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Abstract

We consider the problem of segmenting image regions

given a natural language phrase, and study it on a novel

dataset of 77,262 images and 345,486 phrase-region pairs.

Our dataset is collected on top of the Visual Genome dataset

and uses the existing annotations to generate a challenging

set of referring phrases for which the corresponding regions

are manually annotated. Phrases in our dataset correspond

to multiple regions and describe a large number of object

and stuff categories as well as their attributes such as color,

shape, parts, and relationships with other entities in the im-

age. Our experiments show that the scale and diversity

of concepts in our dataset poses significant challenges to

the existing state-of-the-art. We systematically handle the

long-tail nature of these concepts and present a modular

approach to combine category, attribute, and relationship

cues that outperforms existing approaches.

1. Introduction

Modeling the interplay of language and vision is im-

portant for tasks such as visual question answering, au-

tomatic image editing, human-robot interaction, and more

broadly towards the goal of general Artificial Intelligence.

Existing efforts on grounding language descriptions to im-

ages have achieved promising results on datasets such

as Flickr30Entities [30] and Google Referring Expres-

sions [26]. These datasets, however, lack the scale and di-

versity of concepts that appear in real-world applications.

To bridge this gap we present the VGPHRASECUT

dataset and an associated task of grounding natural lan-

guage phrases to image regions called PhraseCut (Figure 1

and 2). Our dataset leverages the annotations in the Visual

Genome (VG) dataset [18] to generate a large set of referring

phrases for each image. For each phrase, we annotate the re-

gions and instance-level bounding boxes that correspond to

the phrase. Our dataset contains 77,262 images and 345,486

phrase-region pairs, with some examples shown in Figure 2.

VGPHRASECUT contains a significantly longer tail of con-

cepts and has a unified treatment of stuff and object cat-

cakelarge on plate
M

o
d

u
la

r
H

e
a

tm
a

p
s

IN
P

U
T

OUTPUT

Category ModuleAttribute Module Relationship Module

“large cake on plate”

Figure 1. Our task and approach. PhraseCut is the task of seg-

menting image regions given a natural language phrase. Each

phrase is templated into words corresponding to categories, at-

tributes, and relationships. Our approach combines these cues in

a modular manner to estimate the final output.

egories, unlike prior datasets. The phrases are structured

into words that describe categories, attributes, and relation-

ships, providing a systematic way of understanding the per-

formance on individual cues as well as their combinations.

The PhraseCut task is to segment regions of an image

given a templated phrase. As seen in Figure 1, this requires

connecting natural language concepts to image regions. Our

experiments shows that the task is challenging for state-

of-the-art referring approaches such as MattNet [40] and

RMI [21]. We find that the overall performance is lim-

ited by the performance on rare categories and attributes.

To address these challenges we present (i) a modular ap-

proach for combining visual cues related to categories, at-

tributes, and relationships, and (ii) a systematic approach to

improving the performance on rare categories and attributes

by leveraging predictions on more frequent ones. Our cat-

egory and attribute modules are based on detection models,

whose instance-level scores are projected back to the im-

age and further processed using an attention-based model

driven by the query phrase. Finally, these are combined with
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hatchback car mark on chicken glass bottles

black shirtzebra lying on savannawalking peopleshort deer wipers on trains

pedestrian crosswalkblonde hair

Figure 2. Example annotations from the VGPHRASECUT dataset. Colors (blue, red, green) of the input phrases correspond to words

that indicate attributes, categories, and relationships respectively.

relationship scores to estimate the segmentation mask (see

Figure 1). Objects and stuff categories are processed in a

unified manner and the modular design, after the treatment

of rare categories, outperforms existing end-to-end models

trained on the same dataset.

Using the dataset we present a systematic analysis of the

performance of the models on different subsets of the data.

The main conclusions are: (i) object and attribute detec-

tion remains poor on rare and small-sized categories, (ii) for

the task of image grounding, rare concepts benefit from re-

lated but frequent ones (e.g., the concept “policeman” could

be replaced by “man” if there were other distinguishing at-

tributes such as the color of the shirt), and (iii) attributes and

relationship models provide the most improvements on rare

and small-sized categories. The performance on this dataset

is far from perfect and should encourage better models of

object detection and semantic segmentation in the com-

puter vision community. The dataset and code is available

at: https://people.cs.umass.edu/˜chenyun/

phrasecut.

2. Related Work

The language and vision community has put significant

effort into relating words and images. Our dataset is closely

related to datasets for the visual grounding of referring ex-

pressions. We also describe recent approaches for ground-

ing natural language to image regions.

Visual grounding datasets Table 1 shows a comparison

of various datasets related to grounding referring expres-

sions to images. The ReferIt dataset [17] was collected on

images from ImageCLEF using a ReferItGame between two

players. Mao et al. [26] used the same strategy to collect a

significantly larger dataset called Google RefExp, on images

from the MS COCO dataset [20]. The referring phrases de-

scribe objects and refer to boxes inside the image across

80 categories, but the descriptions are long and perhaps re-

dundant. Yu et al. [41] instead collect referring expressions

using a pragmatic setting where there is limited interaction

time between the players to generate and infer the referring

object. They collected two versions of the data: RefCOCO

that allows location descriptions such as “man on the left”,

and RefCOCO+ which forbids location cues forcing a focus

on other visual clues. One drawback is that Google RefExp,

RefCOCO and RefCOCO+ are all collected on MS-COCO

objects, limiting their referring targets to 80 object cate-

gories. Moreover, the target is always one single instance,

and there is no treatment of stuff categories.

Another related dataset is the Flickr30K Entities [30].

Firstly entities are mined and grouped (co-reference reso-

lution) from captions by linking phrases that describe the

same entity and then the corresponding bounding-boxes are

collected. Sentence context is often needed to ground the

entity phrases to image regions. While there are a large

number of categories (44,518), most of them have very few

examples (average 6.2 examples per category) with a sig-

nificant bias towards human-related categories (their top 7

categories are “man”,“woman”, “people”, “shirt”, “girl”,

“boy”, “men”). The dataset also does not contain segmen-

tation masks. nor phrases that describe multiple instances.

Our dataset is based on the Visual Genome (VG)

dataset [18]. VG annotates each image as a “scene graph”

linking descriptions of individual objects, attributes, and

their relationships to other objects in the image. The dataset

is diverse, capturing various object and stuff categories, as

well as attribute and relationship types. However, most de-

scriptions do not distinguish one object from other objects

in the scene, i.e., they are not referring expressions. Also,

VG object boxes are very noisy. We propose a procedure to

mine descriptions within the scene graph that uniquely iden-

tifies the objects, thereby generating phrases that are more

suitable for the referring task. Finally, we collect segmenta-

tion annotations of corresponding regions for these phrases.
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Dataset ReferIt [17] Google RefExp [26] RefCOCO [41] Flickr30K Entities [30] Visual Genome [18] VGPHRASECUT

# images 19,894 26,711 19,994 31,783 108,077 77,262

# instances 96,654 54,822 50,000 275,775 1,366,673 345,486

# categories - 80 80 44,518 80,138 3103

multi-instance No No No No No Yes

segmentation Yes Yes Yes No No Yes

referring phrase short phrases long descriptions short phrases entities in captions region descriptions templated phrases

Table 1. Comparison of visual grounding datasets. The proposed VGPHRASECUT dataset has a significantly higher number of categories

than RefCOCO and Google RefExp, while also containing multiple instances.

Approaches for grounding language to images Tech-

niques for localizing regions in an image given a natural lan-

guage phrase can be broadly categorized into two groups:

single-stage segmentation-based techniques and two-stage

detection-and-ranking based techniques.

Single-stage methods [6, 15, 19, 21, 27, 33, 38, 39] pre-

dict a segmentation mask given a natural language phrase

by leveraging techniques used in semantic segmentation.

These methods condition a feed-forward segmentation net-

work, such as a fully-convolutional network or U-Net, on

the encoding of the natural language (e.g., LSTM over

words). The advantage is that these methods can be directly

optimized for the segmentation performance and can easily

handle stuff categories as well as different numbers of tar-

get regions. However, they are not as competitive on small-

sized objects. We compare a strong baseline of RMI [21]

on our dataset.

More state-of-the-art methods are based on a two-stage

framework of region proposal and ranking. Significant in-

novations in techniques have been due to the improved tech-

niques for object detection (e.g., Mask R-CNN [11]) as well

as language comprehension. Some earlier works [7, 16,

23, 25, 26, 28, 29, 31, 34, 41] adopt a joint image-language

embedding model to rank object proposals according to

their matching scores to the input expressions. More recent

works improve the proposal generation [7, 42], introduce

attention mechanisms [1, 9, 39] for accurate grounding, or

leverage week supervision from captions [8, 36].

The two-stage framework has also been further extended

to modular comprehension inspired by neural module net-

works [2]. For example, Hu et al. [14] introduce a com-

positional modular network for better handling of attributes

and relationships. Yu et al. [40] propose a modular atten-

tion network (MattNet) to factorize the referring task into

separate ones for the noun phrase, location, and relation-

ships. Liu et al. [24] improves MattNet by removing easy

and dominant words and regions to learn more challenging

alignments. Several recent works [3,4,10,22,35,37,43] also

apply reasoning on graphs or trees for more complicated

phrases. These approaches have several appealing prop-

erties such as more detailed modeling of different aspects

of language descriptions. However, these techniques have

been primarily evaluated on datasets with a closed set of

categories, and often with ground-truth instances provided.

Sadhu et al. [32] proposes zero-shot grounding to handle

phrases with unseen nouns. Our work emphasizes further

on the large number of categories, attributes and relation-

ships, providing supervision over these long-tailed concepts

and more detailed and straightforward evaluation.

3. The VGPHRASECUT Dataset

In this section, we describe how the VGPHRASECUT

dataset was collected, the statistics of the final annota-

tions, and the evaluation metrics. Our annotations are based

on images and scene-graph annotations from the Visual

Genome (VG) dataset. We briefly describe each step in the

data-collection pipeline illustrated in Figure 3, deferring to

the supplemental material Section 1.1 for more details.

Step 1: Box sampling Each image in VG dataset contains

35 boxes on average, but they are highly redundant. We

sample an average of 5 boxes from each image in a strati-

fied manner by avoiding boxes that are highly overlapping

or are from a category that already has a high number of

selected boxes. We also remove boxes that are less than 2%

or greater than 90% of the image size.

Step 2: Phrase generation Each sampled box has several

annotations of category names (e.g., “man” and “person”),

attributes (e.g., “tall” and “standing”) and relationships with

other entities in the image (e.g., “next to a tree” and “wear-

ing a red shirt”). We generate one phrase for one box at a

time, by adding categories, attributes and relationships that

allow discrimination with respect to other VG boxes by the

following set of heuristics:

1. We first examine if one of the provided categories of

the selected box is unique. If so we add this to the

phrase and tack on to it a randomly sampled attribute

or relationship description of the box. The category

name uniquely identifies the box in this image.

2. If the box is not unique in terms of any of its category

names, we look for a unique attribute of the box that

distinguishes it from boxes of the same category. If

such an attribute exists we combine it with the category

name as the generated phrase.

3. If no such an attribute exists, we look for a distinguish-

ing relationship description (a relationship predicate

plus a category name for the supporting object). If such

a relationship exists we combine it with the category

name as the generated phrase.
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blue | colored car on road

à "blue car"

"license plate on car "

"red vehicle"

"white building" … 

(There are many “car” boxes,

but only one of them is “blue”)

Step 1: Box Sampling Step 2: Phrase Generation Step 3: Region Annotation Step 4: Worker Verification Step 5: Instance Labeling

59 à 16 boxes

Trusted Workers

Excluded Workers

Figure 3. Illustrations of our VGPHRASECUT dataset collection pipeline. Step 1: blue boxes are the sampling result; red boxes are

ignored. Step 2: Phrase generation example in the previous image. Step 3: User interface for collecting region masks. Step 4: Example

annotations from trusted and excluded annotators. Step 5: Instance label refinement examples. Blue boxes are final instance boxes, and

red boxes are corresponding ones from Visual Genome annotations.

4. If all of the above fail, we combine all attributes and

relationships on the target box and randomly choose

a category from the provided list of categories for the

box to formulate the phrase. In this case, the generated

phrase is more likely to correspond to more than one

instance within the image.

The attribute and relationship information may be miss-

ing if the original box does not have any, but there is al-

ways a category name for each box. Phrases generated in

this manner tend to be concise but do not always refer to a

unique instance in the image.

Step 3: Region annotation We present the images and

generated phrases from the previous steps to human anno-

tators on Amazon Mechanical Turk, and ask them to draw

polygons around the regions that correspond to provided

phrases. Around 10% of phrases are skipped by workers

when the phrases are ambiguous.

Step 4: Automatic annotator verification Based on

manual inspection over a subset of annotators, we design an

automatic mechanism to identify trusted annotators based

on the overall agreement of their annotations with the VG

boxes. Only annotations from trusted annotators are in-

cluded in our dataset. 9.27% phrase-region pairs are re-

moved in this step.

Step 5: Automatic instance labeling As a final step we

generate instance-level boxes and masks. In most cases,

each polygon drawn by the annotators is considered an in-

stance. It is further improved by a set of heuristics to merge

multiple polygons into one instance and to split one polygon

into several instances leveraging the phrase and VG boxes.

3.1. Dataset statistics

Our final dataset consists of 345,486 phrases across

77,262 images. This roughly covers 70% of the images in

Visual Genome. We split the dataset into 310,816 phrases

(71,746 images) for training, 20,316 (2,971 images) for val-

idation, and 14,354 (2,545 images) for testing. There is no

overlap of COCO trainval images with our test split so that

models pre-trained on COCO can be fairly used and eval-

uated. Figure 4 illustrates several statistics of the dataset.

Our dataset contains 1,272 unique category phrases, 593

unique attribute phrases, and 126 relationship phrases with

frequency over 20, as seen by the word clouds. Among

the distribution of phrases (bottom left bar plot), one can

see that 68.2% of the instances can be distinguished by cat-

egory alone (category+), while 11.8% of phrases require

some treatment of attributes to distinguish instances (at-

tributes+). Object sizes and their frequency vary widely.

While most annotations refer to a single instance, 17.6% of

phrases refer to two or more instances. These aspects of the

dataset make the PhraseCut task challenging. In Supple-

mentary Section 1.2, we further demonstrate the long-tailed

distribution of concepts and how attributes and relationships

vary in different categories.

3.2. Evaluation metrics

The PhraseCut task is to generate a binary segmentation

of the input image given a referring phrase. We assume that

the input phrase is parsed into attribute, category, and rela-

tionship descriptions. For evaluation we use the following

intersection-over-union (IoU) metrics:

• cumulative IoU: cum-IoU = (
P

t It) / (
P

t Ut), and

• mean IoU: mean-IoU = 1

N

P
t It/Ut.

Here t indexes over the phrase-region pairs in the evaluation

set, It and Ut are the intersection and union area between

predicted and ground-truth regions, and N is the size of the

evaluation set. Notice that, unlike cum-IoU, mean-IoU

averages the performance across all image-region pairs and

thus balances the performance on small and large objects.

We also report the precision when each phrase-region

task is considered correct if the IoU is above a threshold.

We report results with IoU thresholds at 0.5, 0.7, 0.9 as

Pr@0.5, Pr@0.7, Pr@0.9 respectively.

All these metrics can be computed on different subsets

of the data to obtain a better understanding of the strengths

and failure modes of the model.

4. A Modular Approach to PhraseCut

We propose Hierarchical Modular Attention Network

(HULANet) for the PhraseCut task, as illustrated in Fig-

ure 5. The approach is based on two design principles. First,
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Figure 4. Statistics of the VGPHRASECUT dataset. Top row: Word clouds of categories (left), attributes (center), and relationship

descriptions (right) in the dataset. The size of each phrase is proportional to the square root of its frequency in the dataset. Bottom row:

breakdowns of the dataset into different subsets including contents in phrases (first), category frequency (second), size of target region

relative to the image size (third), number of target instances per query phrase (fourth), and types of category (last). The leftmost bar chart

shows the breakdown of phrases into those that have category annotation (cat) and those that can be distinguished by category information

alone (cat+), and similarly for attributes and relationships.

Figure 5. Architecture of HULANet. The architecture consists

of modules to obtain attribute, category, and relation predictions

given a phrase and an image. The attribute and category scores

are obtained from Mask-RCNN detections and projected back to

the image. The scores across categories and attributes are com-

bined using a module-specific attention model. The relationship

module is a convolutional network that takes as input the predic-

tion mask of the related category and outputs a spatial mask given

the relationship predicate. The modules are activated based on

their presence in the query phrase and combined using an atten-

tion mechanism guided by the phrase.

we design individual modules for category, attribute and

relationship sub-phrases. Each module handles the long-

tail distribution of concepts by learning to aggregate infor-

mation across concepts using a module-specific attention

mechanism. Second, instance-specific predictions are pro-

jected onto the image space and combined using an atten-

tion mechanism driven by the input phrase. This allows the

model to handle stuff and object categories, as well as mul-

tiple instances in a unified manner. Details of each module

are described next.

Backbone encoders We use the Mask-RCNN [11] de-

tector and bi-directional LSTMs [13] as our backbone en-

coders for images and phrases respectively. The Mask-

RCNN (with ResNet101 [12] backbone) is trained to de-

tect instances and predict category scores for the 1,272 cat-

egories that have a frequency over 20 on our dataset. Differ-

ent from instance detection tasks on standard benchmarks,

we allow relatively noisy instance detections by setting a

low threshold on objectness scores and by allowing at most

100 detections per image to obtain a high recall. For phrase

encoding, we train three separate bi-directional LSTMs to

generate embeddings for categories, attributes and relation-

ship phrases. They share the same word embeddings ini-

tialized from FastText [5] as the input to the LSTM, and

have mean pooling applied on the LSTM output of the cor-

responding words as the encoded output.

Category module The category module takes as input the

phrase embedding of the category and detected instance

boxes (with masks) from Mask-RCNN, and outputs a score-

map of corresponding regions in the image. We first con-

struct the category channels C 2 R
N×H×W by project-

ing the Mask-RCNN predictions back to the image. Here

N = 1272 is the number of categories and H ⇥W is set to

1/4⇥ the input image size. Concretely, for each instance i
detected by Mask R-CNN as category ci with score si, we

project its predicted segmentation mask to image as a binary

mask mi,H×W , and update the category channel score at the

corresponding location as C[ci,mi] := max(si, C[ci,mi]).
Finally, each category channel is passed though a “layer-

norm” which scales the mean and variance of each channel.
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To compute the attention over the category channels, the

phrase embedding ecat is passed through a few linear layers

f with sigmoid activation at the end to predict the atten-

tion weights over the category channels A = σ(f(ecat)).
We calculate the weighted sum of the category channels

guided by the attention weights SH×W =
P

c Ac · Cc,

and apply a learned affine transformation plus sigmoid to

obtain the category module prediction heat-map PH×W =
σ(a · SH×W + b). This attention scheme enables the cate-

gory module to leverage predictions from good category de-

tectors to improve performance on more difficult categories.

We present other baselines for combining category scores in

the ablation studies in Section 5.

Attribute module The attribute module is similar to the

category module except for an extra attribute classifier. On

top of the pooled ResNet instance features from Mask-

RCNN, we train a two-layer multi-label attribute classifier.

To account for significant label imbalance we weigh the

positive instances more when training attribute classifiers

with the binary cross-entropy loss. To obtain attribute score

channels we take the top 100 detections and project their

top 20 predicted attributes back to the image. Identical with

the category module, we use the instance masks from the

Mask-RCNN, update the corresponding channels with the

predicted attribute scores, and finally apply the attention

scheme guided by the attribute embedding from the phrase

to obtain the final attribute prediction score heat-map.

Relationship module Our simple relationship module

uses the category module to predict the locations of the sup-

porting object. The down-scaled (32⇥ 32) score of the sup-

porting object is concatenated with the embedding of the re-

lationship predicate. This is followed by two dilated convo-

lutional layers with kernel size 7 applied on top, achieving

a large receptive field without requiring many parameters.

Finally, we apply an affine transformation followed by sig-

moid to obtain the relationship prediction scores. The con-

volutional network can model coarse spatial relationships

by learning filters corresponding to each spatial relation.

For example, by dilating the mask one can model the re-

lationship “near”, and by moving the mask above one can

model the relationship “on”.

Combining the modules The category, attribute, and re-

lation scores Pc, Pa, Pr obtained from individual modules

are each represented as a H⇥W image, 1/4 the image size.

To this we append channels of quadratic interactions Pi�Pj

for every pair of channels (including i = j), obtained using

elementwise product and normalization, and a bias chan-

nel of all ones, to obtain a 10-channel scoremap F (3+6+1

channels). Phrase embeddings of category, attribute and re-

lationship are concatenated together and then encoded into

10-dimensional “attention” weights w through linear lay-

ers with LeakyReLU and DropOut followed by normaliza-

tion. When there is no attribute or relationship in the input

Model mean-IoU cum-IoU Pr@0.5 Pr@0.7 Pr@0.9

HULANet

cat 39.9 48.8 40.8 25.9 5.5

cat+att 41.3 50.8 42.9 27.8 5.9

cat+rel 41.1 49.9 42.3 26.6 5.6

cat+att+rel 41.3 50.2 42.4 27.0 5.7

Mask-RCNN self 36.2 45.9 37.2 22.9 4.1

Mask-RCNN top 39.4 47.4 40.9 25.8 4.8

RMI 21.1 42.5 22.0 11.6 1.5

MattNet 20.2 22.7 19.7 13.5 3.0

Table 2. Comparison of various approaches on the entire test

set of VGPHRASECUT. We compare different combinations of

modules in our approach (HULANet) against baseline approaches:

Mask-RCNN, RMI and MattNet.

phrase, the corresponding attention weights are set to zero

and the attention weights are re-normalized to sum up to

one. The overall prediction is the attention-weighted sum of

the linear and quadratic feature interactions: O =
P

t Ftwt.

Our experiments show a slight improvement of 0.05% on

validation mean-IoU with the quadratic features.

Training details The Mask-RCNN is initialized with

weights pre-trained on the MS-COCO dataset [20] and fine-

tuned on our dataset. It is then fixed for all the experiments.

The attribute classifier is trained on ground-truth instances

and their box features pooled from Mask-RCNN with a bi-

nary cross-entropy loss specially weighted according to at-

tribute frequency. These are also fixed during the training of

the referring modules. On top of the fixed Mask-RCNN and

the attribute classifier, we separately train the individual cat-

egory and attribute modules. When combining the modules

we initialize the weights from individual ones and fine-tune

the whole model end-to-end. We apply a pixel-wise binary

cross-entropy loss on the prediction score heat-map from

each module and also on the final prediction heat-map. To

account for the evaluation metric (mean-IoU), we increase

the weights on the positive pixels and average the loss over

referring phrase-image pairs instead of over pixels. All our

models are trained on the training set. For evaluation, we

require a binary segmentation mask which is obtained by

thresholding on prediction scores. These thresholds are set

based on mean-IoU scores on the validation set. In the

next section, we report results on the test set.

5. Results and Analysis

5.1. Comparison to baselines

Table 2 shows the overall performance of our model and

its ablated versions with two baselines: RMI [21] and Mat-

tNet [40]. They yield near state-of-the-art performance on

datasets such as RefCOCO [17].

RMI is a single-stage visual grounding method. It ex-

tracts spatial image features through a convolutional en-

coder, introduces convolutional multi-modal LSTM for

jointly modeling of visual and language clues in the bottle-

neck, and predicts the segmentation through an upsampling
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Model all coco 1-100 101-500 500+

HULANet

cat 39.9 46.5 46.8 31.8 25.2

cat+att 41.3 48.3 48.2 33.6 26.6

cat+rel 41.1 47.9 47.8 33.6 26.6

cat+att+rel 41.3 47.8 47.8 33.8 27.1

Mask-RCNN self 36.2 44.9 45.5 27.9 10.1

Mask-RCNN top 39.4 46.1 46.4 31.6 23.2

RMI 21.1 23.7 28.4 12.7 5.5

MattNet 20.2 19.3 24.9 14.8 10.6

Table 3. The mean-IoU on VGPHRASECUT test set for var-

ious category subsets. The column coco refers to the subset of

data corresponding to the 80 coco categories, while the remaining

columns show the performance on the top 100, 101-500 and 500+

categories in the dataset sorted by frequency.

Model all att att+ rel rel+ stuff obj

HULANet

cat 39.9 37.6 37.4 32.3 33.0 47.2 33.9

cat+att 41.3 39.1 38.8 33.7 33.8 48.4 35.5

cat+rel 41.1 38.8 38.4 33.8 34.0 48.1 35.4

cat+att+rel 41.3 39.0 38.5 34.1 33.9 48.3 35.6

Mask-RCNN self 36.2 34.5 34.7 29.0 30.8 44.4 29.5

Mask-RCNN top 39.4 37.3 36.6 31.9 32.6 46.4 33.6

RMI 21.1 19.0 21.0 11.6 12.2 31.1 13.0

MattNet 20.2 19.0 18.9 15.6 15.1 25.5 16.0

Model all single multi many small mid large

HULANet

cat 39.9 41.2 37.0 34.3 15.1 40.3 67.6

cat+att 41.3 42.6 38.6 35.9 17.1 42.0 68.0

cat+rel 41.1 42.5 38.2 35.5 17.1 41.5 68.2

cat+att+rel 41.3 42.6 38.4 35.7 17.3 41.7 68.2

Mask-RCNN self 36.2 37.2 34.1 29.9 17.0 35.7 59.4

Mask-RCNN top 39.4 40.6 36.8 33.4 18.5 39.3 63.6

RMI 21.1 23.1 16.9 12.7 1.2 18.6 49.5

MattNet 20.2 22.2 15.9 12.6 6.1 18.9 39.5

Table 4. The mean-IoU on VGPHRASECUT test set for addi-

tional subsets. att/rel: the subset with attributes/relationship an-

notations; att+/rel+: the subset which requires attributes or rela-

tionships to distinguish the target from other instances of the same

category; single/multi/many: subsets that contain different number

of instances referred by a phrase; small/mid/large: subsets with

different sizes of the target region.

decoder. We use the RMI model with ResNet101 [12] as the

image encoder. We initialized the ResNet with weights pre-

trained on COCO [20], trained the whole RMI model on our

training data of image region and referring phrase pairs fol-

lowing the default setting as in their public repository, and

finally evaluated it on our test set.

RMI obtains high cum-IoU but low mean-IoU scores

because it handles large targets well but fails on small ones

(see Table 4 “small/mid/large” subsets). cum-IoU is dom-

inated by large targets while our dataset many small targets:

20.2% of our data has the target region smaller than 2% of

the image area, while the smallest target in RefCOCO is

2.4% of the image. Figure 6 also shows that RMI predicts

empty masks on challenging phrases and small targets.

MattNet focuses on ranking the referred box among can-

didate boxes. Given a box and a phrase, it calculates the

subject, location, and relationship matching scores with

three separate modules, and predicts attention weights over

the three modules based on the input phrase. Finally, the

three scores are combined with weights to produce an over-

all matching score, and the box with the highest score is

picked as the referred box.

We follow the training and evaluation setup described

in their paper. We train the Mask-RCNN detector on our

dataset, and also train MattNet to pick the target instance

box among ground-truth instance boxes in the image. Note

that MattNet training relies on complete annotations of ob-

ject instances in an image, which are used not only as the

candidate boxes but also as the context for further reason-

ing. The objects in our dataset are only sparsely annotated,

hence we leverage the Visual Genome boxes instead as con-

text boxes. At test time the top 50 Mask-RCNN detections

from all categories are used as input to the MattNet model.

While this setup works well on RefCOCO, it is problem-

atic on VGPHRASECUT because detection is more chal-

lenging in the presence of thousands of object categories.

MattNet is able to achieve mean-IoU = 42.4% when the

ground-truth instance boxes are provided in evaluation, but

its performance drops to mean-IoU = 20.2% when Mask-

RCNN detections are provided instead. If we only input the

detections of the referred category to MattNet, mean-IoU

improves to 34.7%, approaching the performance of Mask-

RCNN self, but it still performs poorly on rare categories.

Our modular approach for computing robust category

scores from noisy detections alone (HULANet cat) outper-

forms both baselines by a significant margin. Example

results using various approaches are shown in Figure 6.

Heatmaps from submodules and analysis of failure cases

are included in Supplemental Section 3.

5.2. Ablation studies and analysis

Table 3 shows that the performance is lower for rare cate-

gories. Detection of thousands of categories is challenging,

but required to support open-vocabulary natural language

descriptions. However, natural language is also redundant.

In this section we explore if a category can leverage scores

from related categories to improve performance, especially

when it is rare.

First we evaluate Mask-RCNN as a detector, by using

the mask of the top-1 detected instance from the referred

category as the predicted region. The result is shown as the

row “Mask-RCNN self” in Table 3. The row below “Mask-

RCNN top” shows the performance of the model where

each category is matched to a single other category based

on the best mean-IoU on the training set. For example,

a category “pedestrian” may be matched to “person” if the

person detector is more reliable. Supplemental Section 2

shows the full matching between source and target cate-

gories. As one can see in Table 3, the performance on the

tail categories jumps significantly (10.1% ! 23.2% on the

500+ subset.) In general the tail category detectors are poor
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Figure 6. Prediction results on VGPHRASECUT dataset. Rows from top to down are: (1) input image; (2) ground-truth segmentation

and instance boxes; (3) MattNet baseline; (4) RMI baseline; (5) HULANet (cat + att + rel). See more results in the supplemental material.

and rarely used. This also points to a curious phenomenon

in referring expression tasks where even though the named

category is specific, one can get away with a coarse category

detector. For example, if different animal species never ap-

pear together in an image, one can get away with a generic

animal detector to resolve any animal species.

This also explains the performance of the category mod-

ule with the category-level attention mechanism. Com-

pared to the single category picked by the Mask-RCNN top

model, the ability of aggregating multiple category scores

using the attention model provides further improvements

for the tail categories. Although not included here, we find a

similar phenomenon with attributes, where a small number

of base attributes can support a larger, heavy-tailed distri-

bution over the attribute phrases. It is reassuring that the

number of visual concepts to be learned grows sub-linearly

with the number of language concepts. However, the prob-

lem is far from solved as the performance on tail categories

is still significantly lower.

Table 4 shows the results on additional subsets of the test

data. Some high-level observations are that: (i) Object cat-

egories are more difficult than stuff categories. (ii) Small

objects are extremely difficult. (iii) Attributes and relation-

ships provide consistent improvements across different sub-

sets. Remarkably, the improvements from attributes and re-

lationships are more significant on rare categories and small

target regions where the category module is less accurate.

6. Conclusion

We presented a new dataset, VGPHRASECUT, to study

the problem of grounding natural language phrases to im-

age regions. By scaling the number of categories, attributes,

and relations we found that existing approaches that rely

on high-quality object detections show a dramatic reduc-

tion in performance. Our proposed HULANet performs sig-

nificantly better, suggesting that dealing with long-tail ob-

ject categories via modeling their relationship to other cate-

gories, attributes, and spatial relations is a promising direc-

tion of research. Another take away is that decoupling rep-

resentation learning and modeling long-tails might allow us

to scale object detectors to rare categories, without requiring

significant amount of labelled visual data. Nevertheless, the

performance of the proposed approach is still significantly

below human performance which should encourage better

modeling of language and vision.
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