features), paired

with a high-capacity model trained from scratch.

Adaptive Optimizers. Section 2.2 introduced G-Blend in

an infinitesimal setting: blending different gradient estima-

tion at a single optimization step and assumes same learning

rate for each gradient estimator. This is true for many pop-

ular SGD-based algorithms, such as SGD with Momentum.

However, the assumption may not be rigorous with adaptive

optimization methods that dynamically adjust learning rate

for each parameter, such as Adam [32] and AdaGrad [15].

We empirically show that offline Gradient-Blending (Algo-

rithm 2) also works with different optimizers. Since SGD

gives the best accuracy among the three optimizers, we opt

to use SGD for all of our other experiments.

Different Modalities. On Kinetics, we study all combi-

nations of three modalities: RGB, optical flow, and audio.

Optimizer Method Clip V@1 V@5

AdaGrad

Visual 60.0 68.9 88.4

Naive AV 56.4 65.2 86.5

G-Blend 62.1 71.3 89.8

Adam

Visual 60.1 69.3 88.7

Naive AV 57.9 66.4 86.8

G-Blend 63.0 72.1 90.5

Table 3: G-Blend on different optimizers. We compare G-Blend with

Visual only and Naive AV on two additional optimizers: AdaGrad, and

Adam. G-Blend consistently outperforms Visual-Only and Naive AV base-

lines on all three optimizers.

Table 4 presents comparison of our method with naive joint

training and best single stream model. We observe signif-

icant gains of G-Blend compared to both baselines on all

multi-modal problems. It is worth noting that G-Blend is

generic enough to work for more than two modalities.

Different Architectures. We conduct experiments on mid-

fusion strategy [37], which suffers less overfitting and out-

performs visual baseline (Figure 1). On audio-visual set-

ting, Gradient-Blending gives 0.8% improvement (top-1

from 72.8% to 73.6%). On a different fusion architecture

with Low-Rank Multi-Modal Fusion (LMF) [35], Gradient-

Blending gives 4.2% improvement (top-1 from 69.3% to

73.5%). This suggests Gradiend-Blending can be adopted

to other fusion strategies besides late-fusion and other fu-

sion architectures besides concatenation.

Different Tasks/Benchmarks. We pick the problem of

joint audio-RGB model training, and go deeper to compare

Gradient-Blending with other regularization methods on

different tasks and benchmarks: action recognition (Kinet-

ics), sport classification (mini-Sports), and acoustic event

detection (mini-AudioSet). We include three baselines:

adding dropout at concatenation layer [43], pre-training sin-

gle stream backbones then finetuning the fusion model, and

blending the supervision signals with equal weights (which

is equivalent to naive training with two auxiliary losses).

Auxiliary losses are popularly used in multi-task learning,

and we extend it as a baseline for multi-modal training.

As presented in Table 5, Gradient-Blending outperforms

all baselines by significant margins on both Kinetics and

mini-Sports. On mini-AudioSet, G-Blend improves all

baselines on mAP, and is slightly worse on mAUC com-
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Modal RGB + A RGB + OF OF + A RGB + OF + A

Weights [RGB,A,Join]=[0.630,0.014,0.356] [RGB,OF,Join]=[0.309,0.495,0.196] [OF,A,Join]=[0.827,0.011,0.162] [RGB,OF,A,Join]=[0.33,0.53,0.01,0.13]

Metric Clip V@1 V@5 Clip V@1 V@5 Clip V@1 V@5 Clip V@1 V@5

Uni 63.5 72.6 90.1 63.5 72.6 90.1 49.2 62.1 82.6 63.5 72.6 90.1

Naive 61.8 71.4 89.3 62.2 71.3 89.6 46.2 58.3 79.9 61.0 70.0 88.7

G-Blend 65.9 74.7 91.5 64.3 73.1 90.8 54.4 66.3 86.0 66.1 74.9 91.8

Table 4: Gradient-Blending (G-Blend) works on different multi-modal problems. Comparison between G-Blend with naive late fusion and single best

modality on Kinetics. On all 4 combinations of different modalities, G-Blend outperforms both naive late fusion network and best uni-modal network by

large margins, and it also works for cases with more than two modalities. G-Blend results are averaged over three runs with different initialization. Variances

are small and are provided in supplementary

pared to auxiliary loss baseline. The reason is that the

weights learned by Gradient-Blending are very similar to

equal weights. The failures of auxiliary loss on Kinetics and

mini-Sports demonstrates that the weights used in G-Blend

are indeed important. We note that for mini-AudioSet, even

though the naively trained multi-modal baseline is better

than uni-modal baseline, Gradient-Blending still improves

by finding more generalized information. We also experi-

ment with other less obvious multi-task techniques such as

treating the weights as learnable parameters [30]. However,

this approach converges to a similar result as naive joint

training. This happens because it lacks of overfitting prior,

and thus the learnable weights were biased towards the head

that has the lowest training loss which is audio-RGB.

Figure 6: Top-Bottom 10 classes based on improvement of G-Blend to

RGB model. The improved classes are indeed audio-relevant, while those

have performance drop are not very audio semantically-related.

Fig. 6 presents top and bottom 10 classes on Kinet-

ics where G-Blend makes the most and least improve-

ments compared with RGB-only. We observe that im-

proved classes usually have a strong audio-correlation, such

as clapping and laughing. For texting, although audio-only

has nearly 0 accuracy, when combined with RGB using G-

Blend, there are still significant improvements. On bottom-

10 classes, we indeed find that audio does not seem to be

very semantically relevant (e.g. unloading truck). See sup-

plementary materials for more qualitative analysis.

4. Comparison with State-of-the-Art

In this section, we train our multi-modal networks

with deeper backbone architectures using offline Gradient-

Blending and compare them with state-of-the-art methods

on Kinetics, EPIC-Kitchen [14], and AudioSet. EPIC-

Kitchen is a multi-class egocentric dataset with 28K train-

ing videos associated with 352 noun and 125 verb classes.

For ablations, following [8], we construct a validation set of

unseen kitchen environments. G-Blend is trained with RGB

and audio input. For Kinetics and EPIC-Kitchen, we use ip-

CSN [46] for visual backbone with 32 frames and ResNet

for audio backbone, both with 152 layers. For AudioSet,

we use R(2+1)D for visual [47] with 16 frames and ResNet

for audio, both with 101 layers. We use the same training

setup in section 3. For EPIC-Kitchen, we follow the same

audio feature extractions as [29]; the visual backbone is pre-

trained on IG-65M [23]. We use the same evaluation setup

as section 3 for AudioSet and EPIC-Kitchen. For Kinetics,

we follow the 30-crop evaluation setup as [50]. Our main

purposes in these experiments are: 1) to confirm the bene-

fit of Gradient-Blending on high-capacity models; and 2) to

compare G-Blend with state-of-the-art methods on different

large-scale benchmarks.

Results. Table 6 presents results of G-Blend and com-

pares them with current state-of-the-art methods on Kinet-

ics. First, G-Blend provides an 1.3% improvement over

RGB model (the best uni-modal network) with the same

backbone architecture ip-CSN-152 [46] when both models

are trained from scratch. This confirms that the benefits

of G-Blend still hold with high capacity model. Second,

G-Blend outperforms state-of-the-arts multi-modal base-

line Shift-Attention Network [10] by 1.4% while using less

modalities (not using optical flow) and no pre-training. It is

on-par with SlowFast [17] while being 2x faster. G-Blend,

when fine-tuned from Sports-1M on visual and AudioSet on

audio, outperforms SlowFast Network and SlowFast aug-

mented by Non-Local [50] by 1.5% and 0.6% respectively,

while being 2x faster than both. Using weakly-supervised

pre-training by IG-65M [23] on visual, G-Blend gives un-

paralleled 83.3% top-1 accuracy and 96.0% top-5 accuracy.

We also note that there are many competitive methods re-

porting results on Kinetics, due to the space limit, we select

only a few representative methods for comparison includ-

ing Shift-Attention [10], SlowFast [17], and ip-CSN [46].

Shift-Attention and SlowFast are the methods with the best

published accuracy using multi-modal and uni-modal input,

respectively. ip-CSN is used as the visual backbone of G-
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Dataset Kinetics mini-Sports mini-AudioSet

Weights [RGB,A,Join]=[0.63,0.01,0.36] [RGB,A,Join]=[0.65,0.06,0.29] [RGB,A,Join]=[0.38,0.24,0.38]

Method Clip V@1 V@5 Clip V@1 V@5 mAP mAUC

Audio only 13.9 19.7 33.6 14.7 22.1 35.6 29.1 90.4

RGB only 63.5 72.6 90.1 48.5 62.7 84.8 22.1 86.1

Pre-Training 61.9 71.7 89.6 48.3 61.3 84.9 37.4 91.7

Naive 61.8 71.7 89.3 47.1 60.2 83.3 36.5 92.2

Dropout 63.8 72.9 90.6 47.4 61.4 84.3 36.7 92.3

Auxiliary Loss 60.5 70.8 88.6 48.9 62.1 84.0 37.7 92.3

G-Blend 65.9 74.7 91.5 49.7 62.8 85.5 37.8 92.2

Table 5: G-Blend outperforms all baseline methods on different benchmarks and tasks. Comparison of G-blend with different regularization baselines

as well as uni-modal networks on Kinetics, mini-Sports, and mini-AudioSet. G-Blend consistently outperforms other methods, except for being comparable

with using auxiliary loss on mini-AudioSet due to the similarity of learned weights of G-Blend and equal weights.

Backbone Pre-train V@1 V@5 GFLOPs

Shift-Attn Net [10] ImageNet 77.7 93.2 NA

SlowFast [17] None 78.9 93.5 213×30

SlowFast+NL [17] None 79.8 93.9 234×30

ip-CSN-152 [46] None 77.8 92.8 108.8×30

G-Blend(ours) None 79.1 93.9 110.1×30

ip-CSN-152 [46] Sports1M 79.2 93.8 108.8×30

G-Blend(ours) Sports1M 80.4 94.8 110.1×30

ip-CSN-152 [46] IG-65M 82.5 95.3 108.8×30

G-Blend(ours) IG-65M 83.3 96.0 110.1×30

Table 6: Comparison with state-of-the-art methods on Kinetics. G-

Blend used audio and RGB as input modalities; for pre-trained models on

Sports1M and IG-65M, G-Blend initializes audio network by pre-training

on AudioSet. G-Blend outperforms current state-of-the-art multi-modal

method (Shift-Attention Network) despite the fact that it uses fewer modal-

ities (G-Blend does not use Optical Flow). G-Blend also gives a good im-

provement over RGB model (the best uni-modal network) when using the

same backbone, and it achieves the state-of-the-arts.

Method mAP mAUC

Multi-level Attn. [55] 0.360 0.970

TAL-Net [52] 0.362 0.965

Audio:R2D-101 0.324 0.961

Visual:R(2+1)D-101 0.188 0.918

Naive A/V:101 0.402 0.973

G-Blend (ours):101 0.418 0.975

Table 7: Comparison with state-of-the-art methods on AudioSet. G-

Blend outperforms the state-of-the-art methods by a large margin.

Blend thus serves as a direct baseline.

Table 7 presents G-Blend results on AudioSet. Since Au-

dioSet is very large (2M), we use mini-AudioSet to estimate

weights. G-Blend outperforms two state-of-the-art Multi-

level Attention Network[55] and TAL-Net[52] by 5.8% and

5.5 % on mAP respectively, although the first one uses

strong features (pre-trained on YouTube100M) and the sec-

ond uses 100 clips per video, while G-Blend uses only 10.

Table 8 presents G-Blend results and compare with pub-

lished SoTA results and leaderboard on the EPIC-Kitchens

Action Recognition challenge. On validation set, G-Blend

outperforms naive A/V baseline on noun, verb and action; it

is on par with visual baseline on noun and outperforms vi-

sual baseline on verb and action. Currently, G-Blend ranks

the 2nd place on unseen kitchen in the challenge and 4th

method noun verb action

V@1 V@5 V@1 V@5 V@1 V@5

Validation Set

Visual:ip-CSN-152 [46] 36.4 58.9 56.6 84.1 24.9 42.5

Naive A/V:152 34.8 56.7 57.4 83.3 23.7 41.2

G-Blend(ours) 36.1 58.5 59.2 84.5 25.6 43.5

Test Unseen Kitchen (S2)

Leaderboard [2] 38.1 63.8 60.0 82.0 27.4 45.2

Baidu-UTS [51] 34.1 62.4 59.7 82.7 25.1 46.0

TBN Single [29] 27.9 53.8 52.7 79.9 19.1 36.5

TBN Ensemble [29] 30.4 55.7 54.5 81.2 21.0 39.4

Visual:ip-CSN-152 35.8 59.6 56.2 80.9 25.1 41.2

G-Blend(ours) 36.7 60.3 58.3 81.3 26.6 43.6

Test Seen Kitchen (S1)

Baidu-UTS(leaderboard) 52.3 76.7 69.8 91.0 41.4 63.6

TBN Single 46.0 71.3 64.8 90.7 34.8 56.7

TBN Ensemble 47.9 72.8 66.1 91.2 36.7 58.6

Visual:ip-CSN-152 45.1 68.4 64.5 88.1 34.4 52.7

G-Blend(ours) 48.5 71.4 66.7 88.9 37.1 56.2

Table 8: Comparison with state-of-the-art methods on EPIC-Kitchen.

G-Blend achieves 2nd place on seen kitchen challenge and 4th place on un-

seen, despite using fewer modalities, fewer backbones, and single model in

contrast to model ensembles compared to published results on leaderboard.

place on seen kitchen. Comparing to published results, G-

Blend uses less modalities (not using optical flow as TBN

Ensemble [29]), less backbones (Baidu-UTS [51] uses three

3D-CNNs plus two detection models), and a single model

(TBN Ensemble [29] uses ensemble of five models).

5. Discussion

In uni-modal networks, diagnosing and correcting over-

fitting typically involves manual inspection of learning

curves. Here we have shown that for multi-modal networks

it is essential to measure and correct overfitting in a princi-

pled way, and we put forth a useful and practical measure of

overfitting. Our proposed method, Gradient-Blending, uses

this measure to obtain significant improvements over base-

lines, and either outperforms or is comparable with state-

of-the-art methods on multiple tasks and benchmarks. The

method potentially applies broadly to end-to-end training

of ensemble models, and we look forward to extending G-

Blend to other fields where calibrating multiple losses is

needed, such as multi-task.
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