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Abstract

Cross-modal matching has been a highlighted research
topic in both vision and language areas. Learning appro-
priate mining strategy to sample and weight informative
pairs is crucial for the cross-modal matching performance.
However, most existing metric learning methods are devel-
oped for unimodal matching, which is unsuitable for cross-
modal matching on multimodal data with heterogeneous
features. To address this problem, we propose a simple
and interpretable universal weighting framework for cross-
modal matching, which provides a tool to analyze the inter-
pretability of various loss functions. Furthermore, we intro-
duce a new polynomial loss under the universal weighting
framework, which defines a weight function for the positive
and negative informative pairs respectively. Experimental
results on two image-text matching benchmarks and two
video-text matching benchmarks validate the efficacy of the
proposed method.

1. Introduction

Cross-modal matching aims at retrieving relevant in-
stances of a different media type from the query, which
has a variety of applications such as Image-Text match-
ing [6, 32, 28, 36, 31, 37, 41, 2, 14], Video-Text match-
ing [22, 29, 10, 38], Sketch-based image matching [3], etc.
Compared with unimodal matching, cross-modal matching
is more challenging due to the heterogeneous gap between
different modalities. The key issue in cross-modal matching
is to reduce the heterogeneous gap and exploit discrimina-
tive information across modalities [21, 8, 35, 33, 27].

A common solution for cross-modal matching is to learn
a shared embedding space for different modalities so that
the features from different modalities can be compared. Re-
cently, a variety of cross-modal matching methods have
been devoted to learning richer semantic representations for
different modalities and a ranking loss is adopted to jointly
optimize the network so that the similarity of the positive
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Figure 1. A typical solution for cross-modal matching is to learn a
shared embedding space where visual features ®(v) and text fea-
tures W () can be compared. Points with the same shape are from
the same modality. A triplet loss was utilized to encourage the
similarity of positive (matching) pairs larger than negative (non-
matching) pairs. Take image-text matching as an example.

pairs is higher than that of all negative pairs, as illustrated
in Figure 1. In previous literature, attention mechanism [18]
and generative models [11, 15] have been explored to build
advanced encoding networks. Liu et al. [23] proposed a
recurrent residual fusion block to reduce the modality gap,
and a triplet loss [13] was used to encourage semantically
associated samples close to each other in the shared embed-
ding space. Li et al. [19] proposed a visual reasoning model
to generate global representation of a scene.

While these methods have achieved encouraging perfor-
mance, most of them use the ranking loss as an objective
function, which usually trained with random sampling. This
gives rise to an issue for cross-modal matching, where ran-
dom sampling cannot effectively select informative pairs for
training, leading a slow convergence and poor performance.
While more recent metric learning methods have provided
various mining strategies for unimodal matching, few of
them are suitable for cross-modal matching. Hence, learn-
ing an appropriate mining strategy to sample and weight
informative pairs is still a challenging problem for cross-
modal matching.
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In this paper, we propose a universal weighting frame-
work for cross-modal matching. Our intuition is based on
the fact that a larger weight is assigned to a more infor-
mative pair, as illustrated in Figure 2. Unlike widely used
unweighted triplet loss which treats all pairs equally, our
proposed universal weighting framework can effectively as-
sign appropriate weight to informative pairs for cross-modal
matching. Specifically, we define two polynomial functions
to calculate the weight values for positive and negative pairs
respectively. Furthermore, we introduce a new polynomial
loss under the universal weighting framework. Since the
form of a polynomial function is flexible, our polynomial
loss has a better generalization.

The major contributions of this paper are summarized as
follows:

e We propose a universal weighting framework for
cross-modal matching, which defines two polynomial
functions to calculate the weight values for positive
and negative pairs respectively. It provides a power-
ful tool to analyze the interpretability of various loss
functions.

e We introduce a new polynomial loss under the univer-
sal weighting framework. The polynomial loss can ef-
fectively select informative pairs from redundant pairs,
and assign appropriate weights to different pairs, re-
sulting in performance boost.

e We conduct extensive experiments and evaluate our
proposed method on two cross-modal matching tasks,
image-text matching and video-text matching. Exper-
imental results demonstrate that our method achieves
very competitive performance on the four widely
used benchmark datasets: MS-COCO, Flickr30K,
ActivityNet-captions and MSR-VTT.

2. Related Work

Cross-Modal Matching. Cross-modal matching has a
variety of applications, such as Image-Text matching [6,
32], Video-Text matching [9, 30, 22], Sketch-based image
retrieval [3] etc. The key issue of cross-modal matching is
measuring the similarity between different modal features.
A common solution is to learn a shared embedding space
where features of different modalities can be directly com-
pared. In recent years, a variety of methods have been de-
voted to learning modality invariant features.

Lee et al. [18] proposed a stacked cross attention net-
work for image-text matching, which measures the image-
text similarity by aligning image regions and words. Li
et al. [19] used graph convolutional network to generate
relationship-enhanced image region features, then a global
semantic reasoning network is performed to generate dis-
criminative visual features that capture key objects and se-
mantic concepts of a scene. Song et al. [30] introduced a
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Figure 2. As the positive pairs similarity score increases, its weight
value decreases; As the negative pairs similarity score increases,
its weight value increases.

polysemous instance embedding network that uses multi-
head self-attention and residual learning to generate multi-
ple representations of an instance. Liu et al. [22] proposed a
collaborative expert (CE) framework for video-text match-
ing, which generates dense representations for videos via
aggregating information from different pre-trained models.
Above embedding-based methods learn an advanced encod-
ing network to generate richer semantic representations for
different modalities, which make the matched pairs close to
each other and the mismatched pairs far apart in the shared
embedding space.

Metric Learning for Cross-Modal Matching. Another
popular approach for cross-modal matching is to learn a
loss function in the embedding space, which encourages the
similarity of matched pairs larger than mismatched pairs. In
recent years, a variety of metric learning methods have been
proposed in both vision and language areas. However, most
of existing metric learning methods are designed for uni-
modal matching, which cannot effectively model the rela-
tionship of features captured from different modalities [21].
Only few of metric learning methods have been imple-
mented particularly for cross-modal matching [35, 21, 6].

Liong et al. [21] introduced a deep coupled metric learn-
ing that designs two nonlinear transformations to reduce the
modality map. Frome et al. [7] proposed a deep visual-
semantic embedding model mapping visual features and
semantic features into a shared embedding space, using a
hinge rank loss as the objective function. Faghri et al. [6]
introduced a variant triplet loss for image-text matching,
and reported improved results. Xu et al. [35] introduced
a modality classifier to ensure that the transformed features
are statistically indistinguishable. However, these methods
treat positive and negative pairs equally. Hardly any ad-
vanced sampling and weighting mechanism has been pro-
posed for cross-modal matching. In this work, we present a
universal weighting framework for cross-modal matching,
which assigns a larger weight value to a harder sample.
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3. The Proposed Approach

In this section, we formulate the sampling problem of
cross-modal matching as a general weighting formulation.
The proposed polynomial loss will be elaborated afterward.

3.1. Problem Statement

Let v; € R% be a visual feature vector, ¢; € R% be
a text feature vector, D = {(v;,t;)} be a training set of
cross-modal instance pairs. In general, components of an
instance pair come from different modalities. For simplic-
ity, we refer to (v;, ;) as a positive pair and (v;, ¢, ;) as
a negative pair. Given a query instance, the goal of cross-
modal matching is to find a sample that matches it in another
modality gallery. In the case of image-text matching, given
an image caption t;, the goal is to find the most relevant
image v; in the image gallery. It is important to note that
in the cross-modal matching task, there is only one positive
sample for each anchor in a mini-batch. Previous work for
cross-modal matching focused on building a shared embed-
ding space that contains both the image and text. The core
idea behind these methods is that there exists a mapping
function, S(v,t; W) = ®(v)TW¥(t) to measure the sim-
ilarity score between the visual features ®(v) and the text
features W(t). W is the parameter of S. In general, the sim-
ilarity score of the positive pair is higher than the negative
pair by a margin, it can be formulated as:

S(viyti) > S(vi, tj i) + Ao, Vi, (D

S(Uj,tj) > S(vi,i#ptj) -+ )\O,th, (2)

where A is a fixed margin.
Since cross-modal matching is a mutual retrieval prob-
lem, the widely used triplet loss is formulated as :

L =[S(v,t) — S(v,t) + Xo]+ + [S(D,t) — S(v, ) + Ao+,

3)
where (v,t) is positive pair, (v, ) is the hardest negative
pair for a query v, and (0,t) is the hardest negative pair
for a query caption t. [x]+ = maz(z,0). However, these
methods discard pairs with less information than the hardest
pair, while treating positive pairs and negative pairs equally.
To our best knowledge, there is no advanced sampling and
weighting method for cross-modal matching.

3.2. Universal Weighting Framework for Cross-
Modal Matching

Let N, = {S;;,i=; } be the set of similarity scores for all
negative pairs of a sample v;, and Ny; = {S;; 2} be the
set of similarity scores for all negative pairs of a sample ;.
Most existing hinge-based loss functions L can be formu-
lated as a function of similarity scores: L({S;;}). Current
existing weighting methods are given a special function to

represent the relationship between weight values and sim-
ilarity scores, the form of the function varies from task to
task. All these functions can be reformulated into a univer-
sal weighting framework:

=N
L= Z {GPosSii + Z (GNegSijizi)ys @)
=1

where G p, is the weight value of the positive pair, G ¢4 iS
the weight value of negative pairs. Both of G'pys and Gyeq
are a function of similarity scores, but in a different forms.

GPos - G(SlZ,N’L)7)) (5)

GNeg = G(Sjj, Ny,), (6)

where G(-) is a function that represents the relationship be-
tween weight value and similarity score. Theoretically, G(-)
can be a function of self-similarity and relative similarity.
The form of G(-) is various, but it should satisfy a basic
rule: as the positive pairs’ similarity score increases, its
weight value decreases, and as the negative pairs’ similarity
score increases, its weight value increases. As illustrated in
Figure 2. It provides a powerful tool to analyze the inter-
pretability of various loss functions through weight analy-
sis. Eq. 4 is a general pair formulation, existing pair-based
loss is one of its special cases.

3.3. Informative Pairs Mining

For cross-modal matching tasks, in a mini-batch, each
anchor has only one positive sample, but many negative
pairs. These negative pairs are redundant and most of them
are less informative. Random sampling are difficult to select
more informative pairs, resulting in the model is difficult to
convergence and have a poor performance. It is urgent and
important to develop efficient algorithms that can select in-
formative negative pairs and discard less informative neg-
ative pairs. In this section, we select informative negative
pairs by comparing the relative similarity scores between
positive and negative pairs of an anchor. For a given anchor
v;, We assume its positive sample is ¢;, negative samples is
tj.i+;, and a negative pair (v;, ;) is selected if .5;; satisfies
the condition:

Sijiti > S — A, (7

where A is a fixed margin. As illustrated in Figure 3. Note
that there only one positive sample for each anchor in a
mini-batch.

3.4. Polynomial Loss for Cross-Modal Matching

Through the above steps, negative pairs with more infor-
mative pairs can be selected and less informative pairs can
be discarded. In this section, we introduce a new weight-
ing function to weight the selected pairs. Theoretically,
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Figure 3. Illustration of our informative pairs mining and universal weighting framework for cross-modal matching. Points with the same
shape are from the same modality. P is the only positive sample of anchor, N1, N2 and N3 are the negative samples of anchor. Left:
An example of random sampling and equal weighting; Right: The proposed negative pairs mining and universal weighting framework for

cross-modal matching;

G(-) can be a function of self-similarity and relative similar-
ity. However, the more complex the G(-), the more hyper-
parameters it contains, and the hyper-parameters setting is
more difficult. In this paper, to reduce the number of hyper-
parameters, we define G(+) as a function of self-similarity.
Specifically, given a selected positive pair (v;, t;), its weight
G pos can be formulated as:

Gpos = amS?: + am—lszl_1 + -4+ a15; +ag, (8)

where S;; is the similarity score, {a;}!=7" is hyper-
parameters, m is positive integer. The form of Gpos is
diverse, but its value should decrease with the increase of
similarity score Sy;. Its trend should conform to the curve
in figure 2a.

The weight Gy, for a selected negative pair (v;,t;) can
be formulated as:

GNeg = biSy +br—1S) "+ +b1Sij +bo, i # j, 9)

where S;; is similarity score, {b;}i=k is hyper-parameters,
and £ is positive integer. The form of G'n 4 is diverse, but
its trend should conform to the curve in figure 2b.

Through Eq. 8 and 9, we obtain the weights of positive
and negative pairs. In this paper, we introduce two different
functions, average polynomial loss and maximum polyno-
mial loss.

Avg Polynomial Loss. Average polynomial loss can be
defined as:

=N q
1 EsijeNv. GNEgSij
LAvg = N Z [GPOSSZPZ' + N’LL’IT;(N ) + )‘1]++
i=1 Vi
1 =N G gp Zsijeth GNegSiqj \
N ]:1[ Posy; T Num(Ny;) Azl
(10)

Eq. 10 can be reformulated as:

i=N P

LAUg Z Zap
) P
D sy

ZS”GNW ZQ qu;I +
Num(N,,) *

Q
qu‘,jENt]. Z bqs;}]
Num(Ny,) +
(11

here, Num(N,,) and Num(N;) denote the number of
negative pairs of sample v; and t; respectively. P and @
are the highest power of positive and negative pairs, respec-
tively. Note, we make the minimum of p and ¢ to 0, and
apg = )\1, bo = )\2.

For cross-modal matching tasks, only one positive sam-
ple for each anchor in a mini-batch. Our loss function can
make full use of informative negative pairs. Since cross-
modal matching tasks involve the mutual retrieval between
different modalities, our loss comprises two terms. The
former term represents the loss of image retrieval caption,
and the latter represents the loss of caption retrieval im-
age. Since the form of a polynomial function is flexible,
our polynomial loss has a better generalization.

Max Polynomial Loss. To further highlight the supe-
riority of our weighting mechanism, we introduce another
version of polynomial loss L ps,., which only contains the
hardest negative pair. The formulation of Ly, is defined
as:

I
4=z

1 J

1

J

i=N
1
LMam == N [GP()?S + GNegMaz{Nv } + A }
=1
1N
N [GPosS + GNegM(ll‘{Nt }q + )\2]

1

<.
I

(12)
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here, Max{N,,} and Max{Ny} represent the hardest
negative pair of sample v; and t; respectively. Eq.12 can
be reformulated as:

1 i=N P Q
LMa;L‘ = N [Z apSZ + Z quax{NUi}q]-i-—i—
i=1
1 j=N P Q
¥ D apSt+ Y bgMaz{Ny },

Jj=1

(13)

Both L,y and Ljse, can be minimized with gradient
descent optimization. More discussions about L 4,4 and
L prq. can be found in the subsection of experiments.

4. Experiments

In this section, we conducted extensive experiments to
evaluate the proposed polynomial loss in both image-text
matching and video-text matching tasks. Following the
[30, 18], we use the Recall@K as the performance met-
rics for both image-text matching and video-text matching
tasks, which indicates the percentage of queries for which
the model returns the correct item in its top K results. Ab-
lation studies are conducted to analyze the effectiveness of
proposed polynomial loss. We set the margin A in Eq. 7 to
0.2 for all experiments.

4.1. Implementation Details

Image-Text Matching. We evaluate our polynomial
loss on two standard benchmarks: MS-COCO [20] and
Flickr30K [39]; MS-COCO dataset contains 123,287 im-
ages, and each image comes with 5 captions. We mirror the
data split setting of [18]. More specifically, we use 113,287
images for training, 5,000 images for validation and 5,000
images for testing. We report results on both 1,000 test
images (averaged over 5 folds) and full 5,000 test images.
Flickr30K dataset contains 31,783 images, each image is
annotated with 5 sentences. Following the data split of [18],
we use 1,000 images for validation, 1,000 images for testing
and the remaining for training.

Our implementation follows the practice in Stacked
Cross Attention Network (SCAN) [18]. SCAN maps im-
age regions and words into a shared embedding space to
measure the similarity score between an image and a cap-
tion. For fair comparison, we keep the network structure
unchanged and replace the loss function with polynomial
loss. There are two inputs for SCAN, a set of image features
which extracted by a pretrained Faster-RCNN model [1]
with ResNet-101 [12], and a set of word features which en-
coded by a bi-directional Gated Recurrent Unit (GRU) [26].
Models are trained from scratch using Adam [16] with batch
size of 128 for both datasets. For MS-COCO, we start
training with learning rate 0.0005 for 10 epochs, and then

lower it to 0.00005 for another 10 epochs. For Flickr30K,
the learning rate is 0.0002 for 15 epochs, and then lower
it to 0.00002 for another 15 epochs. There are two sets
of parameters in the polynomial loss, {a,} and {b,}. We
adopt a heuristic method to select hyper-parameters. Con-
cretely, we first initialize the G(-) to ensure that its curve
conforms to the trend in Figure 2. Then, a grid search
technology is adopted to select hyper-parameters. We set
P =2, {ay = 0.5,a1 = —0.7,a2 = 0.2}, Q = 2 and
{bp = 0.03,by = —0.3,b2 = 1.2} for MS-COCO and
P = 2, {CL() = 06, a; = —07, as = 02}, Q = 2,
{bgp = 0.03,b; = —0.4, by = 0.9} for Flickr30K.

Video-Text Matching. We evaluate our polynomial
loss on two popular datasets: ActivityNet-captions [17]
and MSR-VTT [34]. ActivityNet-captions contains 20K
videos, and each video comes with 5 text descriptions. We
follow the data split of [22], 10,009 videos for training and
4,917 for testing. MSR-VTT contains 10K videos and each
video is associated with about 20 sentences. We follow
the data split of [22], 6,513 videos for training, and 2,990
videos for testing.

We report results on video-text matching task with Col-
laborative Experts (CE) [22] framework. CE is a framework
that aggregated various pretrained features of a video into a
dense representation before mapping to the shared embed-
ding space. We keep the network structure unchanged and
replace the loss function with polynomial loss. Models are
trained from scratch using Adam [16] with batch size of 64
for both datasets. The learning rate is set to 0.0004. There
are two sets of parameters in the polynomial loss, {a, } and
{bg}. Weset P =2, {ap = 0.5,a1 = —0.7,a2 = 0.2},
Q =2and {bg = 1,by = —0.2,by = 1.7} for ActivityNet-
captions and P = 2, {ag = 0.5,a; = —0.7,a2 = 0.2},
Q =2, {bp =0.03,by = —0.3,b3 = 1.8} for MSR-VTT.

4.2. Image-Text Matching Results

For image-text matching task, we compare the per-
formance of our method with the several state-of-the-art
methods, including: PVSE [30], VSE++ [6], SCO [15],
RRF [23], DAN [25], GXN [11]and SCAN [18]. Table 1
and Table 2 summarize the results of our method on the
Flickr30K and MS-COCQO datasets, respectively. We also
list the loss function used by various methods. From the
table, we can make the following observations:

e From Table 1, we find the proposed method out-
performs the baseline SCAN at all metrics. Com-
pared with the classical triplet loss, the performance of
SCAN with polynomial loss improves R@1 by 3.6%
for text to image retrieval and 1.5% for image to text
retrieval on Flickr30K.

e Table 2 summarizes the results on MS-COCO dataset.
From Table 2, we can observe that the proposed
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. Image-to-Text Text-to-Image
Methods Loss Function R@l R@5 R@I0 | R@l R@5 R@I0
RRF [23] Triplet 47.6 77.4 87.1 354 68.3 79.9
VSE++ [6] Triplet 52.9 80.5 87.2 39.6 70.1 79.5
DAN [25] Triplet 55.0 81.8 89.0 394 69.2 79.1
SCO [15] Triplet+NLL 55.5 82.0 89.3 41.1 70.5 80.1
SCAN (I2T) [18] Triplet 67.9 89.0 94.4 439 74.2 82.8
SCAN (I12T) Max Polynomial Loss 69.4 89.9 95.4 47.5 75.5 83.1

Table 1. Experimental results on Flickr30K.

. Image-to-Text Text-to-Image
Methods Loss Function RGT  R@S RGO [ R@l R@5 “RaT

1K Test images
VSE++ [6] Triplet 64.6 89.1 95.7 52.0 83.1 92.0
GXN [11] Triplet 68.5 - 97.9 56.6 - 94.5
PVSE [30] Triplet+L g;»+Lpmd 69.2 91.6 96.6 55.2 86.5 93.7
SCAN (I12T) [18] Triplet 69.2 93.2 97.5 54.4 86.0 93.6
SCAN (I2T) Max Polynomial Loss 71.1 93.7 98.2 56.8 86.7 93.0
5K Test images

VSE++ [6] Triplet 41.3 71.1 81.2 30.3 59.4 72.4
GXN [11] Triplet 42.0 - 84.7 31.7 - 74.6
PVSE [30] Triplet+L g;,+Lymd 45.2 74.3 84.5 324 63.0 75.0
SCAN (I2T) [18] Triplet 46.4 77.4 87.2 344 63.7 75.7
SCAN (I12T) Max Polynomial Loss 46.9 77.7 87.6 344 64.2 75.9

Table 2. Experimental results on MS-COCO.

method outperforms the state-of-the-art approaches,
especially for R@1. By replacing the triplet loss with
our Lpsqq, the performance of SCAN improves 1.9%
on image to text retrieval (R@1) and 2.4% on text to
image retrieval (R@1) on 1K test images.

e (lassical triplet loss tries to sample the informative
pairs from redundant pairs, but treats positive and neg-
ative pairs equally. In contrast to it, the proposed poly-
nomial loss assigns appropriate weight value to the
positive and negative pairs, and the weight value is re-
lated to its similarity score. The proposed method can
simultaneously select and weight informative pairs.
Extensive experimental results demonstrated that the
proposed polynomial loss improved the matching per-
formance effectively.

4.3. Video-Text Matching Results

We evaluate the effectiveness of our method on two stan-
dard benchmarks: ActivityNet-captions and MSR-VTT. We
report our results and comparison with current state-of-the-
art methods for video-to-text and text-to-video retrievals.
The results are summarized in the Table 3 and Table 4 for
ActivityNet-captions and MSR-VTT datasets, respectively.

In order to promote a comprehensive comparison, we list
existing state-of-the-art results on these datasets, including:

DENSE [17], HSE [40], CE [22] for ActivityNet-captions
dataset and Minthum et al. [24], W2VV [4], CE [22] and
Dual encoding [5] for MSR-VTT dataset. Furthermore, we
list the loss function used by various methods. From Ta-
ble 3 and Table 4, we can observe that our method out-
performs the baselines on all measures, and achieves the
new state-of-the-art performance on the video-text match-
ing task. When compared with CE (Triplet) which uses
the same video and sentence encoders with our method,
our method improves 2.5% on text-to-video (R@1) task on
the MSR-VTT dataset. Our method outperforms the CE on
all metrics on the ActivityNet-captions dataset. The perfor-
mance gap between CE (Triplet) and CE (Max Polynomial
Loss) shows the effectiveness of our polynomial Loss.

4.4. Ablation Study

Parameter Analysis. There are two sets of parameters
in the polynomial loss, {a;} and {b;}. It is worth explor-
ing to seek a set of parameters to make the model converge
faster and achieves better performance. Since the number
of hyper-parameters is too large, it is almost impossible
to analyze the sensitivity of the hyper-parameters one by
one, so we mainly analyze the sensitivity of several hyper-
parameters with great influence. P and () respectively de-
termines the highest power of G p,s and G'eg4, Which has
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Methods Loss Function Video-to-Text Text-to-Video
R@l R@5 R@10 | R@] R@5 R@I10
DENSE [17] Cross-entropy 18.0 36.0 74.0 14.0 32.0 65.0
HSE (4SEGS) [40] Multi-loss 18.7 48.1 - 20.5 49.3 -
CE [22] Triplet 27.9 61.6 95.0 27.3 61.1 94.4
CE Max Polynomial Loss 27.9 61.9 94.1 28.5 62.6 94.9
Table 3. Experimental results on ActivityNet-captions.

. Video-to-Text Text-to-Video
Methods Loss Function R@ R@5 R@I0 | R@l R@5 R@I0
Minthum wt al. [24] Cross-entropy 12.5 32.1 42.4 7.0 20.9 29.7
W2VV [4] Multi-loss 11.8 28.9 39.1 6.1 18.7 27.5
Dual encoding [5] Triplet 13.0 30.8 433 7.7 22.0 31.8
CE [22] Triplet 344 64.6 77.0 22.5 52.1 65.5
CE Max Polynomial Loss 36.2 71.5 82.2 25.0 554 68.2

Table 4. Experimental results on MSR-VTT.

Recall@1

—— Triplet Loss i2t
Triplet Loss t2i
Max Polynomial Loss i2t

Max Polynomial Loss t2i

0 1 2 3 4 5
Iter. (1e4)
Figure 4. Triplet loss vs. Max Polynomial Loss on Flickr30K val-
idation set. By replacing the loss function with our polynomial
loss, the performance of SCAN is further improved.
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Avg Polynomial Loss t2i
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Max Polynomial Loss t2i
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Figure 5. Analysis of the behaviors of the Max and Avg polyno-
mial loss on MS-COCO validation set.

130

a direct impact on the number of hyper-parameters. There-
fore, we first fixed them to 2. In practice, we find that model
performance is most sensitive to parameters {b, }, thus we
mainly analyze the sensitivity of parameters {b,}. We test
the effect of b; and b, by fixing by = 0.03, results are
summarized in Table 5. b; and by impact the hard level
of negative pairs, the model is sensitive to different values.
However, all of these combinations outperform the baseline,
which demonstrates the superiority of our approach.

Triplet Loss vs. Max Polynomial Loss. Triplet loss
is the most frequently used loss function for cross-modal
matching tasks. Its effectiveness has been proved by many
works, such as [6]. In this section, we further analyze the
effectiveness of the proposed polynomial weighting mech-
anism. Max polynomial loss only includes the hardest neg-
ative pairs, which can be considered as a weighted version
of triplet loss. We compare the max polynomial loss with
triplet loss on MS-COCO dataset, the results are shown in
Figure 4. From the results, we find the max polynomial loss
converges faster than triplet loss and achieves a better result,
which proven the superiority of our polynomial weighting
mechanism.

Max vs. Avg Ploynomial Loss. In this section, we fur-
ther analyze the effectiveness of the proposed Max and Avg
polynomial loss. Max polynomial loss weights the positive
pair and the hardest negative pair for each anchor, which can
be considered as a weighted version of the hardest triplet
loss. In contrast, average polynomial loss contains all of in-
formative negative pairs and assigns different weight values
for them. Since the max polynomial loss only utilizes a sub-
set of informative pairs so that its computational complexity
is lower than the average polynomial loss which contains all
of informative negative pairs.

Figure 5 shows the performance of two functions on MS-
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SCAN

Ours

1. A room with some chairs and a bookshelf.

2. A table surrounded by chairs and filled with cooking
utensils.

3. The table is full of wooden spoons and utensils.

1. A table and chairs with wooden kitchen tools on top.
2. The table is full of wooden spoons and utensils.

3. A wood table holding an assortment of wood cooking
utensils.

1. A bathroom that has white towels in a rack over the tub.
2. Bathroom with a shower, sink, and toilet in it.
3. A bathroom with a sink, toilet and shower with curtain.

1. A very big white rest room with a shabby looking shower.
2. A bathroom that has white towels in a rack over the tub.
3. A bathroom with a toilet, towel rack and a tub in it.

| Aguythatis
riding his bike

| nexttoatrain. |

~_

[ Amaninared |
shirt and a red
hatisona
motorcycle on

| ahill side.

Figure 6. Qualitative results on MS-COCO. For each query, we report top-3 ranked results. Predictions ordered by decreasing similarity
score, with true matches are shown in blue. For text-to-image retrieval, the true and false matches are outlined in blue and red boxes,

respectively.
be
Tasks b 1.5 1.7 1.8 1.9
1
-0.2 36.0 355 36.1 355
Video-to-Text -0.3 346 350 36.2 356
-04 340 353 356 353
-0.2 250 250 248 25.0
Text-to-Video -0.3 248 249 25.0 2438
-0.4 246 248 247 249

Table 5. The effect of b; and b2 on MSR-VTT dataset.

COCO dataset. From the results, we find the average poly-
nomial loss is converges faster than the max polynomial loss
at the first few iterations. The reason is that the average
polynomial loss contains more informative pairs. However,
the final performance of max polynomial loss is slightly bet-
ter than average polynomial loss. This is possibly due to the
unreasonable parameter setting. Since average polynomial
loss contains too many negatives pairs, it is difficult to find a
set of parameters Py, to fit all informative negative pairs.

4.5. Qualitative Results

In this section, we perform visualizations Top-3 retrieval
results for a handful of examples on MS-COCO. Both qual-
itative results of the image-to-text retrieval and the text-to-
image retrieval are shown in Figure 6, which qualitatively
illustrate the model behavior. Predictions are ordered by
decreasing similarity score, with correct labels are shown in

blue. From Figure 6, we can observe that by replacing the
loss function with our polynomial loss, the performance of
SCAN is further improved.

5. Conclusion

We have developed a universal weighting framework
for cross-modal matching, which defines a weight function
for the positive and negative pairs respectively. Universal
weighting framework provides a powerful tool to analyze
the interpretability of various loss functions. Furthermore,
we proposed a polynomial loss function under the univer-
sal weighting framework, which can effectively sample and
weight the informative pairs. Experimental results on four
cross-modal matching benchmarks have demonstrated the
proposed polynomial loss significantly improve the match-
ing performance. In future work, we would like to investi-
gate the potential of more advanced weighting functions for
cross-modal matching.
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