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Abstract

Cross-modal matching has been a highlighted research

topic in both vision and language areas. Learning appro-

priate mining strategy to sample and weight informative

pairs is crucial for the cross-modal matching performance.

However, most existing metric learning methods are devel-

oped for unimodal matching, which is unsuitable for cross-

modal matching on multimodal data with heterogeneous

features. To address this problem, we propose a simple

and interpretable universal weighting framework for cross-

modal matching, which provides a tool to analyze the inter-

pretability of various loss functions. Furthermore, we intro-

duce a new polynomial loss under the universal weighting

framework, which defines a weight function for the positive

and negative informative pairs respectively. Experimental

results on two image-text matching benchmarks and two

video-text matching benchmarks validate the efficacy of the

proposed method.

1. Introduction

Cross-modal matching aims at retrieving relevant in-

stances of a different media type from the query, which

has a variety of applications such as Image-Text match-

ing [6, 32, 28, 36, 31, 37, 41, 2, 14], Video-Text match-

ing [22, 29, 10, 38], Sketch-based image matching [3], etc.

Compared with unimodal matching, cross-modal matching

is more challenging due to the heterogeneous gap between

different modalities. The key issue in cross-modal matching

is to reduce the heterogeneous gap and exploit discrimina-

tive information across modalities [21, 8, 35, 33, 27].

A common solution for cross-modal matching is to learn

a shared embedding space for different modalities so that

the features from different modalities can be compared. Re-

cently, a variety of cross-modal matching methods have

been devoted to learning richer semantic representations for

different modalities and a ranking loss is adopted to jointly

optimize the network so that the similarity of the positive
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Figure 1. A typical solution for cross-modal matching is to learn a

shared embedding space where visual features Φ(v) and text fea-

tures Ψ(t) can be compared. Points with the same shape are from

the same modality. A triplet loss was utilized to encourage the

similarity of positive (matching) pairs larger than negative (non-

matching) pairs. Take image-text matching as an example.

pairs is higher than that of all negative pairs, as illustrated

in Figure 1. In previous literature, attention mechanism [18]

and generative models [11, 15] have been explored to build

advanced encoding networks. Liu et al. [23] proposed a

recurrent residual fusion block to reduce the modality gap,

and a triplet loss [13] was used to encourage semantically

associated samples close to each other in the shared embed-

ding space. Li et al. [19] proposed a visual reasoning model

to generate global representation of a scene.

While these methods have achieved encouraging perfor-

mance, most of them use the ranking loss as an objective

function, which usually trained with random sampling. This

gives rise to an issue for cross-modal matching, where ran-

dom sampling cannot effectively select informative pairs for

training, leading a slow convergence and poor performance.

While more recent metric learning methods have provided

various mining strategies for unimodal matching, few of

them are suitable for cross-modal matching. Hence, learn-

ing an appropriate mining strategy to sample and weight

informative pairs is still a challenging problem for cross-

modal matching.
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In this paper, we propose a universal weighting frame-

work for cross-modal matching. Our intuition is based on

the fact that a larger weight is assigned to a more infor-

mative pair, as illustrated in Figure 2. Unlike widely used

unweighted triplet loss which treats all pairs equally, our

proposed universal weighting framework can effectively as-

sign appropriate weight to informative pairs for cross-modal

matching. Specifically, we define two polynomial functions

to calculate the weight values for positive and negative pairs

respectively. Furthermore, we introduce a new polynomial

loss under the universal weighting framework. Since the

form of a polynomial function is flexible, our polynomial

loss has a better generalization.

The major contributions of this paper are summarized as

follows:

• We propose a universal weighting framework for

cross-modal matching, which defines two polynomial

functions to calculate the weight values for positive

and negative pairs respectively. It provides a power-

ful tool to analyze the interpretability of various loss

functions.

• We introduce a new polynomial loss under the univer-

sal weighting framework. The polynomial loss can ef-

fectively select informative pairs from redundant pairs,

and assign appropriate weights to different pairs, re-

sulting in performance boost.

• We conduct extensive experiments and evaluate our

proposed method on two cross-modal matching tasks,

image-text matching and video-text matching. Exper-

imental results demonstrate that our method achieves

very competitive performance on the four widely

used benchmark datasets: MS-COCO, Flickr30K,

ActivityNet-captions and MSR-VTT.

2. Related Work

Cross-Modal Matching. Cross-modal matching has a

variety of applications, such as Image-Text matching [6,

32], Video-Text matching [9, 30, 22], Sketch-based image

retrieval [3] etc. The key issue of cross-modal matching is

measuring the similarity between different modal features.

A common solution is to learn a shared embedding space

where features of different modalities can be directly com-

pared. In recent years, a variety of methods have been de-

voted to learning modality invariant features.

Lee et al. [18] proposed a stacked cross attention net-

work for image-text matching, which measures the image-

text similarity by aligning image regions and words. Li

et al. [19] used graph convolutional network to generate

relationship-enhanced image region features, then a global

semantic reasoning network is performed to generate dis-

criminative visual features that capture key objects and se-

mantic concepts of a scene. Song et al. [30] introduced a
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Figure 2. As the positive pairs similarity score increases, its weight

value decreases; As the negative pairs similarity score increases,

its weight value increases.

polysemous instance embedding network that uses multi-

head self-attention and residual learning to generate multi-

ple representations of an instance. Liu et al. [22] proposed a

collaborative expert (CE) framework for video-text match-

ing, which generates dense representations for videos via

aggregating information from different pre-trained models.

Above embedding-based methods learn an advanced encod-

ing network to generate richer semantic representations for

different modalities, which make the matched pairs close to

each other and the mismatched pairs far apart in the shared

embedding space.

Metric Learning for Cross-Modal Matching. Another

popular approach for cross-modal matching is to learn a

loss function in the embedding space, which encourages the

similarity of matched pairs larger than mismatched pairs. In

recent years, a variety of metric learning methods have been

proposed in both vision and language areas. However, most

of existing metric learning methods are designed for uni-

modal matching, which cannot effectively model the rela-

tionship of features captured from different modalities [21].

Only few of metric learning methods have been imple-

mented particularly for cross-modal matching [35, 21, 6].

Liong et al. [21] introduced a deep coupled metric learn-

ing that designs two nonlinear transformations to reduce the

modality map. Frome et al. [7] proposed a deep visual-

semantic embedding model mapping visual features and

semantic features into a shared embedding space, using a

hinge rank loss as the objective function. Faghri et al. [6]

introduced a variant triplet loss for image-text matching,

and reported improved results. Xu et al. [35] introduced

a modality classifier to ensure that the transformed features

are statistically indistinguishable. However, these methods

treat positive and negative pairs equally. Hardly any ad-

vanced sampling and weighting mechanism has been pro-

posed for cross-modal matching. In this work, we present a

universal weighting framework for cross-modal matching,

which assigns a larger weight value to a harder sample.
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3. The Proposed Approach

In this section, we formulate the sampling problem of

cross-modal matching as a general weighting formulation.

The proposed polynomial loss will be elaborated afterward.

3.1. Problem Statement

Let vi ∈ R
d1 be a visual feature vector, ti ∈ R

d2 be

a text feature vector, D = {(vi, ti)} be a training set of

cross-modal instance pairs. In general, components of an

instance pair come from different modalities. For simplic-

ity, we refer to (vi, ti) as a positive pair and (vi, tj,i 6=j) as

a negative pair. Given a query instance, the goal of cross-

modal matching is to find a sample that matches it in another

modality gallery. In the case of image-text matching, given

an image caption ti, the goal is to find the most relevant

image vi in the image gallery. It is important to note that

in the cross-modal matching task, there is only one positive

sample for each anchor in a mini-batch. Previous work for

cross-modal matching focused on building a shared embed-

ding space that contains both the image and text. The core

idea behind these methods is that there exists a mapping

function, S(v, t;W ) = Φ(v)TWΨ(t) to measure the sim-

ilarity score between the visual features Φ(v) and the text

features Ψ(t). W is the parameter of S. In general, the sim-

ilarity score of the positive pair is higher than the negative

pair by a margin, it can be formulated as:

S(vi, ti) > S(vi, tj,j 6=i) + λ0, ∀vi, (1)

S(vj , tj) > S(vi,i 6=j , tj) + λ0, ∀tj , (2)

where λ0 is a fixed margin.

Since cross-modal matching is a mutual retrieval prob-

lem, the widely used triplet loss is formulated as :

L = [S(v, t̂)− S(v, t) + λ0]+ + [S(v̂, t)− S(v, t) + λ0]+,
(3)

where (v, t) is positive pair, (v, t̂) is the hardest negative

pair for a query v, and (v̂, t) is the hardest negative pair

for a query caption t. [x]+ = max(x, 0). However, these

methods discard pairs with less information than the hardest

pair, while treating positive pairs and negative pairs equally.

To our best knowledge, there is no advanced sampling and

weighting method for cross-modal matching.

3.2. Universal Weighting Framework for Cross­
Modal Matching

Let Nvi
= {Sij,i 6=j} be the set of similarity scores for all

negative pairs of a sample vi, and Ntj = {Sij,j 6=i} be the

set of similarity scores for all negative pairs of a sample tj .

Most existing hinge-based loss functions L can be formu-

lated as a function of similarity scores: L({Sij}). Current

existing weighting methods are given a special function to

represent the relationship between weight values and sim-

ilarity scores, the form of the function varies from task to

task. All these functions can be reformulated into a univer-

sal weighting framework:

L =

i=N∑

i=1

{GPosSii +
∑

(GNegSij,i 6=j)}, (4)

where GPos is the weight value of the positive pair, GNeg is

the weight value of negative pairs. Both of GPos and GNeg

are a function of similarity scores, but in a different forms.

GPos = G(Sii, Nvi
), (5)

GNeg = G(Sjj , Ntj ), (6)

where G(·) is a function that represents the relationship be-

tween weight value and similarity score. Theoretically, G(·)
can be a function of self-similarity and relative similarity.

The form of G(·) is various, but it should satisfy a basic

rule: as the positive pairs’ similarity score increases, its

weight value decreases, and as the negative pairs’ similarity

score increases, its weight value increases. As illustrated in

Figure 2. It provides a powerful tool to analyze the inter-

pretability of various loss functions through weight analy-

sis. Eq. 4 is a general pair formulation, existing pair-based

loss is one of its special cases.

3.3. Informative Pairs Mining

For cross-modal matching tasks, in a mini-batch, each

anchor has only one positive sample, but many negative

pairs. These negative pairs are redundant and most of them

are less informative. Random sampling are difficult to select

more informative pairs, resulting in the model is difficult to

convergence and have a poor performance. It is urgent and

important to develop efficient algorithms that can select in-

formative negative pairs and discard less informative neg-

ative pairs. In this section, we select informative negative

pairs by comparing the relative similarity scores between

positive and negative pairs of an anchor. For a given anchor

vi, we assume its positive sample is ti, negative samples is

tj,i 6=j , and a negative pair (vi, tj) is selected if Sij satisfies

the condition:

Sij,i 6=j > Sii − λ, (7)

where λ is a fixed margin. As illustrated in Figure 3. Note

that there only one positive sample for each anchor in a

mini-batch.

3.4. Polynomial Loss for Cross­Modal Matching

Through the above steps, negative pairs with more infor-

mative pairs can be selected and less informative pairs can

be discarded. In this section, we introduce a new weight-

ing function to weight the selected pairs. Theoretically,
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Figure 3. Illustration of our informative pairs mining and universal weighting framework for cross-modal matching. Points with the same

shape are from the same modality. P is the only positive sample of anchor, N1, N2 and N3 are the negative samples of anchor. Left:

An example of random sampling and equal weighting; Right: The proposed negative pairs mining and universal weighting framework for

cross-modal matching;

G(·) can be a function of self-similarity and relative similar-

ity. However, the more complex the G(·), the more hyper-

parameters it contains, and the hyper-parameters setting is

more difficult. In this paper, to reduce the number of hyper-

parameters, we define G(·) as a function of self-similarity.

Specifically, given a selected positive pair (vi, ti), its weight

GPos can be formulated as:

GPos = amSm
ii + am−1S

m−1

ii + · · ·+ a1Sii + a0, (8)

where Sii is the similarity score, {ai}
i=m
i=0 is hyper-

parameters, m is positive integer. The form of GPos is

diverse, but its value should decrease with the increase of

similarity score Sii. Its trend should conform to the curve

in figure 2a.

The weight GNeg for a selected negative pair (vi, tj) can

be formulated as:

GNeg = bkS
k
ij + bk−1S

k−1

ij + · · ·+ b1Sij + b0, i 6= j, (9)

where Sij is similarity score, {bi}
i=k
i=0 is hyper-parameters,

and k is positive integer. The form of GNeg is diverse, but

its trend should conform to the curve in figure 2b.

Through Eq. 8 and 9, we obtain the weights of positive

and negative pairs. In this paper, we introduce two different

functions, average polynomial loss and maximum polyno-

mial loss.

Avg Polynomial Loss. Average polynomial loss can be

defined as:

LAvg =
1

N

i=N∑

i=1

[GPosS
p
ii +

∑
Sij∈Nvi

GNegS
q
ij

Num(Nvi)
+ λ1]++

1

N

j=N∑

j=1

[GPosS
p
jj +

∑
Sij∈Ntj

GNegS
q
ij

Num(Ntj )
+ λ2]+,

(10)

Eq. 10 can be reformulated as:

LAvg =
1

N

i=N∑

i=1

[
P∑

apS
p
ii +

∑
Sij∈Nvi

∑Q
bqS

q
ij

Num(Nvi
)

]++

1

N

j=N∑

j=1

[

P∑
apS

p
jj +

∑
Sij∈Ntj

∑Q
bqS

q
ij

Num(Ntj )
]+,

(11)

here, Num(Nvi
) and Num(Ntj ) denote the number of

negative pairs of sample vi and tj respectively. P and Q

are the highest power of positive and negative pairs, respec-

tively. Note, we make the minimum of p and q to 0, and

a0 = λ1, b0 = λ2.

For cross-modal matching tasks, only one positive sam-

ple for each anchor in a mini-batch. Our loss function can

make full use of informative negative pairs. Since cross-

modal matching tasks involve the mutual retrieval between

different modalities, our loss comprises two terms. The

former term represents the loss of image retrieval caption,

and the latter represents the loss of caption retrieval im-

age. Since the form of a polynomial function is flexible,

our polynomial loss has a better generalization.

Max Polynomial Loss. To further highlight the supe-

riority of our weighting mechanism, we introduce another

version of polynomial loss LMax, which only contains the

hardest negative pair. The formulation of LMax is defined

as:

LMax =
1

N

i=N∑

i=1

[GPosS
p
ii +GNegMax{Nvi

}q + λ1]++

1

N

j=N∑

j=1

[GPosS
p
jj +GNegMax{Ntj}

q + λ2]+,

(12)
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here, Max{Nvi
} and Max{Ntj} represent the hardest

negative pair of sample vi and tj respectively. Eq.12 can

be reformulated as:

LMax =
1

N

i=N∑

i=1

[
P∑

apS
p
ii +

Q∑
bqMax{Nvi

}q]++

1

N

j=N∑

j=1

[

P∑
apS

p
jj +

Q∑
bqMax{Ntj}

q]+,

(13)

Both LAvg and LMax can be minimized with gradient

descent optimization. More discussions about LAvg and

LMax can be found in the subsection of experiments.

4. Experiments

In this section, we conducted extensive experiments to

evaluate the proposed polynomial loss in both image-text

matching and video-text matching tasks. Following the

[30, 18], we use the Recall@K as the performance met-

rics for both image-text matching and video-text matching

tasks, which indicates the percentage of queries for which

the model returns the correct item in its top K results. Ab-

lation studies are conducted to analyze the effectiveness of

proposed polynomial loss. We set the margin λ in Eq. 7 to

0.2 for all experiments.

4.1. Implementation Details

Image-Text Matching. We evaluate our polynomial

loss on two standard benchmarks: MS-COCO [20] and

Flickr30K [39]; MS-COCO dataset contains 123,287 im-

ages, and each image comes with 5 captions. We mirror the

data split setting of [18]. More specifically, we use 113,287

images for training, 5,000 images for validation and 5,000

images for testing. We report results on both 1,000 test

images (averaged over 5 folds) and full 5,000 test images.

Flickr30K dataset contains 31,783 images, each image is

annotated with 5 sentences. Following the data split of [18],

we use 1,000 images for validation, 1,000 images for testing

and the remaining for training.

Our implementation follows the practice in Stacked

Cross Attention Network (SCAN) [18]. SCAN maps im-

age regions and words into a shared embedding space to

measure the similarity score between an image and a cap-

tion. For fair comparison, we keep the network structure

unchanged and replace the loss function with polynomial

loss. There are two inputs for SCAN, a set of image features

which extracted by a pretrained Faster-RCNN model [1]

with ResNet-101 [12], and a set of word features which en-

coded by a bi-directional Gated Recurrent Unit (GRU) [26].

Models are trained from scratch using Adam [16] with batch

size of 128 for both datasets. For MS-COCO, we start

training with learning rate 0.0005 for 10 epochs, and then

lower it to 0.00005 for another 10 epochs. For Flickr30K,

the learning rate is 0.0002 for 15 epochs, and then lower

it to 0.00002 for another 15 epochs. There are two sets

of parameters in the polynomial loss, {ap} and {bq}. We

adopt a heuristic method to select hyper-parameters. Con-

cretely, we first initialize the G(·) to ensure that its curve

conforms to the trend in Figure 2. Then, a grid search

technology is adopted to select hyper-parameters. We set

P = 2, {a0 = 0.5, a1 = −0.7, a2 = 0.2}, Q = 2 and

{b0 = 0.03, b1 = −0.3, b2 = 1.2} for MS-COCO and

P = 2, {a0 = 0.6, a1 = −0.7, a2 = 0.2}, Q = 2,

{b0 = 0.03, b1 = −0.4, b2 = 0.9} for Flickr30K.

Video-Text Matching. We evaluate our polynomial

loss on two popular datasets: ActivityNet-captions [17]

and MSR-VTT [34]. ActivityNet-captions contains 20K

videos, and each video comes with 5 text descriptions. We

follow the data split of [22], 10,009 videos for training and

4,917 for testing. MSR-VTT contains 10K videos and each

video is associated with about 20 sentences. We follow

the data split of [22], 6,513 videos for training, and 2,990

videos for testing.

We report results on video-text matching task with Col-

laborative Experts (CE) [22] framework. CE is a framework

that aggregated various pretrained features of a video into a

dense representation before mapping to the shared embed-

ding space. We keep the network structure unchanged and

replace the loss function with polynomial loss. Models are

trained from scratch using Adam [16] with batch size of 64

for both datasets. The learning rate is set to 0.0004. There

are two sets of parameters in the polynomial loss, {ap} and

{bq}. We set P = 2, {a0 = 0.5, a1 = −0.7, a2 = 0.2},

Q = 2 and {b0 = 1, b1 = −0.2, b2 = 1.7} for ActivityNet-

captions and P = 2, {a0 = 0.5, a1 = −0.7, a2 = 0.2},

Q = 2, {b0 = 0.03, b1 = −0.3, b2 = 1.8} for MSR-VTT.

4.2. Image­Text Matching Results

For image-text matching task, we compare the per-

formance of our method with the several state-of-the-art

methods, including: PVSE [30], VSE++ [6], SCO [15],

RRF [23], DAN [25], GXN [11]and SCAN [18]. Table 1

and Table 2 summarize the results of our method on the

Flickr30K and MS-COCO datasets, respectively. We also

list the loss function used by various methods. From the

table, we can make the following observations:

• From Table 1, we find the proposed method out-

performs the baseline SCAN at all metrics. Com-

pared with the classical triplet loss, the performance of

SCAN with polynomial loss improves R@1 by 3.6%

for text to image retrieval and 1.5% for image to text

retrieval on Flickr30K.

• Table 2 summarizes the results on MS-COCO dataset.

From Table 2, we can observe that the proposed
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Methods Loss Function
Image-to-Text Text-to-Image

R@1 R@5 R@10 R@1 R@5 R@10

RRF [23] Triplet 47.6 77.4 87.1 35.4 68.3 79.9

VSE++ [6] Triplet 52.9 80.5 87.2 39.6 70.1 79.5

DAN [25] Triplet 55.0 81.8 89.0 39.4 69.2 79.1

SCO [15] Triplet+NLL 55.5 82.0 89.3 41.1 70.5 80.1

SCAN (I2T) [18] Triplet 67.9 89.0 94.4 43.9 74.2 82.8

SCAN (I2T) Max Polynomial Loss 69.4 89.9 95.4 47.5 75.5 83.1

Table 1. Experimental results on Flickr30K.

Methods Loss Function
Image-to-Text Text-to-Image

R@1 R@5 R@10 R@1 R@5 R@10

1K Test images

VSE++ [6] Triplet 64.6 89.1 95.7 52.0 83.1 92.0

GXN [11] Triplet 68.5 - 97.9 56.6 - 94.5

PVSE [30] Triplet+Ldiv+Lmmd 69.2 91.6 96.6 55.2 86.5 93.7

SCAN (I2T) [18] Triplet 69.2 93.2 97.5 54.4 86.0 93.6

SCAN (I2T) Max Polynomial Loss 71.1 93.7 98.2 56.8 86.7 93.0

5K Test images

VSE++ [6] Triplet 41.3 71.1 81.2 30.3 59.4 72.4

GXN [11] Triplet 42.0 - 84.7 31.7 - 74.6

PVSE [30] Triplet+Ldiv+Lmmd 45.2 74.3 84.5 32.4 63.0 75.0

SCAN (I2T) [18] Triplet 46.4 77.4 87.2 34.4 63.7 75.7

SCAN (I2T) Max Polynomial Loss 46.9 77.7 87.6 34.4 64.2 75.9

Table 2. Experimental results on MS-COCO.

method outperforms the state-of-the-art approaches,

especially for R@1. By replacing the triplet loss with

our LMax, the performance of SCAN improves 1.9%

on image to text retrieval (R@1) and 2.4% on text to

image retrieval (R@1) on 1K test images.

• Classical triplet loss tries to sample the informative

pairs from redundant pairs, but treats positive and neg-

ative pairs equally. In contrast to it, the proposed poly-

nomial loss assigns appropriate weight value to the

positive and negative pairs, and the weight value is re-

lated to its similarity score. The proposed method can

simultaneously select and weight informative pairs.

Extensive experimental results demonstrated that the

proposed polynomial loss improved the matching per-

formance effectively.

4.3. Video­Text Matching Results

We evaluate the effectiveness of our method on two stan-

dard benchmarks: ActivityNet-captions and MSR-VTT. We

report our results and comparison with current state-of-the-

art methods for video-to-text and text-to-video retrievals.

The results are summarized in the Table 3 and Table 4 for

ActivityNet-captions and MSR-VTT datasets, respectively.

In order to promote a comprehensive comparison, we list

existing state-of-the-art results on these datasets, including:

DENSE [17], HSE [40], CE [22] for ActivityNet-captions

dataset and Minthum et al. [24], W2VV [4], CE [22] and

Dual encoding [5] for MSR-VTT dataset. Furthermore, we

list the loss function used by various methods. From Ta-

ble 3 and Table 4, we can observe that our method out-

performs the baselines on all measures, and achieves the

new state-of-the-art performance on the video-text match-

ing task. When compared with CE (Triplet) which uses

the same video and sentence encoders with our method,

our method improves 2.5% on text-to-video (R@1) task on

the MSR-VTT dataset. Our method outperforms the CE on

all metrics on the ActivityNet-captions dataset. The perfor-

mance gap between CE (Triplet) and CE (Max Polynomial

Loss) shows the effectiveness of our polynomial Loss.

4.4. Ablation Study

Parameter Analysis. There are two sets of parameters

in the polynomial loss, {ai} and {bj}. It is worth explor-

ing to seek a set of parameters to make the model converge

faster and achieves better performance. Since the number

of hyper-parameters is too large, it is almost impossible

to analyze the sensitivity of the hyper-parameters one by

one, so we mainly analyze the sensitivity of several hyper-

parameters with great influence. P and Q respectively de-

termines the highest power of GPos and GNeg , which has
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Methods Loss Function
Video-to-Text Text-to-Video

R@1 R@5 R@10 R@1 R@5 R@10

DENSE [17] Cross-entropy 18.0 36.0 74.0 14.0 32.0 65.0

HSE (4SEGS) [40] Multi-loss 18.7 48.1 - 20.5 49.3 -

CE [22] Triplet 27.9 61.6 95.0 27.3 61.1 94.4

CE Max Polynomial Loss 27.9 61.9 94.1 28.5 62.6 94.9

Table 3. Experimental results on ActivityNet-captions.

Methods Loss Function
Video-to-Text Text-to-Video

R@1 R@5 R@10 R@1 R@5 R@10

Minthum wt al. [24] Cross-entropy 12.5 32.1 42.4 7.0 20.9 29.7

W2VV [4] Multi-loss 11.8 28.9 39.1 6.1 18.7 27.5

Dual encoding [5] Triplet 13.0 30.8 43.3 7.7 22.0 31.8

CE [22] Triplet 34.4 64.6 77.0 22.5 52.1 65.5

CE Max Polynomial Loss 36.2 71.5 82.2 25.0 55.4 68.2

Table 4. Experimental results on MSR-VTT.

0 1 2 3 4 5
Iter. (1e4)

0

10

20

30

40

50

60

70

Re
ca

ll@
1

Triplet Loss i2t
Triplet Loss t2i
Max Polynomial Loss i2t
Max Polynomial Loss t2i

Figure 4. Triplet loss vs. Max Polynomial Loss on Flickr30K val-

idation set. By replacing the loss function with our polynomial

loss, the performance of SCAN is further improved.
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Figure 5. Analysis of the behaviors of the Max and Avg polyno-

mial loss on MS-COCO validation set.

a direct impact on the number of hyper-parameters. There-

fore, we first fixed them to 2. In practice, we find that model

performance is most sensitive to parameters {bq}, thus we

mainly analyze the sensitivity of parameters {bq}. We test

the effect of b1 and b2 by fixing b0 = 0.03, results are

summarized in Table 5. b1 and b2 impact the hard level

of negative pairs, the model is sensitive to different values.

However, all of these combinations outperform the baseline,

which demonstrates the superiority of our approach.

Triplet Loss vs. Max Polynomial Loss. Triplet loss

is the most frequently used loss function for cross-modal

matching tasks. Its effectiveness has been proved by many

works, such as [6]. In this section, we further analyze the

effectiveness of the proposed polynomial weighting mech-

anism. Max polynomial loss only includes the hardest neg-

ative pairs, which can be considered as a weighted version

of triplet loss. We compare the max polynomial loss with

triplet loss on MS-COCO dataset, the results are shown in

Figure 4. From the results, we find the max polynomial loss

converges faster than triplet loss and achieves a better result,

which proven the superiority of our polynomial weighting

mechanism.

Max vs. Avg Ploynomial Loss. In this section, we fur-

ther analyze the effectiveness of the proposed Max and Avg

polynomial loss. Max polynomial loss weights the positive

pair and the hardest negative pair for each anchor, which can

be considered as a weighted version of the hardest triplet

loss. In contrast, average polynomial loss contains all of in-

formative negative pairs and assigns different weight values

for them. Since the max polynomial loss only utilizes a sub-

set of informative pairs so that its computational complexity

is lower than the average polynomial loss which contains all

of informative negative pairs.

Figure 5 shows the performance of two functions on MS-
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1. A room with some chairs and a bookshelf.

2. A table surrounded by chairs and filled with cooking 

utensils.

3. The table is full of wooden spoons and utensils.

SCAN

1. A table and chairs with wooden kitchen tools on top.

2. The table is full of wooden spoons and utensils.

3. A wood table holding an assortment of wood cooking 

utensils.

Ours

1. A bathroom that has white towels in a rack over the tub.

2. Bathroom with a shower, sink, and toilet in it.

3. A bathroom with a sink, toilet and shower with curtain.

1. A very big white rest room with a shabby looking shower.

2. A bathroom that has white towels in a rack over the tub.

3. A bathroom with a toilet, towel rack and a tub in it.

Query

A guy that is 

riding his bike 

next to a train.

A man in a red 

shirt and a red 

hat is on a 

motorcycle on 

a hill side.

Figure 6. Qualitative results on MS-COCO. For each query, we report top-3 ranked results. Predictions ordered by decreasing similarity

score, with true matches are shown in blue. For text-to-image retrieval, the true and false matches are outlined in blue and red boxes,

respectively.

Tasks
b1

b2
1.5 1.7 1.8 1.9

Video-to-Text

-0.2 36.0 35.5 36.1 35.5

-0.3 34.6 35.0 36.2 35.6

-0.4 34.0 35.3 35.6 35.3

Text-to-Video

-0.2 25.0 25.0 24.8 25.0

-0.3 24.8 24.9 25.0 24.8

-0.4 24.6 24.8 24.7 24.9

Table 5. The effect of b1 and b2 on MSR-VTT dataset.

COCO dataset. From the results, we find the average poly-

nomial loss is converges faster than the max polynomial loss

at the first few iterations. The reason is that the average

polynomial loss contains more informative pairs. However,

the final performance of max polynomial loss is slightly bet-

ter than average polynomial loss. This is possibly due to the

unreasonable parameter setting. Since average polynomial

loss contains too many negatives pairs, it is difficult to find a

set of parameters PNeg to fit all informative negative pairs.

4.5. Qualitative Results

In this section, we perform visualizations Top-3 retrieval

results for a handful of examples on MS-COCO. Both qual-

itative results of the image-to-text retrieval and the text-to-

image retrieval are shown in Figure 6, which qualitatively

illustrate the model behavior. Predictions are ordered by

decreasing similarity score, with correct labels are shown in

blue. From Figure 6, we can observe that by replacing the

loss function with our polynomial loss, the performance of

SCAN is further improved.

5. Conclusion

We have developed a universal weighting framework

for cross-modal matching, which defines a weight function

for the positive and negative pairs respectively. Universal

weighting framework provides a powerful tool to analyze

the interpretability of various loss functions. Furthermore,

we proposed a polynomial loss function under the univer-

sal weighting framework, which can effectively sample and

weight the informative pairs. Experimental results on four

cross-modal matching benchmarks have demonstrated the

proposed polynomial loss significantly improve the match-

ing performance. In future work, we would like to investi-

gate the potential of more advanced weighting functions for

cross-modal matching.
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