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“The characterization of object perception provided by

recognition-by-components (RBC) bears a close resem-

blance to some current views as to how speech is perceived.”

— Irving Biederman [5]

Abstract

We introduce PQ-NET, a deep neural network which rep-

resents and generates 3D shapes via sequential part assem-

bly. The input to our network is a 3D shape segmented into

parts, where each part is first encoded into a feature rep-

resentation using a part autoencoder. The core component

of PQ-NET is a sequence-to-sequence or Seq2Seq autoen-

coder which encodes a sequence of part features into a la-

tent vector of fixed size, and the decoder reconstructs the

3D shape, one part at a time, resulting in a sequential as-

sembly. The latent space formed by the Seq2Seq encoder

encodes both part structure and fine part geometry. The de-

coder can be adapted to perform several generative tasks

including shape autoencoding, interpolation, novel shape

generation, and single-view 3D reconstruction, where the

generated shapes are all composed of meaningful parts.

1. Introduction

Learning generative models of 3D shapes is a key prob-

lem in both computer vision and computer graphics. While

graphics is mainly concerned with 3D shape modeling, in

inverse graphics [23], a major line of work in computer vi-

sion, one aims to infer, often from a single image, a disen-

tangled representation with respect to 3D shape and scene

structures [29]. Lately, there has been a steady stream of

works on developing deep neural networks for 3D shape

generation using different shape representations, e.g., voxel

grids [54], point clouds [15, 1], meshes [20, 51], and most

recently, implicit functions [35, 41, 10, 56]. However, most

of these works produce unstructured 3D shapes, despite the

fact that object perception is generally believed to be a pro-

cess of structural understanding, i.e., to infer shape parts,

their compositions, and inter-part relations [24, 5].
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Figure 1. Our network, PQ-NET, learns 3D shape representations

as a sequential part assembly. It can be adapted to generative tasks

such as random 3D shape generation, single-view 3D reconstruc-

tion (from RGB or depth images), and shape completion.

In this paper, we introduce a deep neural network which

represents and generates 3D shapes via sequential part as-

sembly, as shown in Figures 1 and 2. In a way, we regard

the assembly sequence as a “sentence” which organizes and

describes the parts constituting a 3D shape. Our approach

is inspired, in part, by the resemblance between speech and

shape perception, as suggested by the seminal work of Bie-

derman [5] on recognition-by-components (RBC). Another

related observation is that the phase structure rules for lan-

guage parsing, first introduced by Noam Chomsky, take on

the view that a sentence is both a linear string of words and

a hierarchical structure with phrases nested in phrases [7].

In the context of shape structure presentations, our network

adheres to linear part orders, while other works [53, 31, 36]

have opted for hierarchical part organizations.

The input to our network is a 3D shape segmented into

parts, where each part is first encoded into a feature rep-

resentation using a part autoencoder; see Figure 2(a). The

core component of our network is a sequence-to-sequence

or Seq2Seq autoencoder which encodes a sequence of part

features into a latent vector of fixed size, and the decoder
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Figure 2. The architecture of PQ-NET: our part Seq2Seq generative network for 3D shapes.

reconstructs the 3D shape, one part at a time, resulting in

a sequential assembly; see Figure 2(b). With its part-wise

Seq2Seq architecture, our network is coined PQ-NET . The

latent space formed by the Seq2Seq encoder enables us to

adapt the decoder to perform several generative tasks in-

cluding shape autoencoding, interpolation, new shape gen-

eration, and single-view 3D reconstruction, where all the

generated shapes are composed of meaningful parts.

As training data, we take the segmented 3D shapes from

PartNet [37], which is built on ShapeNet [8]. The shape

parts are always specified in a file following some linear

order in the dataset; our network takes the part order that is

in a shape file. We train the part and Seq2Seq autoencoders

of PQ-NET separately, either per shape category or across

all categories of PartNet.

Our part autoencoder adapts IM-NET [10] to encode

shape parts, rather than whole shapes, with the decoder pro-

ducing an implicit field. The part Seq2Seq autoencoder fol-

lows a similar architecture as the original Seq2Seq network

developed for machine translation [47]. Specifically, the

encoder is a bidirectional stacked recurrent neural network

(RNN) [45] that inputs two sequences of part features, in

opposite orders, and outputs a latent vector. The decoder is

also a stacked RNN, which decodes the latent vector repre-

senting the whole shape into a sequential part assembly.

PQ-NET is the first fully generative network which

learns a 3D shape representation in the form of sequential

part assembly. The only prior part sequence model was 3D-

PRNN [58], which generates part boxes, not their geome-

try — our network jointly encodes and decodes part struc-

ture and geometry. PQ-NET can be easily adapted to var-

ious generative tasks including shape autoencoding, novel

shape generation, structured single-view 3D reconstruction

from both RGB and depth images, and shape completion.

Through extensive experiments, we demonstrate that the

performance and output quality of our network is compara-

ble or superior to state-of-the-art generative models includ-

ing 3D-PRNN [58], IM-NET [10], and StructureNet [36].

2. Related work

Structural analysis of 3D shapes. Studies on 3D shape

variabilities date back to statistical modeling of human

faces [6] and bodies [2], e.g., using PCA. Learning struc-

tural variations of man-made shapes is a more difficult

task. Earlier works from graphics typically infer one or

more parametric templates of part arrangement from shape

collections [40, 27, 17]. These methods often require part

correspondence of the input shapes. Probabilistic graphical

models can be used to model shape variability as the causal

relations between shape parts [26], but pre-segmented and

part labeled shapes are required for learning such models.

“Holistic” generative models of 3D shapes. Deep gen-

erative models of 3D shapes have been developed for volu-

metric grids [54, 19, 52, 43], point clouds [15, 1, 57], sur-

face meshes [20, 51], multi-view images [46], and implicit

functions [11, 41]. Common to these works is that the shape

variability is modeled in a holistic, structure-oblivious fash-

ion. This is mainly because there are few part-based shape

representations suitable for deep learning.

Part-based generative models. In recent years, learning

deep generative models for part- or structure-aware shape

synthesis has been gaining more interests. Huang et al. [25]
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propose a deep generative model based on part-based tem-

plates learned a priori. Nash and Williams [38] propose a

ShapeVAE to generate segmented 3D objects and the model

is trained using shapes with dense point correspondence.

Li et al. [31] propose GRASS, an end-to-end deep genera-

tive model of part structures. They employ recursive neural

network (RvNN) to attain hierarchical encoding and decod-

ing of parts and relations. Their binary-tree-based RvNN is

later extended to the N-ary case by StructureNet [36]. Wu

et al. [55] couple the synthesis of intra-part geometry and

inter-part structure. In G2L [50], 3D shapes are generated

with part labeling based on generative adversarial networks

(GANs) and then refined using a pre-trained part refiner.

Most recently, Gao et al. [18] train an autoencoder to gener-

ate a spatial arrangement of closed, deformable mesh parts

respecting the global part structure of a shape category.

Other recent works on part-based generation adopts a

generate-and-assemble scheme. CompoNet [44] is a part

composition network operating on a fixed number of parts.

Per-part generators and a composition network are trained

to produce shapes with a given part structure. Dubrovina et

al. [14] propose a decomposer-composer network to learn

a factorized shape embedding space for part-based model-

ing. Novel shapes are synthesized by randomly sampling

and assembling the pre-exiting parts embedded in the fac-

torized latent space. Li et al. [30] propose PAGENet which

is composed of an array of per-part VAE-GANs, followed

by a part assembly module that estimates a transformation

for each part to assemble them into a plausible structure.

Seq2Seq. Seq2Seq is a general-purpose encoder-decoder

framework for machine translation. It is composed of two

RNNs which takes as input a word sequence and maps it

into an output one with a tag and attention value [47]. To

date, Seq2Seq has been used for a variety of different ap-

plications such as image captioning, conversational mod-

els, text summarization, as well as few works for 3D rep-

resentation learning. For example, Liu et al. [32] employ

Seq2Seq to learn features for 3D point clouds with multi-

scale context. PQ-NET is the first deep neural network that

exploits the power of sequence-to-sequence translation for

generative 3D shape modeling, by learning structural con-

text within a sequence of constituent shape parts.

3D-PRNN: part sequence assembly. Most closely re-

lated to our work is 3D-PRNN [58], which, to the best of

our knowledge, is the only prior work that learns a part

sequence model for 3D shapes. Specifically, 3D-PRNN is

trained to reconstruct 3D shapes as sequences of box prim-

itives given a single depth image. In contrast, our network

learns a deep generative model of both a linear arrangement

of shape parts and geometries of the individual parts. Tech-

nically, while both networks employ RNNs, PQ-NET learns

a shape latent space, jointly encoding both structure and ge-

ometry, using a Seq2Seq approach. 3D-PRNN, on the other

hand, uses the RNN as a recurrent generator that sequen-

tially outputs box primitives based on the depth input and

the previously generated single primitive. Their network is

trained on segmented shapes whose parts are ordered along

the vertical direction. To allow novel shape generation, 3D-

PRNN needs to be initiated by primitive parameters sam-

pled from the training set, while PQ-NET follows a standard

generative procedure using latent GANs [1, 10].

Single view 3D reconstruction (SVR). Most methods

train convolutional networks that map 2D images to 3D

shapes using direct 3D supervision, where voxel [13, 19,

48, 42, 28] and point cloud [16, 34] representations of

3D shapes have been extensively utilized. Some meth-

ods [33, 4] learn to produce multi-view depth maps that

are fused together into a 3D point cloud. Tulsiani et

al. [49] infer cuboid abstraction of 3D shapes from single-

view images. Extending the RvNN-based architecture of

GRASS [31], Niu et al. [39] propose Im2Struct which maps

a single-view image into a hierarchy of part boxes. Dif-

ferently from this work, our method produces part boxes

and the corresponding part geometries jointly, by exploiting

the coupling between structure and geometry in a sequential

part generative model.

3. Method

In this section, we introduce our PQ-NET, based on a

Seq2Seq Autoencoder, or Seq2SeqAE, for sequential part

assembly and part-based shape representation. Given a 3D

shape consisting of several parts, we first represents it as a

sequence with each vector corresponding to a single part

that consists of a geometric feature vector and a 6 DoF

bounding box indicating the translating and scaling of part

local frame according to the global coordinate system. The

geometry of each part is projected to a low-dimensional fea-

ture space based on a hybrid-structure autoencoder using

self-supervised training. Since the number of part sequence

is un-known, we seek a recurrent neural network based en-

coder to transform the entire sequence to an unified shape

latent space. The part sequence is then decoded from the

shape feature vector, with each part containing the geome-

try feature and the spatial position and size. Figure 2 shows

the outline of our Seq2SeqAE model. Our learned shape

latent space facilitates applications like random generation,

single view reconstruction and shape completion, etc. We

will explain the two major components of our model in the

next sections with more details in supplementary material.

3.1. Part Geometry Auto-encoding

The part geometry and topology is much simpler than

the original shape. Thus, by decomposing the shape into

a set of parts, we are able to perform high-resolution and
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cross-category geometry learning with high quality. Our

part geometry autoencoder uses a similar design as [10],

where a CNN-based encoder projects voxelized part to the

part latent space, and a MLP-based decoder re-projects the

latent vector to a volumetric Signed Distance Field(SDF).

The surface of the object is retrieved using marching cube

on the places where SDF is zero.

We first scale each part to a fixed resolution 64×64×64
within its bounding box and feed scaled part volume as in-

put to a CNN encoder to get the output feature vector g that

represents the part geometry. The MLP decoder takes in this

feature vector g and 3D point (x, y, z) and output a single

value that tells either this point is inside the surface of the

input geometry or outside. Since volumetric SDF is contin-

uous everywhere, the output geometry is smooth and can be

sampled at any resolution. Note that this feature representa-

tion has no information about the part’s scale and global po-

sition, and thus purely captures its geometry property. For a

shape with n parts, we can extract a sequence of geometry

features g1, g2, ..., gn corresponding to each part.

3.2. Seq2Seq AE

The core of our neural network is a Sequence-to-

Sequence(Seq2Seq) Autoencoder. The sequential encoder

is a bidirectional stacked RNN [45] that takes a sequence

of part features, along with its reverse version, as the input,

and outputs a latent vector hz of fixed size. This latent vec-

tor is then passed to the stacked RNN decoder that outputs

a part feature at each time step. Intuitively, the Seq2Seq en-

coder learns to assemble parts into a complete shape while

the decoder learns to decompose it into meaningful parts. In

all of our experiments, we used GRU [12] as the RNN cell

and employed two hidden layers for each RNN.

More specifically, let Fi = [gi; bi] denotes part fea-

ture vector, concatenated with two components, a part

geometry feature gi and a 6 DoF bounding box bi =
[xi, yi, zi, li,mi, ni], where [xi, yi, zi] and [li,mi, ni] indi-

cate box position and size, respectively. An additional infor-

mation of part number is used to regularize the shape distri-

bution, since we empirically found it improving the perfor-

mance. With the extra one-hot vector ti of part number, the

full vector of a part is finally symbolized as Si = [Fi; ti].
We feed the sequence of S = [S1, S2, ..., Sn] and also its

reverse, Sreverse, to the bidirectional encoder, and obtain

two hidden states from the output,

h1 = [h1

1
;h2

1
] = encode1(S)

h2 = [h1

2
;h2

2
] = encode2(Sreverse)

hz = [h1

1
;h1

2
;h2

1
;h2

2
]

(1)

The final state hz is a latent representation of 3D shape.

Different to the vanilla RNN, stacked RNN outputs more

than one vector for each time step, which allows more com-

plex representation for our parts. Specifically, our stacked
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Figure 3. Structure of our stacked RNN decoder. At each time step,

the geometry feature and structure feature are separately predicted,

along with a stop sign indicating whether the iteration is finished.

RNN has two hidden states at each time step, namely hG
i

and hS
i . We use hG

i for geometry feature reconstruction by

passing it through a MLP network while hS
i is used for the

structure feature with the same technique. We also add an-

other MLP network to predict a stop sign si that indicates

whether to stop iteration. With the initial hidden state set

as the final output hz of encoder RNN, our stacked RNN

decoder iteratively generates individual parts by

[hS
0
;hG

0
] = hz

g′i = MLPG(h
G
i )

b′i = MLPS(h
S
i )

s′i = Sigmoid(MLPs(h
S
i ))

(2)

The iteration will stop if s′i > 0.5.

Figure 3 illustrates the structure of the RNN decoder.

Comparing to the vanilla RNN, where all properties are con-

catenated into a single feature vector, our disentangling of

the geometry and bounding box in a stacked design yields

better results without using deeper network.

3.3. Training and losses

Given a dataset S with shapes from multiple categories,

we describe the training process of our PQ-NET. Due to the

complexity of the whole pipeline and the limitation of com-

putational power, we separate the training into two steps.

Step 1. Our part geometry autoencoder consists of a 3D-

CNN based encoder e and an implicit function represented

decoder d. Given a 3D dataset S with each shape partitioned

into several parts, we scale all parts to an unit cube, and

collect a 3D parts dataset P . Note that P is derived from S .

We use signed distance field for 3D geometry generation as

in [10]. Our goal is to train a network to predict the signed

distance field of each part P from dataset P . Let TP be a set

of points sampled from shape P , we define the loss function

as the mean squared error between ground truth values and

predicted values for all points:

L(P ) = Ep∈TP
|d(e(P ), p)− F(p)|2 (3)
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where F is the ground truth signed distance function.

After the training is done, the encoder e can be used to

map each part P to a latent vector g = e(P ) which is used

as input in the next step.

Step 2. Based on the part sequence representation, we

perform jointly analysis of geometry and structure for each

shape S using our Seq2Seq model. We use a loss function

that consists of two parts,

Ltotal = ES∈S [Lr(S) + αLstop(S)], (4)

where the weighted factor α is empirically set to 0.01.

The reconstruction loss Lr punishes the reconstructed

geometry and structure feature for being apart to the ground

truth. We use mean squared error as the distance measure

and define the reconstruction loss as:

Lr(S) =
1

k

k∑

i=1

[β||g′i − gi||2 + ||b′i − bi||2], (5)

where k is the number of parts of shape S, and β is set to

1.0 in our experiments. For the i-th part, g′i and b′i denote

the reconstructed result of geometry and structural feature

while gi and bi are the corresponding ground truth.

The stop loss Lstop encourages the RNN decoder to gen-

erate with correct number of parts that exactly fulfills a

shape. Similar to 3D-PRNN [58], we give each time step of

RNN decoder a binary label si indicating whether to stop at

step i. The stop loss is defined using binary cross entropy:

Lstop(S) =
1

k

k∑

i=1

[−si log s
′

i − (1− si) log(1− s′i)] (6)

where s′i is the predicted stop sign.

3.4. Shape Generation and other applications

The latent space learned by PQ-NET supports various

applications. We show results of shape auto-encoding, 3D

shape generation, interpolation and single-view reconstruc-

tion from RGB or depth image in the next section.

For shape auto-encoding, we use the same setting in the

work of [10]. Each part of a shape is scale to a 643 volume

and the point set for SDF regression is sampled around the

surface equally from inside and outside. Then the model is

trained following the description in Section 3.3.

For 3D shape generation, we employ latent GANs [1, 10]

on the pre-learned latent space using our sequential autoen-

coder. Specifically, we used a simple MLP of three hid-

den fully-connected layers for both the generator and dis-

criminator, and applied Wasserstein-GAN (WGAN) train-

ing strategy with gradient penalty [3, 21]. After the training

is done, the GAN generator maps random vectors sampled

from the standard gaussian distribution N (0, 1) to our shape

latent space from which our sequential decoder generates

new shapes with both geometry and segmentation.

For 3D reconstruction from single RGB image or depth

map, we use a standalone CNN encoder to map the input

image to our pre-learned shape latent space. Typically, we

use a four convolutional layers CNN as the encoder for

depth image embedding and the typical ResNet18 [22]

for RGB input embedding. We follow the similar idea as

[20, 10, 36] to train the CNN encoder while fixing the pa-

rameters of our sequential decoder.

4. Results, Evaluation, and Applications

In this section, we show qualitative and quantitative re-

sults of our model on several tasks, including shape auto-

encoding, shape generation and single view reconstruction.

We use PartNet [37], a large-scale 3D shape dataset with

semantic segmentation, in our paper. We mainly use their

three largest categories, that is, chair, table and lamp and

remove shapes that have more than 10 parts, resulting in

6305 chairs, 7357 tables and 1188 lamps, which are further

divided into training, validation and test sets using official

data splits of PartNet. The original shapes are in mesh rep-

resentation, and we voxelize them into 643 cube for feature

embedding. We follow the sampling approach as in [11] to

collect thousands of 3D point and the corresponding SDF

values for implicit field generation. Please refer to our sup-

plementary material for more details on data processing.

4.1. 3D Shape Auto-encoding

We compare our sequential autoencoder with IM-

NET [11]. Both methods are using the same dataset for

training. Table 4.1 and Figure 4 shows the results of two

methods at different resolutions, specifically 643 and 2563.

For quantitive evaluation, we use Intersection over Union

(IoU), symmetric Chamfer Distance (CD) and Light Field

Distance(LFD) [9] as measurements. IoU is calculated at

643 resolution, the same resolution of our training model.

In Chair category, our method is better than IM-NET, how-

ever, in the other two categories, from which the geometry is

much simpler, the IoU of IM-NET is better than ours. Note

that, the parts of shape generated by our method is better

than IM-NET, due to its simplicity, and our generated shape

is visually better too. However, small perturbation of part

location can significantly cut down the score of IoU. For CD

and LFD, our method performs better than IM-NET. Since

LFD is computed within mesh domain, we convert the out-

put of SDF decoder to the mesh using marching cubes algo-

rithm. For CD metric, we samples 10K points on the mesh

surface and compare with the ground truth point clouds.

In general, our model outperforms IM-NET in both qual-

itative and quantitative evaluation. We admit that this com-

parison might be a bit unfair for IM-NET, since our in-

puts are segmented parts, which offers structural informa-

833



Metrics Method Chair Table Lamp

IoU
Ours-64 67.29 47.39 39.56

IM-NET-64 62.93 56.14 41.29

CD

Ours-64 3.38 5.49 11.49

Ours-256 2.86 5.69 10.32

Ours-Cross-256 2.46 4.50 4.87

IM-NET-64 3.64 6.75 12.43

IM-NET-256 3.59 6.31 12.19

LFD

Ours-64 2734 2824 6254

Ours-256 2441 2609 5941

Ours-Cross-256 2501 2415 4875

IM-NET-64 2830 3446 6262

IM-NET-256 2794 3397 6622

Table 1. Quantitative shape reconstruction results. IoU is multi-

plied by 10
2, CD by 10

3. LFD is rounded to integer. ”Ours-Cross”

refers to our model trained across all three categories.

a) Ground Truth

b) IM-NET-256

c) Ours-256

Figure 4. Visual results for shape auto-encoding. Output meshes

are obtained using the same marching cubes setup.

tion that is not provided by the whole shape. But still the

evaluation results show that our model can correctly repre-

sents both structure and geometry of 3D shapes. A worth

noticing fact is that our cross-category trained model beats

per-category trained models. It indicates that our sequen-

tial model can handle different arrangements of parts across

categories and benefits from the simplicity of part geometry.

4.2. Shape Generation and Interpolation

We compare to two state-of-the-art 3D shape generative

models, IM-NET [10] and StructureNet [36], for 3D shape

generation task. We use the released code for both method.

For IM-NET, we retrain their model on all three category.

For StructureNet, we use the pre-trained models on Chair

and Table, and retrain the model for Lamp category.

We adopt Coverage (COV), Minimum Matching Dis-

tance (MMD) and Jensen-Shannon Divergence (JSD) [1]

to evaluate the fidelity and diversity of generation results.

Category Method COV MMD JSD

Chair

Ours 54.91 8.34 0.0083

IM-NET 52.35 7.44 0.0084

StructureNet 29.51 9.67 0.0477

Table

Ours 56.51 7.56 0.0057

IM-NET 56.67 6.90 0.0047

StructureNet 16.04 14.98 0.0725

Lamp

Ours 87.95 10.01 0.0215

IM-NET 81.25 10.45 0.0230

StructureNet 35.27 17.29 0.1719

Table 2. Quantitative evaluation for shape generation. We ran-

domly generated 2000 shapes for each method and then compared

to the test dataset. COV and MMD use chamfer distance as dis-

tance measure. MMD is multiplied by 10
3.

a) Ours

b) IM-NET

c) StructureNet

Figure 5. 3D shape generation results with comparison to results

obtained by IM-NET and StructureNET.

While COV and JSD roughly represent the diversity of the

generated shapes, MMD is often used for fidelity evalua-

tion. We obtained a set of generated shapes for each method

by randomly generating 2K samples and compare to the test

set using chamfer distance. More details about evaluation

metrics are available in supplementary material.

The results of PQ-NET and IM-NET are sampled at res-

olution 2563 for visual comparison and 643 for quantitative

evaluation. We reconstruct the mesh and sample 2K points

to calculate chamfer distance. Since StructureNet outputs

1K points for each generated part, the whole shape may

contain points larger than 2K. We conduct a downsampling

process to extract 2K points for evaluation.

Table 4.2 and Figure 5 shows the results from our PQ-

NET, IM-NET and StructureNet. Our method can produce

smooth geometry while maintaining the whole structure

preserved. For thin structure and complex topology, model-

ing whole shape is very hard, and our decomposition strat-

egy can be very helpful in such hard situation. However, on

the other hand, our sequential model may yield duplicated
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Figure 6. Latent space interpolation results. The interpolated se-

quence not only consists of smooth geometry morphing but also

keeps the shape structure.

a) Input Depth 

Map

b) 3D-PRNN c) Ours d) GT

Figure 7. Visual comparison of structured 3D shape reconstruction

from single depth image on three categories: chair, table, lamp.

parts or miss parts sometimes. As to get the sufficient gener-

ative model, it is important to balance the hardness between

geometry generation and structure recovery.

Besides random generation, we also show interpolation

results in Figure 6. Interpolation between latent vector is a

way to show the continuity of learned shape latent space.

Linear interpolation from our latent space yields smooth

transiting shapes in terms of geometry and structure.

4.3. Comparison to 3D-PRNN

Since 3D-PRNN [58] is the most related work, we con-

duct a comprehensive comparison with them. We first com-

pare the reconstruction task from a single depth image by

evaluating only the structure of shape, since 3D-PRNN

doesn’t recover shape geometry. For each 3D shape in the

dataset, we obtain 5 depth maps by the resolution of 642.

We uniformly sample 5 views and render the depth im-

ages using ground truth mesh. For both 3D-PRNN and our

model, we use part axis aligned bounding box(AABB) as

structure representation. In addition, 3D-PRNN uses a pre-

sort order from the input parts. Therefore, besides using the

natural order from PartNet annotations, we also train the

model on the top-town order used by 3D-PRNN.

Figure 7 shows the visual comparison between our PQ-

NET and 3D-PRNN. Our method can reconstruct much

plausible boxes. For quantitative evaluation, we convert the

output and ground truth boxes to volumetric model by fully

filling with each part box, and compute IoU between gener-

ated model and the corresponding ground truth volume. As

a result, our reconstructed structures are more accurate, as

Method Order Chair Table Lamp Average

Ours
A 61.47 53.67 52.94 56.03

B 58.68 48.58 52.17 53.14

3D-PRNN
A 37.26 51.30 47.26 45.27

B 36.46 51.93 43.83 44.07

Table 3. Shape IoU evaluation of structured 3D shape reconstruc-

tion from single depth image on three categories: chair, table,

lamp. We test each method on two kinds of order: PartNet nat-

ural order(A) and presorted top-down order(B).

a) Ours

b) 3D-PRNN

Figure 8. Visual comparison of random generated 3D primitives.

3D-PRNN suffers from unreal, duplicated or missing parts while

our model can yield more plausible results.

shown in Table 4.3. In terms of order effect, our model on

the natural order of PartNet yields the best result. The qual-

ity drops down with small portion when using the top-down

order as 3D-PRNN, however is still better than theirs.

We also compare the 3D shape generation task with 3D-

PRNN, as shown in Figure 8. Quantitative evaluation and

more details can be found in supplementary material.

4.4. Single View 3D Reconstruction

We compare our approach with IM-NET [11] on the

task of single view reconstruction from RGB image. We

per-category trained IM-NET on PartNet dataset. Figure 9

shows the results. It can be seen that our approach can re-

cover more complete and detailed geometry than IM-NET.

The advantage of model is that we also obtain segmentation

besides reconstructed geometry. However, relying on the

structure information may cause issues, such as duplicated

or misplaced part, see the first table in Figure 9(c).

We admit our method doesn’t outperform IM-NET in the

quantitative evaluation. This may due to the fact that our

latent space is entangled with both the geometry and struc-

ture, which makes the latent space less uniform.

4.5. Applications

By altering the training procedure applied to our net-

work, we show that PQ-NET can serve two more applica-

tions which benefit from sequential part assembly.

Shape completion. We can train our network by feeding

it input part sequences which constitute a partial shape, and

force the network to reconstruct the full sequence, hence
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a) Input image

d) Ground Truth

c) Ours

b) IM-NET

Figure 9. Single view reconstruction results. Our results are from

model that is trained across all three category. Note that our

method also recovers the shape structure.

completing the shape. We tested this idea on the chair cat-

egory, by randomly removing up to k − 1 parts from the

part sequence, k being the total number of parts of a given

shape. One result is shown in Figure 1 with more available

in the supplementary material.

Order denoising and part correspondence. We can add

“noise” to a part order by scrambling it, feed the resulting

noisy order to our network, and force it to reconstruct the

original (clean) order. We call this procedure part order de-

noising — it allows the network to learn a consistent part

order for a given object category, e.g., chairs, as long as we

provide the ground truth orders with consistency. For exam-

ple, we can enforce the order “back → seat → legs” and for

the legs, we order them in clockwise order. If all the part

orders adhere to this, then it should be straightforward to

imply a part correspondence, which can, in turn, facilitate

inference of part relations such as symmetry; see Figure 10.

With structural variaties, it still requires some work to

infer the part correspondence from all possible (consistent)

linear part sequences; this is beyond the scope of our cur-

rent work. It is worth noting however that this inference

problem would be a lot harder if the parts are organized hi-

erarchically [53, 31, 36] rather than linearly.

5. Conclusion, limitation, and future work

We present PQ-NET, a deep neural network which repre-

sents and generates 3D shapes as an assembly sequence of

parts. The generation can be from random noise to obtain

novel shapes or conditioned on single-view depth scans or

RGB images for 3D reconstruction. Promising results are

demonstrated for various applications and in comparison

with state-of-the-art generative models of 3D shapes includ-

ing IM-NET [10], StructureNet [36], and 3D-PRNN [58],

 Input Order Output Order
Output 

Shape

Figure 10. Part order denoising results. Our method can unscram-

ble random input orders into a consistent output order, to facilitate

part correspondence. Note that the color correspondence is for il-

lustrations only, and not part of the output from our network.

where the latter work also generates part assemblies.

One key limitation of PQ-NET is that it does not learn

part relations such as symmetry; it only outputs a spa-

tial arrangement of shape parts. More expressive structural

representations such as symmetry hierarchies [53, 31] and

graphs [36] can encode such relations easily. However, to

learn such representations, one needs to prepare sufficient

training data which is a non-trivial task. The part corre-

spondence application shown in Section 4.5 highlights an

advantage of sequential representations, but in general, an

investigation into the pros and cons of sequences vs. hi-

erarchies for learning generative shape models is worth-

while. Another limitation is that PQ-NET does not produce

topology-altering interpolation, especially between shapes

with different number of parts. Further investigation into

latent space formed by sequential model is needed.

We would also like to study more closely the latent space

learned by our network, which seems to be encoding part

structure and geometry in an entangled and unpredictable

manner. This might explain in part why the 3D reconstruc-

tion quality from PQ-NET still does not quite match that of

state-of-the-art implicit models such as IM-NET. Finally, as

shown in Table 4.3, part orders do seem to impact the net-

work learning. Hence, rather than adhering to a fixed part

order, the network may learn a good, if not the optimal, part

order, for different shape categories, i.e., the best assembly

sequence. An intriguing question is what would be an ap-

propriate loss to quantify the best part order.
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