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Abstract

Body orientation estimation provides crucial visual cues

in many applications, including robotics and autonomous

driving. It is particularly desirable when 3-D pose estima-

tion is difficult to infer due to poor image resolution, occlu-

sion, or indistinguishable body parts. We present COCO-

MEBOW (Monocular Estimation of Body Orientation in the

Wild), a new large-scale dataset for orientation estimation

from a single in-the-wild image. The body-orientation la-

bels for around 130K human bodies within 55K images from

the COCO dataset have been collected using an efficient

and high-precision annotation pipeline. We also validated

the benefits of the dataset. First, we show that our dataset

can substantially improve the performance and the robust-

ness of a human body orientation estimation model, the

development of which was previously limited by the scale

and diversity of the available training data. Additionally,

we present a novel triple-source solution for 3-D human

pose estimation, where 3-D pose labels, 2-D pose labels,

and our body-orientation labels are all used in joint train-

ing. Our model significantly outperforms state-of-the-art

dual-source solutions for monocular 3-D human pose esti-

mation, where training only uses 3-D pose labels and 2-D

pose labels. This substantiates an important advantage of

MEBOW for 3-D human pose estimation, which is partic-

ularly appealing because the per-instance labeling cost for

body orientations is far less than that for 3-D poses. The

work demonstrates high potential of MEBOW in address-

ing real-world challenges involving understanding human

behaviors. Further information of this work is available at

https://chenyanwu.github.io/MEBOW/ .

1. Introduction

Human body orientation estimation (HBOE) aims at es-

∗This work was mostly done when Chenyan Wu was an intern at Ama-

zon Lab126.
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Figure 1. Overview of the MEBOW dataset. (a) Distribution of

the body orientation labels in the dataset and examples. (b) Com-

parison of the distribution of the captured human body instance

resolution for our dataset and that for the TUD dataset [6]. The

x-axis represents (
√
W ×H), where W and H are the width and

height of the human body instance bounding box in pixels, respec-

tively.

timating the orientation of a person with respect to the cam-

era point of view. It is important for a number of industrial

applications, e.g., robots interacting with people and au-

tonomous driving vehicles cruising through crowded urban

areas. Given a predicted 3-D human pose, commonly in the

form of a skeleton with dozens of joints, the body orienta-

tion can be inferred. Hence, one may argue that HBOE is a

simpler task compared with 3-D human pose estimation and

directly solvable using pose estimation models. Nonethe-

less, HBOE warrants to be tackled as a standalone problem

for three reasons. First, 3-D pose may be difficult to infer

due to poor image resolution, occlusion, or indistinguish-
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able body parts, all of which are prevalent in in-the-wild

images. Second, under certain scenarios, the orientation of

the body is already sufficient to be used as the cue for down-

stream prediction or planning tasks. Third, much reduced

computational cost for body orientation model compared to

a 3-D model makes it more appealing for on-device deploy-

ment. Moreover, body orientation estimation and 3-D pose

estimation may be complementary in addressing real-world

challenges involving understanding human behaviors.

HBOE has been studied in recent years [6, 8, 10, 14, 18,

19, 27, 33, 45, 53, 54]. A primary bottleneck, however, is

a lack of a large-scale, high-precision, diverse-background

dataset. Previously, the TUD dataset [6] has been the most

widely used dataset for HBOE. But it only has about 5, 000
images, and the orientation labels are of low precision be-

cause they are quantized into eight bins/classes. Hara et

al. [18] relabeled the TUD dataset with continuous orienta-

tion labels, but the scale limitation is left unaddressed. And

we verify experimentally that the model trained on it gener-

alizes much worse to in-the-wild images compared with the

much larger dataset we present here. Because body orienta-

tion could be inferred from a 3-D pose label (in the form of

a list of 3-D coordinates for predefined joints), 3-D human

pose datasets, e.g., Human3.6M, could be used to train body

orientation estimation models after necessary preprocess-

ing. However, those datasets are commonly only recorded

indoors (due to the constraint of motion capture systems),

with a clean background, bearing little occlusion problems,

and for a limited number of human subjects. All of these

limitations make it less likely for the body orientation mod-

els developed on existing 3-D pose datasets to generalize

well to images captured in the wild, in which various oc-

clusion, lighting conditions, and poses could arise. Given

the enormous success of large-scale datasets in advancing

vision research, such as ImageNet [13] for image classifica-

tion, KITTI [15] for optical flow, and COCO [26] for object

recognition and instance segmentation among many oth-

ers, we believe the creation of a large-scale, high-precision

dataset is urgent to the development of HBOE models, par-

ticularly those data-hungry deep learning-based ones.

In this paper, we present the COCO-MEBOW (Monoc-

ular Estimation of Body Orientation in the Wild) dataset,

which consists of high-precision body orientation labels for

130K human instances within 55K images from the COCO

dataset [26]. Our dataset uses 72 bins to partition the 360◦,

with each bin covering only 5◦, which is much more fine-

grained than all previous datasets while within the human

cognition limit. The distributions of the collected orien-

tation labels and some example cropped images of human

bodies in our dataset are shown in Fig. 1(a). Details and the

creation process will be introduced in Sec. 3.2. For brevity,

we will call our dataset MEBOW in the rest of this paper.

To demonstrate the value of our dataset, we conducted

two sets of experiments. The first set of experiments fo-

cused on HBOE itself. We first present a strong but simple

baseline model for HBOE which is able to outperform pre-

vious state-of-the-art models [53] on the TUD dataset (with

continuous orientation labels). We then compare the perfor-

mance of our baseline model under four settings: training

on TUD and evaluating on MEBOW, training on MEBOW

and evaluating on TUD, training on TUD and evaluating

on TUD, training on MEBOW and evaluating on MEBOW.

We observe that the model trained on MEBOW generalizes

well to TUD but not vice versa.

The second set of experiments focused on demonstrating

the feasibility of boosting estimation performance through

using our dataset as an additional, relative low-cost source

of supervision. Our model is based on existing work on

weakly-supervised 3-D human pose model using both 2-D

pose dataset and 3-D pose dataset as the source of supervi-

sion. And the core of our model is a novel orientation loss

which enables us to leverage the body orientation dataset

as an additional source of supervision. We demonstrate in

Sec. 4.2 that our triple-source weakly-supervised learning

approach could bring significant performance gains over the

baseline dual-source weakly-supervised learning approach.

This shows that our dataset could be useful for not only

HBOE but also other vision tasks, among which the gain

in 3-D pose estimation is demonstrated in this paper.

Our main contributions are summarized as follows.

1. We present MEBOW, a large-scale high-precision hu-

man body orientation dataset.

2. We established a simple baseline model for HBOE,

which, when trained with MEBOW, is shown to signif-

icantly outperform state-of-the-art models trained on

existing dataset.

3. We developed the first triple-source solution for 3-D

human pose estimation using our dataset as one of the

three supervision sources, and it significantly outper-

forms a state-of-the-art dual-source solution for 3-D

human pose estimation. This not only further demon-

strates the usefulness of our dataset but also points out

and validates a new direction of improving 3-D human

pose estimation by using significantly lower-cost la-

bels (i.e., body orientation).

2. Related Work

Human body orientation datasets. The TUD multi-

view pedestrians dataset [6] is the most widely used dataset

for benchmarking HBOE models. Most recent HBOE algo-

rithms, e.g., [6, 18, 19, 53], use it for training and evalua-

tion. This dataset consists of 5, 228 images captured out-

doors, each containing one or more pedestrians, each of

which is labeled with a bounding box and a body orien-

tation. The body orientation labels only have eight bins,
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i.e., {front, back, left, right, diagonal front, diagonal back

diagonal left, diagonal right}. This labeling is rather

coarse-grained, and many of the images are gray-scale im-

ages. Later work [18] enhances the TUD dataset by pro-

viding continuous orientation labels, each of which is aver-

aged from the orientation labels collected from five differ-

ent labelers. There are also some other less used datasets

for HBOE. Their limitations, however, make them only

suitable for HBOE under highly constrained settings but

not for in-the-wild applications. For example, the 3DPes

dataset [7] (1, 012 images) and CASIA gait dataset [41]

(19, 139 frames of videos capturing 20 subjects) have been

used in [53] and [42, 27], respectively. And their body

orientation labels are 8-bin based and 6-bin based, respec-

tively, which are also coarse-grained. Moreover, the human

bodies in the images of these two datasets are all walking

pedestrians captured from a downward viewpoint by one

or a few fixed outdoor surveillance cameras. The MCG-

RGBD datasets [28] has a wider diversity of poses and pro-

vides depth maps in addition to the RGB images. But all its

images were captured indoors and from only 11 subjects.

Because human orientation can be computed given a full 3-

D pose skeleton, we can convert a human 3-D pose dataset,

e.g., the Human3.6M dataset [20], to a body orientation

dataset for HBOE research. However, due to the constraint

of the motion capture system, those 3-D pose datasets of-

ten only cover indoor scenes and are sampled frames of

videos for only a few subjects. These constraints make

them not as rich as our MEBOW dataset, which is based

on COCO [26], in both contextual information and the vari-

ety of background. The size of the Human3.6M dataset [20]

(10K frames) is also much smaller than MEBOW (130K).

Human body estimation algorithms. Limited by the

relative small size and the coarse-grained orientation label

(either 8-bin based or 6-bin based) of existing datasets dis-

cussed above, approaches based on feature engineering and

traditional classifiers [6, 45, 14, 33, 10, 54, 8], e.g., SVM,

have been favored for HBOE. Deep learning-based meth-

ods [42, 12] also treat HBOE as a classification problem.

For example, the method in [42] uses a 14-layer classifica-

tion network to predict which bin out of the eight different

bins represents the orientation given an input; the method

in [12] uses a 4-layer neural network as the classification

network. These methods all use simple network architec-

ture due to the small size of the available datasets for train-

ing. And the obtained model only works for certain highly

constrained environment similar to that was used for col-

lecting training images. Given the continuous orientation

label provided by [18] for the TUD dataset, some recent

work [18, 19, 53] attempted to address more fine-grained

body orientation prediction. Most notably, Yu et al. [53]

utilizes the key-points detection by another 2-D pose model

as an additional cue for continuous orientation prediction.

Still, deep learning-based methods are held back by the lack

of a large-scale HBOE dataset. Direct prediction of body

orientation from an image is valid because not only label-

ing a training dataset is simpler but also better performance

could be achieved by directly addressing the orientation es-

timation problem. As a supporting evidence, [16] shows

that a CNN and Fisher encoding-based method taking in

features extracted from 2-D images outperforms state-of-

the-art methods based on 3-D information (e.g., 3-D CAD

models or 3-D landmarks) for multiple object orientation

estimation problems.

3-D pose estimation. The lack of large training data

covering diverse settings is a major problem for robust 3-

D pose estimation. Efforts [52, 30, 43, 55, 49, 48] have

been made to address this by using additional source of su-

pervision, mainly 2-D pose dataset (e.g., MPII [5]). The

general idea is to design some novel loss for the data with

weak labels (2-D pose) to penalize incorrect 3-D pose pre-

diction on those additional data with much more diverse hu-

man subjects and background variations so that the learnt

model could better generalize to those data. Our work

shows a new direction following this line of research, which

is to use our large-scale, high-precision, cost-effective body

orientation dataset as a new source of weak supervision.

Some other ideas complementary to the above idea for im-

proving 3-D pose estimation include: (1) enforcing extra

prior knowledge such as a parameterized 3-D human mesh

model [17, 24, 9, 23, 22, 35, 38], the ordinal depth [36],

and temporal information (such as adjacent frame consis-

tency) [25, 39]; and (2) leveraging images simultaneously

captured from different views [40, 21], mainly for indoor

dataset collected in a highly constrained environment (e.g.,

Human3.6M).

3. The Method

3.1. Definition of Body Orientation

Image Plane

Figure 2. Definition of body orientation.

Previous datasets including TUD all assume that the hu-

man body orientation is self-explanatory from the image,

which is adequate for small dataset with a consistent cam-

era point of view. For large dataset of in-the-wild images

containing all kinds of human poses and camera points of

view, a formal definition of the human orientation is nec-

essary for both annotation and modeling. As illustrated in
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Fig. 2, without loss of generality, we define the human ori-

entation θ ∈ [0◦, 360◦) as the angle between the projection

vector of the chest facing direction (C) onto the y-z plane

and the direction of the axis z, where the x, y, z vectors are

defined by the image plane and the orientation of the cam-

era. Given a 3-D human pose, the chest facing direction C

can be computed by C = T × S, where S is the shoulder

direction defined by the vector from the right shoulder to

the left one, and T is the torso direction defined by the vec-

tor from the midpoint of the left- and right-shoulder joints

to the midpoint of the left- and right-hip joints.

3.2. MEBOW Dataset Creation

We choose the COCO dataset [26] as the source of

images for orientation labeling for the following reasons.

First, the COCO dataset has rich contextual information.

And the diversity of human instances captured within the

COCO dataset in terms of poses, lighting condition, occlu-

sion types, and background makes it suitable for developing

and evaluating models for body orientation estimation in the

wild. Secondly, the COCO dataset already has bounding

box labels for human instances, making it easier for body

orientation labeling. To make our dataset large scale, after

neglecting ambiguous human instances, we labeled all suit-

able 133, 380 human instances within the total 540, 007 im-

ages, out of which 51, 836 images (associated with 127, 844
human instances) are used for training and 2, 171 images

(associated with 5, 536 human instances) for testing. To

our knowledge, MEBOW is the largest HBOE dataset. The

number of labeled human instances in our dataset is about

27 times that of TUD. To make our dataset of high pre-

cision, we choose a 72-bin annotation scheme, which not

only is much more fine-grained than former 8-bin or 6-bin

annotation used by other HBOE datasets, but also accounts

for the cognitive limits of human labelers and the variance

of labels between different labelers. Fig. 1(a) shows the dis-

tribution of our orientation labels, along with some example

human instances. It can be seen that our dataset covers all

possible body orientation, with a Gaussian like peak around

180◦, which is natural because photos with humans tend to

capture the main person from the front. Another advantage

of our dataset is that the image resolution of the labeled

human instances is much more diverse than all previous

datasets, as shown in Fig. 1(b). This is especially helpful

for training models for practical applications in which both

high- and low-resolution human instances can be captured

because the distance between the camera and the subject

and the weather condition can both vary. We summarize the

main advantages of MEBOW over previous HBOE datasets

in Table 3.2.

Annotation tool. The annotation tool we used for label-

ing body orientation is illustrated in Fig. A1 of Appendix A.

On the left side, one image from the dataset containing

Dataset # subjects # bins Diversity Occlusion

TUD∗[6] 5K 8 X X

3DPes[7] 1K 8 ✗ ✗

CASIA[41] 19K 6 ✗ ✗

MEBOW 130K 72 XXX XXX

Table 1. Comparison of previous HBOE datasets with MEBOW.
∗Continuous body orientation labels of TUD are provided by [18].

human body instance(s) is displayed on the top. The as-

sociated cropped human instances is displayed at the bot-

tom, from which the labeler could select which human in-

stance to label by a mouse click. In the middle, the se-

lected cropped human instance is displayed. On the right

side, a slider is provided to adjust the orientation label in the

range of [0◦, 360◦) (default 0◦, step size 5◦), together with

a clock-like circle and a red arrow visualizing the current

labeled orientation. The labeler could first mouse-adjust

the slider for coarse-grained orientation selection and then

click either the clock-wise++ or counter clock-wise++ but-

ton (or using associated keyboard shortcuts) for fine-grained

adjustments. The red arrow serves as a visual reference such

that the labeler can compare it with the human body in the

middle to ensure that the final orientation label is an accu-

rate record of his/her comprehension. To maximize label

consistency, on the bottom right corner, the labeler can re-

fer to some example human body instances already labeled

with the same orientation the labeler current selects.

Evaluation method. Given our high-precision 72-bin

annotation, we propose to add Accuracy-5◦, Accuracy-

15◦, and Accuracy-30◦ as new evaluation metrics, where

Accuracy-X◦ is defined as the percentage of the samples

that are predicted within X◦ from the ground-truth orien-

tation. As discussed in [18], mean absolute error (MAE)

of the angular distance can be strongly influenced by a few

large errors. However, Accuracy-X◦ is less sensitive to the

outliers, hence deserves more attentions as an evaluation

criterion.

3.3. Baseline HBOE Model

Just as most previous work in HBOE, our baseline model

assumes the human instances are already detected and the

input is a cropped-out human instance. The cropping

could be based on either the ground truth or the predicted

bounding box. And for the ease of experiments, we used

the ground-truth bounding boxes provided by the COCO

dataset in all of our experiments. The overall network archi-

tecture of our baseline model is shown in Fig. 3(a), which

can be trained end-to-end. The cropped images of subjects

are first processed through a backbone network as the fea-

ture extractor. The extracted features are then concatenated

and processed by a few more residual layers, with one fully

connected layer and a softmax layer at the end. The output

are 72 neurons, p = [p0, p2, ..., p71] (
∑71

i=0 pi = 1.0), rep-
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Figure 3. Our baseline HBOE model. (a) Network architecture.

We adopt HRNet and ResNet units as the backbone network and

the head network, respectively. Intermediate feature representa-

tions are combined to feed into the head network.(b) Illustration

of 72 orientation bins (black ticks) and our orientation loss for re-

gressing p to the “circular” Gaussian target probability function.

resenting the probability of every possible orientation bin

being the best one to represent the body orientation of the

input image. More specifically, pi represents the probabil-

ity of the body orientation θ to be within the i-th bin in

Fig. 3(b), i.e., within the range of [i ·5◦−2.5◦, i ·5◦+2.5◦].
As for the objective function of the model, our approach

is different from previous approaches that either directly

regress the orientation parameter θ (Approach 1 and 2

of [19]) or treat the orientation estimation as a pure classifi-

cation problem (Approach 3 of [19], and [18]), where each

bin is a different class. Instead, we take inspiration from the

heat map regression idea, which has been extremely suc-

cessful in key-point estimation [34, 46], and let the loss

function for p be:

L =

71
∑

i=0

(pi − φ(i, σ))2 , (1)

where φ(i, σ) is the “circular” Gaussian probability, as il-

lustrated in Fig. 3(b) (red curve):

φ(i, σ) =
1

√

(2π)σ
e−

1

2σ2
(min(|i−lgt|,72−|i−lgt|))

2

, (2)

and lgt is the ground-truth orientation bin. Basically, we

are regressing a Gaussian function centered at the ground

truth orientation bin. And the intuition behind this is that

the closer a orientation bin is to the ground-truth orientation

bin label lgt, the higher the probability the model should as-

sign to it. We found this approach significantly eased the

learning process of the neural network. And of note, we

have attempted to use standard classification loss function,

e.g. cross entropy loss between p and the ground truth rep-

resented by one hot vector, but the loss could not converge.

Choice of network architecture. We also considered

ResNet-50 and ResNet-101 (initialized from the weights of

the model trained for ImageNet classification task) to be the

architecture of our network. We observe that HRNet+Head

provides much better performance in experiments. This

could be explained by the fact that the HRNet and its pre-

trained model are also trained on COCO images and de-

signed for a closer related task—2-D pose estimation.

3.4. Enhancing 3­D Pose Estimation

It is extremely difficult to obtain 3-D joint labels using

existing technologies, hence models trained on indoor 3-D

pose dataset generalize poorly to in-the-wild images, such

as COCO images. There have been attempts [47, 48] to

leverage 2-D pose datasets, such as MPII and COCO, as a

second source of supervision to enhance both the perfor-

mance and robustness of 3-D pose models. We believe

the orientation labels in our COCO-based dataset can be

complementary to the 2-D pose labels and provide addi-

tional supervision. To that end, we developed a triple-

source weakly-supervised solution for 3-D pose estimation,

the core of which is a body orientation loss for utilizing the

orientation labels.

We choose [48] as the base to build our model. Fol-

lowing their notation, we denote p = [px, py, pz] (px ∈
[1,W ], py ∈ [1, H], pz ∈ [1, D]) to be the coordinate of any

location, and Ĥk (of size W ×H×D) to be the normalized

heat map for joint k output by the backbone network. Then,

the predicted location for joint k is:

Ĵk =

D
∑

pz=1

H
∑

py=1

W
∑

px=1

p · Ĥk(p) . (3)

Next, L2 loss L3D = ||Ĵk − Jk||
2 can be used to supervise

the network for images with 3-D pose labels. For images

with 2-D pose labels, 1-D x heat vector and y heat vector is

computed as:

Ĵh
x

k =
W
∑

px=1

p ·





D
∑

pz=1

H
∑

py=1

Ĥk(p)



 , (4)

Ĵh
y

k =

H
∑

py=1

p ·

(

D
∑

pz=1

W
∑

px=1

Ĥk(p)

)

. (5)

And L2 loss L2D = ||Ĵh
x

k − Jx
k||

2 + ||Ĵh
y

k − J
y
k||

2 can

be used to supervise the network for images with 2-D pose

labels.

Let’s define the loss function for images with orienta-

tion labels. For the ease of notation, we use Ĵls, Ĵrs, Ĵlh,

and Ĵrh to denote the predicted coordinates of left shoulder,

right shoulder, left hip, and right hip, respectively, by Eq. 3.

Then the estimated shoulder vector Ŝ and torso vector T̂ can

be represented by:

Ŝ = Ĵrs − Ĵls , (6)

T̂ =
1

2
(Ĵlh + Ĵrh − Ĵlh − Ĵrh) , (7)
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following the definition in Sec. 2 and Fig. 2. And the chest

facing direction can be computed by

Ĉ =
T̂× Ŝ

||T̂× Ŝ||2
, (8)

where || · ||2 is the Euclidean norm. Since the (estimated)

orientation angle θ̂ defined in Fig. 2 can be computed by

projecting Ĉ onto the y-z plane, we know the following

equations hold:

cos(θ̂) = Ĉz , (9)

sin(θ̂) = Ĉy . (10)

And we define the orientation loss to be:

Lori = ||Ĉz − cos(θ)||2 + ||Ĉy − sin(θ)||2 , (11)

where θ is the ground truth orientation label. Finally, L2D,

L3D, and Lori can be used jointly with proper weighting be-

tween them such that the three sources of supervision, i.e.,

2-D pose labels, 3-D pose labels, and orientation labels, can

all be used towards training a robust 3-D pose estimation

model.

4. Experimental Results

The proposed MEBOW dataset has been tested in two

sets of experiments for demonstrating its usefulness. In

Sec. 4.1, we show how MEBOW can help advance HBOE

by using the baseline model we proposed in Sec. 3.3. In

Sec. 4.2, we show how MEBOW can help improve 3-D

body pose estimation by using the triple-source weakly-

supervised solution described in Sec. 3.4.

Implementation. All the codes used in the experiments

were implemented with PyTorch [1]. For the HBOE exper-

iments in Sec. 4.1, The ResNet backbone is based on the

public codes [2], and is initialized from an ImageNet pre-

trained model. The HRNet backbone is based on the pub-

lic codes [3], and is initialized from a pretrained model for

COCO 2-D pose estimation. The same input image prepro-

cessing steps for the MEBOW and TUD datasets are ap-

plied, including normalizing the input images to 256× 192,

and flipping and scaling augmentation. We use Adam op-

timizer (learning rate = 1e−3) to train the network for 80
epochs. For the 3-D pose estimation experiments described

in Sec. 4.2, our codes are based on public codes [4]. The

network is initialized from an ImageNet pretrained model.

Input images are normalized to 256 × 256. Rotation, flip-

ping, and scaling are used to augment Human3.6M and

MPII. To avoid the deformation of orientation, we do not

carry out rotation augmentation for the images in MEBOW.

The network is trained for 300 epochs. The Adam is the

optimizer. The learning rate remains 1e−3.

4.1. Body Orientation Estimation

First, we validate the baseline model we proposed in

Sec. 3.3. Specifically, we train it on the TUD dataset and

compare its performance with other state-of-the-art models

reported in the literature. The results are shown in Table 2.

Our model significantly outperforms all of other models in

terms of MAE, Accuracy-22.5◦, and Accuracy-45◦, which

are standard metrics on the TUD dataset. This could be at-

tributed to both our novel loss function for regressing the

target “circular” Gaussian probability and the power of HR-

Net [46] and its pretrained model.

Method MAE Acc.-22.5◦ Acc.-45◦

AKRF-VW [18] 34.7 68.6 78

DCNN [19] 26.6 70.6 86.1

CPOEHK [53] 15.3 75.7 96.8

ours 8.4 95.1 99.7

Human [18] 0.93 90.7 99.3

Table 2. HBOE evaluation on the TUD dataset (with continuous

orientation label). Ours was trained on the TUD training set and

evaluated on its test set. We converted the continuous orientation

label to 72-bin orientation label illustrated in Fig. 3.

To show the advantage of MEBOW over TUD in terms

of diverse background and rich in-the-wild environment, we

train our baseline model under four settings to compare the

generalization capability of the same architecture (our pro-

posed baseline model) trained on TUD and MEBOW. Our

experimental results are shown in Table 3. It can be seen

that the performance drop of our baseline model trained on

the TUD training set when it is evaluated on the MEBOW

test set versus on the TUD test set is much higher than that

of the same model trained on the MEBOW training set when

it is evaluated on the TUD test set versus on the MEBOW

test set. This suggests that the improved diversity, and the

inclusion of more challenging cases in MEBOW (compared

with TUD) actually helps improve the robustness of mod-

els. We observe that Accuracy-45◦ for our model trained on

MEBOW even improved slightly when evaluated on TUD

versus on MEBOW. We also observe that the performance

of our model, which is only trained on MEBOW (row 4 Ta-

ble 3), can even exceed the previous state-of-the-art result

on TUD (row 3 Table 2). Experiments of similar fashion

and motivation have been conducted in Sec. 7 (Table. 1)

of [26] to demonstrate the advantage of the COCO dataset.

Training Testing MAE Acc.-22.5◦ Acc.-45◦

TUD TUD 8.4 95.1 99.7

TUD MEBOW 32.2+23.8 49.7−45.4 77.5−22.2

MEBOW MEBOW 8.4 93.9 98.2

MEBOW TUD 14.3+5.9 77.3−16.6 99.0+0.8

Table 3. Comparison of the generalization capability of the same

model trained on TUD and on MEBOW.
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As for the choice of the network architecture and

the parameter σ, we conducted ablation experiments for

both of them, with the results summarized in Table 4.

HRNet+Head (initialized with pretrained weights for the

COCO 2-D pose estimation task) gives significant better re-

sults than ResNet-50 or ResNet-101. And setting σ = 4.0
leads to the best performing model. Hence, we used the

model with the HRNet+Head and σ = 4.0 for experiments

associated with Table 2 and Table 3. Some qualitative pre-

diction examples of this model are presented in Fig. 4.

Architecture σ MAE Acc.-5◦ Acc.-15◦ Acc.-30◦

ResNet-50 4.0 10.465 66.9 88.3 94.6

ResNet-101 4.0 10.331 67.8 88.2 94.7

HRNet+Head

1.0 8.579 69.3 89.6 96.4

2.0 8.529 69.6 91.0 96.6

3.0 8.427 69.3 90.6 96.7

4.0 8.393 68.6 90.7 96.9

6.0 8.556 68.2 90.9 96.7

8.0 8.865 66.5 90.1 96.6

Table 4. Ablation study on the choice of network architecture and

the effect of different σ in Eq. 2. Evaluation is done on MEBOW.

Figure 4. HBOE results generated by our baseline model (with

HRNet as the backbone and σ = 4.0) on MEBOW (row 2, for

respective images in row 1) and TUD dataset (row 5 for respective

images in row 3). Row 4 are prediction results by [18] and they

are directly cropped from the original paper. Red arrow: ground

truth; Blue arrow: prediction.

4.2. Enhanced 3­D Body Pose Estimation

Data. we use the Human3.6M dataset (3-D pose), the

MPII dataset (2-D pose), the COCO dataset (2-D pose), and

our MEBOW orientation labels. We train our triple-source

weakly-supervised model proposed in Sec. 3.4 and two

dual-source weakly-supervised baseline models for com-

parison. Both of the baseline models are trained using a

re-implementation of [48], which uses a combination of

L2D + L3D (defined in Sec. 3.4). The difference is that

the Baseline-1 only uses Human3.6M dataset (3-D pose)

and the MPII dataset (2-D pose), while the Baseline-2 uses

COCO dataset (2-D pose) on top of the first baseline. Our

method leverages the orientation labels from our MEBOW

dataset on top of the second baseline and uses a combina-

tion of L2D + L3D + Lori. Following the practice of [48],

within a batch during the stochastic training, we sampled

the same number of images from Human3.6, MPII, and

COCO datasets.

We evaluated and compared our model and the two base-

lines in multiple ways, both quantitatively and qualitatively.

First, we followed the Protocol II in [48] and used the mean

per joint position error (MPJPE) as the metric to evaluate

them on the test set of the Human3.6M dataset. The evalua-

tion results are shown in Table 5, along with the evaluation

results for other competitive models copied from their pa-

pers. We have tried our best to train Baseline-1 but still

cannot obtain a model with a performance as good as that

reported in [48]. This, however, does not hinder us from

making a fair comparison between Baseline-1, Baseline-2,

and our model. From Table 5, we can see that by adding

MEBOW as the third (weak) supervision source and us-

ing our proposed orientation loss Lori, we can achieve sig-

nificantly better average MPJPE than both Baseline-1 and

Baseline-2. If we break down MPJPE metric into differ-

ent motion categories, our approach also achieves the best

MPJPE metric in most (12 out of 16) motion categories. We

also did breakdown analysis of the MPJPE metric in terms

of different joints and X-, Y-, Z- part of the joint coordi-

nates in Table 6. For nearly all joints, our method achieves

significant better results. And our method is positive on im-

proving Y- and Z- part of the joint coordinate but neutral for

improving X- part of the joint coordinate. This is not sur-

prising since our orientation loss only considers the Y- and

Z- part of C after the projection on to the y-z plane in Fig. 2.

Some qualitative examples of 3-D pose estimation by our

model, along with the ground truth and the predictions by

the two baseline models are displayed in Fig. 5. Second, we

conduct evaluation of the 3-D pose prediction on the COCO

test set. Since the ground-truth 3-D pose is unknown for the

COCO dataset, we took a step back and conducted the quan-

titative evaluation by comparing the orientation computed

from the predicted 3-D pose against the ground-truth orien-

tation label provided by our MEBOW dataset. As shown in

Table 7, our model significantly outperforms both Baseline-

1 and Baseline-2, which suggests our model for 3-D pose

estimation generalizes much better to in-the-wild images.

Fig. 6 shows a few qualitative results of 3-D pose predic-

tion on the COCO test set.

5. Conclusions

We introduced a new COCO-based large-scale, high-

precision dataset for human body orientation estimation in
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Method Dir. Dis. Eat. Gre. Phon. Pose Pur. Sit SitD. Smo. Phot. Wait Walk WalkD. WalkP. Average

Chen et al. [11] 89.9 97.6 90.0 107.9 107.3 139.2 93.6 136.1 133.1 240.1 106.7 106.2 87.0 114.1 90.6 114.2

Tome et al. [50] 65.0 73.5 76.8 86.4 86.3 110.7 68.9 74.8 110.2 172.9 85.0 85.8 86.3 71.4 73.1 88.4

Zhou et al. [56] 87.4 109.3 187.1 103.2 116.2 143.3 106.9 99.8 124.5 199.2 107.4 118.1 114.2 79.4 97.7 79.9

Metha et al. [30] 59.7 69.7 60.6 68.8 76.4 85.4 59.1 75.0 96.2 122.9 70.8 68.5 54.4 82.0 59.8 74.1

Pavlakos et al. [37] 58.6 64.6 63.7 62.4 66.9 70.8 57.7 62.5 76.8 103.5 65.7 61.6 67.6 56.4 59.5 66.9

Moreno et al. [32] 69.5 80.2 78.2 87.0 100.8 102.7 76.0 69.7 104.7 113.9 89.7 98.5 82.4 79.2 77.2 87.3

Sun et al. [47] 52.8 54.8 54.2 54.3 61.8 53.1 53.6 71.7 86.7 61.5 67.2 53.4 47.1 61.6 53.4 59.1

Sharma et al. [44] 48.6 54.5 54.2 55.7 62.6 72.0 50.5 54.3 70.0 78.3 58.1 55.4 61.4 45.2 49.7 58.0

Moon et al. [31] 50.5 55.7 50.1 51.7 53.9 46.8 50.0 61.9 68.0 52.5 55.9 49.9 41.8 56.1 46.9 53.3

Sun et al. [48] 47.5 47.7 49.5 50.2 51.4 43.8 46.4 58.9 65.7 49.4 55.8 47.8 38.9 49.0 43.8 49.6

Baseline-1∗ 44.4 47.4 49.0 67.7 50.0 41.8 45.6 59.9 92.9 48.8 57.1 65.4 38.7 50.5 42.2 53.4

Baseline-2∗∗ 46.1 47.8 49.1 66.3 48.0 43.5 46.7 59.3 85.0 47.0 54.0 61.9 38.6 50.1 49.7 52.4
−1.0

ours 44.6 47.1 46.0 60.5 47.7 41.8 46.0 57.8 82.3 47.2 56.0 56.7 38.0 49.5 41.8 50.9
−2.5

Table 5. 3-D human pose estimation evaluation on the Human3.6M dataset using mean per joint position error (MPJPE). ∗Our baseline is

a re-implementation of Sun et al. [48], trained on Human3.6M + MPII, as in the original paper. ∗∗Our baseline 2 is a re-implementation of

Sun et al. [48], trained on Human3.6M + MPII + COCO (2-D Pose). The best and second best are marked with color.

Method Hip+ Knee+ Ankle+ Torso Neck Head Nose Shoulder+ Elbow+ Wrist+ X Y Z (Depth)

Baseline-1∗ 24.6 49.0 73.8 40.6 51.9 55.6 56.9 52.5 66.8 84.8 14.6 19.4 39.8

Baseline-2∗∗ 23.5−1.1 49.7+0.7 72.6−1.2 36.8−3.8 50.4−1.5 53.0−2.6 49.6−7.3 51.0−1.5 66.0−0.8 87.6+2.8 14.3−0.3 18.2−1.2 39.8+0.0

ours 21.6−3.0 45.7−3.3 68.9−4.9 35.2−5.4 47.9−4.0 51.1−4.5 52.3−4.6 49.6−2.9 65.9−0.9 87.6+2.8 14.7+0.1 17.1−2.3 39.0−0.8

Table 6. 3-D human pose estimation per joint evaluation on the Human3.6M dataset using mean per joint position error (MPJPE). +The

error is the average of the left joint and the right joint.

Input G. T. Baseline 1 Baseline 2 ours Input G. T. Baseline 1 Baseline 2 ours

Figure 5. Example 3-D pose estimation results on the Human3.6M

dataset. (G.T. is the abbreviation for Ground Truth.) More exam-

ple results can be viewed in Appendix E.

the wild. Through extensive experiments, we demonstrated

that our dataset could be very useful for both body orienta-

tion estimation and 3-D pose estimation. In the meanwhile,

we presented a simple, yet effective model for human body

orientation estimation, which can serve as a baseline for fu-

ture HBOE model development using our dataset. And we

proposed a new orientation loss for utilizing body orienta-

tion label as the third supervision source. In the future, it

would be interesting to explore how our dataset can be used

Method MAE Acc.-5◦ Acc.-15◦ Acc.-30◦

Baseline∗ 26.239 34.7 63.7 77.7

Baseline 2∗∗ 13.888 31.9 74.5 86.8

ours 11.023 44.8 83.4 94.2

Table 7. 3-D human pose estimation evaluation on the test portion

of MEBOW.

Input Baseline 1 Baseline 2 ours Input Baseline 1 Baseline 2 ours

Figure 6. Example 3-D pose estimation results on the COCO

dataset. More example results can be viewed in Appendix F.

for other vision tasks, e.g., person re-identification (ReID)

and bodily expressed emotion recognition [29].
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