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Abstract

Generalized Zero-Shot Learning (GZSL) aims at recog-

nizing both seen and unseen classes by constructing corre-

spondence between visual and semantic embedding. How-

ever, existing methods have severely suffered from the strong

bias problem, where unseen instances in target domain tend

to be recognized as seen classes in source domain. To ad-

dress this issue, we propose an end-to-end Self-supervised

Domain-aware Generative Network (SDGN) by integrating

self-supervised learning into feature generating model for

unbiased GZSL. The proposed SDGN model enjoys several

merits. First, we design a cross-domain feature generat-

ing module to synthesize samples with high fidelity based

on class embeddings, which involves a novel target domain

discriminator to preserve the domain consistency. Second,

we propose a self-supervised learning module to investigate

inter-domain relationships, where a set of anchors are intro-

duced as a bridge between seen and unseen categories. In

the shared space, we pull the distribution of target domain

away from source domain, and obtain domain-aware fea-

tures with high discriminative power for both seen and un-

seen classes. To our best knowledge, this is the first work to

introduce self-supervised learning into GZSL as a learning

guidance. Extensive experimental results on five standard

benchmarks demonstrate that our model performs favorably

against state-of-the-art GZSL methods.

1. Introduction

Zero-Shot Learning (ZSL) [1, 8, 29, 48, 34] aims to rec-

ognize images of unseen classes without any labeled sam-

ples available. This requires the ZSL approaches to com-

prehend images beyond the visual level, which is generally

achieved by semantic bridging and knowledge transferring

between seen and unseen classes, with the aid of semantic
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Figure 1. (a) The t-SNE visualization of features on AwA1. Or-

ange and blue color denote source and target domain. (b) Our mo-

tivation. Space A is the visual space generated by common mod-

els, while Space B in SDGN is augmented by a self-supervised

constraint, which pushes target data away from source data.

information like attributes [8], word embeddings [23] and

text descriptions [28].

Earlier efforts on ZSL [4, 37, 41, 29] are focused on the

cross-modal mapping between visual feature and semantic

embedding to seek a shared space. Recently, a plethora

of methods [43, 9, 13, 14] propose to utilize generative

models to synthesize visual samples with class embeddings,

which can be used for training a standard classifier for both

seen and unseen classes. Here, the class embedding means

that each class is embedded in the space of attribute vec-

tors. GAN-based ZSL methods [45, 27] show stronger per-

formances compared with cross-modal mapping methods,

since their classifiers are directly trained with synthesized

data. However, in a more practical setting, where both seen

and unseen classes will appear at test time, ZSL suffers from

the strong bias problem [5], i.e., instances of unseen classes

are more likely to be wrongly classified as one of the seen

classes. We call this kind of ZSL as Generalized Zero-Shot

Learning (GZSL), and denote seen classes as source domain

and unseen classes as target domain. Some methods [4, 1]

achieve promising results when test stage comes across only

seen classes, but degenerate sharply in generalized setting.
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The main reason counting for bias problem is the igno-

rance of domain variance. In most of generative GZSL ap-

proaches [43, 17, 7, 9], the GANs are merely used to op-

timize the divergence between the data distribution of seen

classes and generated features, and they do not take unseen

classes into consideration. As a result, the generator trained

on source features is unable to well accommodate the need

for unseen classes due to data variations. Therefore, the

authenticity and quality of synthetic data cannot be guaran-

teed. To deal with the above issue, some methods [27, 22]

utilize target unlabeled data in a transductive way. How-

ever, these methods take separate operations for different

domains, e.g., proposing two GANs or two domain clas-

sifiers. They fail to consider the relations between source

and target domains, and do not differentiate them from each

other. Despite that classes in the same domain may be dis-

criminated well, there is no guarantee that classes from dif-

ferent domains can also be differentiated from each other.

As shown in Figure 1 (a), seen classes unnecessarily over-

lap unseen classes in the visual space, which indicates that

they will make disturbance when classifying unseen classes.

Therefore, without any supervised information on target do-

main as a learning guidance, it is very challenging to dis-

cover the boundary between target and source domains for

comprehensive recognition of all classes in the generalized

setting.

To deal with the above limitations, an intuitive idea is

to exploit a set of anchors as a bridge between seen classes

in source domain and unseen classes in target domain to

build a joint embedding space, where the target domain is

assumed to be separated from source domain. Both tar-

get and source samples can be described uniformly in the

space spanned by anchors, where we can discover self-

supervision for mining relationships between different do-

mains. As shown in Figure 1 (b), based on anchors, for

every sample from seen or unseen class, we are able to com-

pare the sample feature with anchors and derive visual simi-

larities as soft multi-label. Then, we define a weighted com-

bination of all anchors by use of multi-label to obtain the

reconstructed feature of this sample. Because classes from

seen and unseen domains are completely different, given a

sample feature and its reconstructed feature from seen or

unseen classes, their similarity should be much higher than

the similarity of them with any samples from unseen or seen

classes, respectively. Therefore, although without unseen

class labels, we can exploit the above self-supervised signal

as the learning guidance. Meanwhile, the target multi-label

derived from anchors can be integrated into the generative

network to help preserve the domain label consistency of

synthetic features and their reconstructed features.

Motivated by the above discussions, we propose an end-

to-end Self-supervised Domain-aware Generative Network

(SDGN) to integrate self-supervised learning into the fea-

ture generating model with effective exploitation of un-

labeled data. Specifically, we learn a generative model

that can synthesize discriminative features for any class of

interest, purely based on class embeddings. With these

generated features, we introduce anchors to reconstruct

domain-specific features, which allows for mapping target

and source data into a joint embedding space. To utilize

the self-supervised signal, we design a cross-domain triplet

mining mechanism, where samples from different domains

naturally form negative pairs, and samples with their recon-

structed features in the same domain form positive pairs.

We integrate these pairs into a triplet loss to investigate the

inter-domain relationship. Consequently, the target domain

is pushed away from source domain which brings domain-

level discriminative power for target classes. Furthermore,

we take advantage of the multi-label mentioned above to

learn a target domain discriminator, whose input is the pair

of visual feature and corresponding multi-label. Optimiz-

ing this discriminator will guarantee that the domain labels

of synthetic samples and their reconstructed features are

consistent with real features in target domain. Taking tar-

get data into consideration, our method not only effectively

strengthens the knowledge transfer flow from seen data to

unseen data but also explores the self-supervised character-

istics of the source and target domains.

The contributions of our method could be summa-

rized into three-fold: (1) We propose an end-to-end Self-

supervised Domain-aware Generative Network by jointly

exploiting a feature generating model and a self-supervised

learning module for unbiased GZSL. (2)We design an effec-

tive cross-domain triplet mining on the basis of a set of an-

chors that acts as a bridge between seen and unseen classes,

to investigate relationships between source and target do-

mains under the guidance of a self-supervised signal. To

our best knowledge, this is the first work to introduce a self-

supervised learning strategy into GZSL. (3) Extensive ex-

perimental results on five challenging benchmarks demon-

strate that our method performs favorably against state-of-

the-art GZSL models.

2. Related Work

In this section, we introduce several lines of research

in generalized zero-shot learning, transductive zero-shot

learning and self-supervised learning.

Generalized Zero-Shot Learning. GZSL is expected to

recognize seen and unseen classes by exploiting seman-

tic relations. Earlier GZSL works [29, 11, 34, 1, 20] rely

on the cross-modal mapping between the visual and se-

mantic modality. Usually, a compatibility score is calcu-

lated between the visual and semantic embedding. Rela-

tion Net [36] deploys a deep network to learn an adaptive

metric for comparing cross-modal relations. However, due

to lack of training samples from unseen classes, the rela-
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Figure 2. The architecture of SDGN: (1) The cross-domain feature generating module synthesizes features x̃s and x̃
t for seen and unseen

classes. It consists of one generator G, and two discriminators Ds and Dt for source and target domain respectively. (2) The self-

supervised learning module takes x̃t and x̃
s as input, and compares them with anchors A to derive the soft multi-labels Ms and Mt for

feature reconstructions. x̃ and its reconstructed feature x
r will be pulled closer while features from different domains will be pulled away.

tionship learned from seen image features and attributes

can hardly generalized to unseen classes. Another line of

GZSL research [30, 13, 31] follows a feature-generating

paradigm. F-CLSWGAN [43] uses a generative model to

synthesize visual features. Cycle-CLSWGAN [9] adds a

cycle-consistency loss on the feature generation model to

make sure the fake features can reconstruct original seman-

tic embeddings. LisGAN [17] utilizes the multi-view meta-

representation of each class as guidance for producing more

authentic and diverse features. CIZSL [7] imagines new cat-

egories that are likely to be unseen by linearly combining

source class embeddings to improve the generalization abil-

ity of feature synthesis. GAN-based GZSL methods have

manifested their advantages over the cross-modal mapping

GZSL methods. However, they have a common defect, that

is, they do not deal with the appearance variance of different

domains, hence perform poorly in the generalized setting.

Transductive Zero-Shot Learning. Transductive ZSL as-

sumes the availability of unlabeled target data [12]. The

utilization of unlabeled data is of great diversity. GXE [18]

addresses ZSL by generating classifiers from class embed-

dings, and uses target data to calibrate the classifier genera-

tor. QFSL [35] aims at reducing the bias by biasing unseen

images to any of the target classes. Some generative models

attempt to model the data distribution for unseen categories.

SABR [27] trains two GANs to generate features for source

and target domains. F-VAEGAN-D2 [45] uses an uncon-

ditional discriminator to learn the distribution of unlabeled

data. However, none of these methods consider the relation

between different domains. They take separate operations

for unseen data, but do not construct domain-discriminative

representations in a unified framework [19]. Our approach

uses the self-supervision lurking in the data structure of dif-

ferent domains to conduct cross-domain mining.

Self-supervised Learning. Self-supervised learning has

been widely studied for image and video representation

learning. Usually, self-supervised learning extracts super-

visory signals from data structure. The signal comes in

the forms of temporal order [10, 40], image coloriza-

tion [16, 49], view points consistency [32] and image com-

pletion [25]. SSIAM [33] introduces positive and nega-

tive pairs, which are obtained by sorting distances on a

frame set, to learn face representation for video face clus-

tering. However, we derive the triplet by inherent relations

of source and target domains without metric-based ranking.

3. Our Approach

3.1. Notation

In GZSL, suppose we have the source dataset, i.e., seen

classes, defined as S = {(xs
i , y

s
i )}, i ∈ [1, Ns], where

xs
i ∈ XS is the i-th instance of source domain, and ysi ∈ YS

is the seen class label. The target dataset is defined as

T = {(xt
j , y

t
j)}, j ∈ [1, Nt], where xt

j ∈ XT and ytj ∈ YT

denotes the j-th unseen instance and the corresponding la-

bel. Here, YS ∩ YT = ∅. Class embeddings are denoted

as E = {ek}
C
k=1, where ek ∈ Rde . GZSL aims at clas-

sifying instances from both source or target classes, i.e.,

fgzsl : X → YS ∪ YT . In this paper, we apply GZSL

in a transductive way, assuming that unlabeled target data is

provided in training [12].

3.2. Overview

As shown in Figure 2, our Self-supervised Domain-

aware Generative Network (SDGN) is composed of two

modules. (1) The cross-domain feature generating module

is responsible for generating features for source and target
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domains. (2) The self-supervised learning module consists

of reference anchor learning, domain feature reconstruction,

and cross-domain triplet mining. The details are as follows.

3.3. Cross-Domain Feature Generating Module

In this paper, we learn a generative model that can syn-

thesize fake visual features for any class of interest, purely

based on the attribute vector of the class, which can be lever-

aged in training a standard supervised classifier for GZSL.

Given the training images of source domain and unla-

beled images of target domain, our goal is to learn a genera-

tor G : E ×Z → X , which takes a class embedding e
y ∈ E

and a Gaussian noise z ∈ Z as inputs, and generates a vi-

sual feature x̃ ∈ X . The discriminator Ds : X ×E → [0, 1]
is designed for source domain, which takes a real feature xs

or a synthetic feature x̃s with the associated class embed-

ding e
s as input. The aim of Ds is to discern whether the

source feature and e
s are matched. The generator G intends

to confuse Ds by producing features highly correlated with

e
s by a Wasserstein adversarial loss [3]:

Ls
WGAN = min

G
max
Ds

E[Ds(x
s, es)]− E[Ds(x̃

s, es)]

−λE[(‖∇x̂sDs(x̂
s, es)‖2 − 1)2],

(1)

where the third term is gradient penalty, x̂s = αxs + (1−
α)x̃s, α ∼ U(0, 1).

The discriminator Ds can only model the distribution of

source data. However, the appearance variance between

different domains can bring in domain bias that causes G

to produce features that are similar to source data even in

target scenario. Therefore, we propose a target domain

discriminator Dt to capture characteristics specifically for

unseen classes. Dt takes image feature pairs as input,

which are composed of a visual feature and its correspond-

ing multi-label Mt. Here, the multi-label Mt will be dis-

cussed in detail in Section 3.4. It represents the recon-

structed feature in a shared space. The purpose of Dt is

to judge whether the input pair belongs to target domain.

By playing a min-max game between Dt and G, x̃t and its

reconstructed feature will be forced to be remained in target

domain, which ensures the domain label consistency.

Lt
WGAN =min

G
max
Dt

E[Dt(x
t
i,M

t′

i )]−E[Dt(x̃
t
j ,M

t
j)]

−λE[(‖∇x̂tDt(x̂
t,M̂t)‖2−1)2],

(2)

where Mt′

i and Mt
j are the multi-label of real feature xt

i

and fake feature x̃t
j . The third term is the gradient penalty,

x̂t = αxt + (1− α)x̃t and M̂t = αMt′

i + (1− α)Mt
j .

To make sure that x̃s can well suit the final classification

task, we expect them to be predicted correctly by the a pre-

trained classifier C with a loss defined as in Eq. (3).

LC = −E(x̃s,ys)∼Px̃s [logP (ys|x̃s, θC)], (3)

where P (ys|x̃s, θC) is the classification probability and θC
denotes fixed parameters of the pre-trained classifier.

3.4. Self-supervised Learning Module
Despite that the cross-domain feature generating mod-

ule is powerful in synthesizing high-quality features, it still

fails to consider the relations between source and target do-

mains, and does not differentiate seen classes from unseen

classes. Therefore, we propose reference anchors for build-

ing a shared space for seen and unseen classes, where we

exploit the domain relationships by a novel Self-supervised

Learning Module (SLM). The details are as follows.

Reference Anchor Learning. We introduce reference an-

chors to bridge seen and unseen classes and use them to

reconstruct features in a joint embedding space. How to

choose anchors is of vital importance. We notice that each

class can be represented as a attribute vector, where each

dimension encodes a high-level visual property. This gives

rise to the idea of training an attribute classifier and extract-

ing its parameters as anchors. Since the attribute classi-

fication is achieved by the dot production between linear

weights and high-level features, these parameters encode

visual attributes that are universal for the source and target

domains, thus are promising in bridging two domains. The

similar idea of constructing anchors can be found in [47].

For a series of attribute classifiers {g1, g2, · · · , gde
} w.r.t.

de attributes, we extract their weight parameters as anchors:

{A1, A2, · · · , Ade
}, Ai ∈ Rdv . In the end-to-end training

process, these anchors will be dynamically updated to better

relate source classes with target classes.

Domain Feature Reconstruction. Based on the anchors,

we could reconstruct synthetic features for each domain.

By comparing synthesized features with anchors, we ob-

tain visual similarities as the soft multi-label. The multi-

label function is defined in softmax form: M
(k)
i =

exp(<Ak,x̃i>)∑
j
exp(<Aj ,x̃i>) . M

(k)
i denotes the similarity between i-

th image and k-th anchor, and < · > is the cosine similar-

ity. Then, each reconstructed feature can be interpreted as a

convex combination of anchors, with Mi as coefficients:

xr
i =

de∑

k=1

M
(k)
i Ak, (4)

where xr
i denotes the reconstructed feature of the i-th im-

age. These features are lied in the common space spanned

by anchors, and can be utilized to investigate the relation-

ship of different domains.

Cross-Domain Triplet Mining. To explore the relations

between distributions of source and target domains, our

idea is intuitive as follows. The instances of source classes

should be pushed away from those of target classes. This

idea presents a natural self-supervised signal that the sim-

ilarity of reconstructed features from different domains

should be much lower than the similarity between recon-

structed features and their synthesized features. Thus the

reconstructed features from different domains form a nega-

tive pair [xrs, xrt]neg . During training, each iteration sam-
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ples a batch source and a batch target attributes to produce

features that can be combined as negative pairs. Naturally,

the synthesized feature x̃ and its reconstructed feature xr

form a positive pair [x̃, xr]pos. Totally, we obtain two kinds

of cross-domain triplets: [x̃t, xrt, xrs] and [x̃s, xrs, xrt].
Guided by the self-supervised signal, we design a cross-

domain triplet loss to mine the information of triplets for

target and source domain respectively:

LT
cross = max(‖xrt − x̃t‖2 − ‖xrt − xrs‖2 + μ, 0), (5)

LS
cross = max(‖xrs − x̃s‖2 − ‖xrs − xrt‖2 + μ, 0), (6)

where the threshold μ is a margin. Consequently, the final

cross-domain triplet loss is:

Lcross = LT
cross + LS

cross. (7)

Noticeably, the cross-domain triplet mining is com-

pletely free of target ground truth since we utilize the self-

supervisory information inferred from relations between

domains. Constrained by the cross-domain triplet loss, we

achieve the domain-level discrimination power that benefits

the classification for both source and target classes.

3.5. Model Training and Prediction

The final loss objective L aggregates the WGAN loss,

classification loss and cross-domain triplet loss:

L = Ls
WGAN + λtL

t
WGAN + λaLcross + λcLC . (8)

where λt, λa, λc are loss coefficients. Once the generator G

is well-trained, we leverage it to produce samples for any

classes of interest based on class embedding e
y .

With sufficient samples in hand, we transform GZSL into

a standard classification model. Specifically, we combine

the synthesized target features x̃t and real source features

xs to construct the training set. Then we train an ulti-

mate softmax classifier by minimizing the negative log like-

lihood loss: minθ −
1

|X |

∑
(x,y)∈(X ,Y) logP (y|x, θ), where

P (y|x, θ) =
exp(θT

y x)
∑|Y|

j=1
exp(θT

j
x)

is the classification probability

and θ denotes classifier parameters. The final prediction re-

sult is derived by f(x) = argmaxy P (y|x, θ).

3.6. Discussions

In this section, we discuss the differences between

SDGN and three relevant methods including CEWGAN-

OD [22], f-VAEGAN[45] and SABR-T [27]. (1)

CEWGAN-OD uses a domain detector to determine the

domain type before the final classification. Our method

shares the similar idea in separating the seen and unseen

classes to reduce domain bias. However, CEWGAN-OD

needs additional classifiers, while our method directly con-

structs a joint discriminative embedding that is aware of do-

main boundary. (2) F-VAEGAN and SABR-T utilize two

discriminators for source and target domains respectively,

which are similar to SGDN. Both of them attempt to learn

the target data distribution. However, they cannot train a

target discriminator with supervised information like source

domain, while our method uses multi-labels obtained from

anchors acted as conditions for the target domain discrimi-

nator. (3) Compared to the above methods, our SDGN per-

forms the self-supervised learning on synthesized data to

explore the distribution of two domains and their relations.

4. Experiments
In this section, we conduct extensive experiments to

evaluate our SDGN. Please refer to the Supplementary

Material for training details and more experimental results.

4.1. Datasets and Evaluation Metrics

Datasets. We evaluate our model on five challenging

datasets including CUB [39], AwA1 [15], AwA2 [44],

SUN [26], and FLO [24]. CUB includes 11K images and

200 species of birds labeled with 312-D attributes. AwA1

and AwA2 consist of 50 kinds of animals described by 85-

D attributes, containing 30K and 37K images respectively.

SUN is a large-scale scene attribute dataset, including 717

classes and 14K images with 102-D attributes. FLO con-

sists of 8K images from 102 flower classes. Among these

datasets, AwA1 and AwA2 are corase-grained while others

are fine-grained.

Evaluation Metrics. In GZSL, since testing instances

come from either seen or unseen classes, the search space

takes all classes into account. We adopt the average per-

class top-1 accuracy ACAS and ACAU to evaluate seen

and unseen classes respectively. To measure the compre-

hensive performance, we use the harmonic mean as final

metrics: H = 2×ACAS×ACAU

ACAS+ACAU
.

4.2. Implementation Details

Similar to Xian et al. [42], we use the pretrained ResNet-

101 to extract CNN features for real images. The generator

(G) and discriminators (Ds and Dt) in SDGN are all im-

plemented via the multilayer perceptron. The source fea-

tures concatenated with e
y are fed into Ds while the in-

put of Dt is the feature pairs composed of target features

and their multi-labels. Here, we do not directly use recon-

structed feature xrt as input. Since Mt can be considered

as coefficients in the shared space spanned by anchors, and

they can represent the same information as xrt. Further-

more, the multi-label is low-dimensional and can reduce the

model size and computational cost. The coefficients λt, λa

and λc in Eq. (8) are set as 1, 0.1 and 0.01. As for obtain-

ing anchors, since all the GZSL datasets provide attributes

for each class, we assign each image with its attribute la-

bel of the corresponding class. We train a simple multi-

label learning model for attribute classification and extract

the weights of the final fully-connected layer as anchors.
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Table 1. Comparison of our method with the state-of-the-art inductive (I) and transductive (T) methods. We measure top-1 accuracy (T1)

in ZSL setting. In GZSL, we report top-1 accuracy for seen classes (S) and unseen classes (U). H denotes the harmonic mean. Red font

and blue font denote the highest and the second highest results.

Method

Zero-shot Learning Generalized Zero-shot Learning

CUB AwA1 AwA2 SUN FLO CUB AwA1 AwA2 SUN FLO

T1 T1 T1 T1 T1 S U H S U H S U H S U H S U H

I

ALE [1] 54.9 59.9 62.5 58.1 48.5 63.8 23.7 34.4 76.1 16.8 27.5 81.8 14.0 23.9 33.1 21.8 26.3 61.6 13.3 21.9

SYNC [4] 55.6 54.0 46.6 56.3 - 70.9 11.5 19.8 87.3 8.9 16.2 90.5 10.0 18.0 43.3 7.9 13.4 66.3 7.4 13.3

SJE [2] 53.9 65.6 61.9 53.7 53.4 59.2 23.5 33.6 74.6 11.3 19.6 73.9 8.0 14.4 30.5 14.7 19.8 47.6 13.9 21.5

ESZSL [29] 53.9 58.2 58.6 54.5 51.0 63.8 12.6 21.0 75.6 6.6 12.1 77.8 5.9 11.9 27.9 11.0 15.8 56.8 11.4 19.0

LATEM [41] 49.3 55.1 55.8 55.3 40.4 57.3 15.2 24.0 71.7 7.3 13.3 77.3 11.5 20.0 28.8 14.7 19.5 47.6 6.6 11.5

DeViSE [11] 52.0 54.2 59.7 56.5 45.9 53.0 23.8 32.8 68.7 13.4 22.4 74.7 17.1 27.8 27.4 16.9 20.9 44.2 9.9 16.2

DEM [48] 51.7 68.4 67.2 61.9 - 54.0 19.6 13.6 32.8 84.7 47.3 86.4 30.5 45.1 25.6 34.3 20.5 - - -

SP-AEN [6] 55.4 - 58.5 59.2 - 70.6 34.7 46.6 - - - 90.9 23.3 37.1 38.6 24.9 30.3 - - -

f-CLSWGAN [43] 57.3 68.2 - 60.8 67.2 57.7 43.7 49.7 61.4 57.9 59.6 68.9 52.1 59.4 36.6 42.6 39.4 73.8 59.0 65.6

CADA-VAE [31] - - - - - 53.5 51.6 52.4 72.8 57.3 64.1 75.0 55.8 63.9 35.7 47.2 40.6 - - -

LisGAN [17] 58.8 70.6 61.7 69.6 57.9 46.5 51.6 76.3 52.6 62.3 - - - 37.8 42.9 40.2 83.8 57.7 68.3

T

GFZSL [38] 50.0 48.1 78.6 64.0 85.4 45.8 24.9 32.2 67.2 31.7 43.1 - - - - - - 75.0 21.8 33.8

DSRL [46] 48.7 74.7 72.8 56.8 57.7 39.0 17.3 24.0 74.7 20.8 32.6 - - - 25.0 17.7 20.7 64.3 26.9 37.9

GMN [30] 64.6 82.5 - 64.3 - 70.6 60.2 65.0 79.2 70.8 74.8 - - - 40.7 57.1 47.5 - - -

f-VAEGAN [45] 71.1 - 89.8 70.1 89.1 65.1 61.4 63.2 - - - 88.6 84.8 86.7 41.9 60.6 49.6 87.2 78.7 82.7

GXE [18] 61.3 89.8 83.2 63.5 - 68.7 57.0 62.3 89.0 87.7 88.4 90.0 80.2 84.8 58.1 45.4 51.0 - - -

SDGN 74.9 92.3 93.4 68.4 81.8 70.2 69.9 70.1 88.1 87.3 87.7 89.3 88.8 89.1 46.0 62.0 52.8 91.4 78.3 84.4

4.3. Comparison with the state-of-the-art.

In this experiment, we compare our proposed SDGN

with several state-of-the-art methods.

Compared Methods. We divide GZSL methods into two

types including inductive methods that only utilize the la-

beled source data, and transductive methods that assume

the access of unlabeled target data. (1) In the inductive

setting, we select several competitive methods including

ALE [1], SYNC [4], SJE [2], ESZSL [29], LATEM [41],

DeViSE [11], DEM [48], SP-AEN [6], f-CLSWGAN [43],

CADA-VAE [31], and LisGAN [17] (2) In the transductive

setting, we choose five state-of-the-art methods including

GFZSL [38], DSRL [46], GMN [30], f-VAEGAN [45], and

GXE [18]. Our model falls into the transductive type. Here

we do not include QFSL [35] and SABR-T [27], since they

refine the visual features, while most methods adopt off-

the-shelf features extracted by the pre-trained ResNet101

following Xian et al. [44]. Direct comparison of their per-

formance with other methods and ours is not fair.
Generalized Zero-shot Learning Results. As shown in

Table 1, SDGN achieves the state-of-the-art results on five

datasets in competition with both inductive methods and

transductive methods. Our method either ranks the first or

the second among most of results of seen accuracy, unseen

accuracy, and harmonic mean. Based on the results, we

have the following observations. (1) In the inductive set-

ting, our method achieves significantly higher results than

all the previous works. Even compared with the best induc-

tive results, SDGN attains a huge accuracy boost as high as

17.7% on CUB, 23.6% an AwA1, 25.2% on AwA2, 12.2%

on SUN, and 16.1% on FLO. This can be ascribed to the ef-

fective utilization of unlabeled data in SDGN. Dt can well

align the synthesized data with the authentic distribution

of target domain, while SLM can exploit the information

lurking in the relation between source and target domains.

Notably, generative methods (f-CLSWGAN, CADA-VAE,

and LisGAN) perform better than cross-modal mapping

methods (ALE, SJE, ESZSL, etc.). The cross-modal map-

ping methods get high scores on seen accuracy but perform

poorly on unseen accuracy and harmonic mean. This in-

dicates that they are overfitted on the seen classes, while

generative models synthesize features which straightly con-

tribute to a classifier designed for all classes. (2) In the

transductive setting, our method acquires the excellent per-

formance and establishes the new state-of-art results on four

datasets, i.e. 70.1% on CUB, 89.1% on AwA2, 52.8% on

SUN and 84.4% on FLO. Surprisingly, on CUB dataset,

we surpass the second highest result by a significant mar-

gin of 5.1%. The reason is that CUB is a very fine-grained

dataset, consisting of different species of birds with small

variances, and the features of different domains are close to

each other. SDGN can effectively address this problem by

using the SLM to separate source domain from target do-

main. On AwA1 dataset, our method performs favorably

against GXE, i.e. 87.7% vs 88.4%. However, our method

consistently outperforms GXE on other datasets. Especially

on fine-grained datasets CUB and SUN, we surpass GXE

by 7.8% and 1.8%. This is because that GXE merely uses

unlabeled data to slightly calibrate the model that is already

trained on source data, while SDGN essentially discerns the

variances between classes from different domains.

Conventional Zero-shot Learning Results. We also con-

duct experiments on conventional ZSL. As shown in Ta-

ble 1, our method presents a significant boost in accuracy
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compared with the state-of-the-art, i.e., 3.8% on CUB, 2.5%

on AwA1 and 3.6% on AwA2. On the large-scale dataset

SUN, our model also achieves the second highest result. We

attribute this high performance gain to the reduced bias in

the model by the self-supervised learning to make a clear

decision boundary between seen and unseen classes.

4.4. Ablation Study

To show further insights about SDGN, we perform abla-

tion study to evaluate the effect of different model compo-

nents and different values of loss coefficients.

Analysis of Model Components. We perform detailed

analysis on the benefits of different modules of SDGN. We

take three datasets CUB, AwA2 and SUN as examples. The

baseline model consists of a generator G and a single dis-

criminator Ds. Based on the baseline, we test the model

performance by adding Dt and SLM. As shown in Table 2,

we show significant improvements over the baseline. The

complete version of SDGN gives the highest results on all

datasets, achieving a whopping accuracy gain of 24.6%,

36.8% and 19.4% on unseen accuracy, and 19.1%, 29.1%

and 13.4% on harmonic mean, which proves the effective-

ness of SDGN. The results are analyzed as follows: (1) The

introduction of Dt remarkably enhances the performance

on harmonic mean by a large margin, i.e., 17.5% on CUB,

26.9% on AwA2, and 10.8% on SUN. This improvement

can be mainly ascribed to the strong ability of Dt in building

reliable data manifold for target domain, since it restricts

the synthesized and reconstructed feature in the correct do-

main. Meanwhile, we also observe a considerable improve-

ment on the seen accuracy. This is because that reliable

target samples reduce the introduced noises imposed on the

ultimate softmax classifier, which is also beneficial for seen

class recognition. (2) After utilizing SLM, the model per-

formance takes further improvement. SLM contributes to

the essential accuracy enhancement. The reason is that the

cross-domain triplet mining disentangles the target domain

distribution from source domain. This leads to a more ac-

curate decision boundary between source and target classes,

which enhances the comprehensive recognition ability for

both seen classes and unseen classes. However, on AwA2

dataset, the seen accuracy has a slight drop of 1.9%, and

the results of (G + Ds + Dt) exhibit the strong bias to-

wards seen classes, i.e., 91.2% (S) VS 83.0% (U). This is

because AwA2 is a coarse-grained and small-scale dataset

with only 50 animal classes. It is less-challenging and the

seen accuracy can easily reach the peak. Therefore, SLM

can hardly influence the seen accuracy. Here, we do not test

the performance of (G+Ds+ SLM), since without Dt, the

synthesized target features contain too much noises, and it

is difficult to separate target domain from source domain.

Therefore, it does not make sense to adopt SLM alone to

separate the synthesized features without Dt.

Analysis of Loss Coefficients. We study the effect of loss

Table 2. Ablation results on CUB, AwA2 and SUN datasets.

G Ds Dt SLM
CUB AwA2 SUN

S U H S U H S U H

✓ ✓ ✗ ✗ 58.2 45.3 51.0 67.5 54.0 60.0 36.6 42.6 39.4

✓ ✓ ✓ ✗ 69.0 68.0 68.5 91.2 83.0 86.9 44.0 58.5 50.2

✓ ✓ ✓ ✓ 70.2 69.9 70.1 89.3 88.8 89.1 46.0 62.0 52.8
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Figure 3. Comparison results of coefficients λt and λa on CUB.
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Figure 4. Results of synthesized feature number per class.

coefficients λt and λa in Eq. (8) to obtain a more intuitive

observation on the module influence. We take CUB dataset

as an example. λt and λa controls the importance of Dt and

SLM. The results on CUB dataset are shown in Figure 3.

At first, as λt grows, unseen accuracy and harmonic mean

gain consistent improvements, which indicates that keeping

stressing on Dt will generate more and more reliable syn-

thetic features. The accuracy reaches the peak at λt = 1.0,

and then decreases as λt grows. This means the best config-

uration of the cross-domain feature generating module is to

give the same attention on Ds and Dt. Putting imbalanced

weights causes training instability, thus impairs the model

performance. As for λa, in the early stage, the increasing of

λa leads to the accuracy improvements on all of the three in-

dicators (S, U, H), which indicates that putting more weight

on SLM can acquire more discriminative power between

source and target domains, which maximizes the compre-

hensive classification competence for all classes. The accu-

racy reaches the peak at λa = 0.1, and then decreases as λa

grows. That is because weighing too much on SLM might

hurt the training stability of feature generation module due

to the introduced noises.

4.5. Analysis of Number of Synthesized Samples

We evaluate the impact of the number of synthetic sam-

ples, denoted as Nsyn. As shown in Figure 4, we observe

that the best Nsyn is 1800 for AwA2 and 300 for CUB.

On AwA2, as Nsyn increases, the unseen accuracy and har-
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Figure 5. Comparison of the source domain accuracy Asd and the

target domain accuracy Atd.
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(a) Baseline synthesized features (b) SDGN synthesized features

Figure 6. The t-SNE visualization of (a) Baseline synthesized fea-

tures and (b) SDGN synthesized features. • denotes features of

target domain and × denotes features of source domain.

monic mean exhibit a rapid growing trend. At first, the seen

accuracy is much higher than unseen accuracy, implying

that synthetic target samples are not sufficient. Synthesiz-

ing more samples is effective for constructing the discrimi-

nation power for unseen classes. Also, we can see that the

highest harmonic mean is achieved when the seen and un-

seen accuracy attain a similar level, i.e., reach the best bal-

ance. In addition, we observe seen accuracy drops a little

when increasing the synthetic features. This is reasonable

since the bias towards source domain is alleviated. Thus a

raise in the unseen accuracy is likely to cause a drop in the

seen accuracy. The key is how to trade off between seen

and unseen accuracies. On CUB, the harmonic mean first

increases as Nsyn grows larger, but decreases after reach-

ing the peak value at the point of 300. The reason is that

there exists an upper bound of the synthetic diversity. Thus

when Nsyn reaches a certain number, more features make

no contribution for improving classification.

4.6. Quantitative Examination of Domain Bias

In this experiment, we examine the effectiveness of

SDGN in reducing the bias towards seen classes. To quan-

tify the domain bias, we follow the experimental setting pro-

posed in [22], where all of the unseen classes are regarded

as a single target class, and all of the seen classes are consid-

ered as a single source class. The images are gone through a

binary classifier to determine whether they belong to target

or source domains. We use Atd and Asd to denote the target

domain accuracy and the source domain accuracy, respec-

tively. As visualized in Figure 5, the baseline presents an

extremely unbalanced domain accuracy on CUB, with Asd

exceeding 85% while Atd is only 48.3%. The huge domain

accuracy gap implies that the bias towards seen classes is

very severe. Noticeably, the utilization of Dt strongly im-

proves the Atd by 22.8%, and Asd by 6.9%. Surprisingly,

the domain accuracy gap decreases from 37.2% to 21.3%.

Adding SLM further eliminates the domain bias to the max-

imum degree. Atd is raised by 15.7% and the domain gap is

reduced to 3.6%. These results manifest the excellent effi-

cacy of our SDGN in mitigating the strong bias by making

a balance between seen and unseen accuracy. At a modest

expense of Asd, SDGN significantly advances the general-

ization ability for unseen classes.

4.7. Visualization
To further show the effectiveness of SDGN, we conduct

the t-SNE [21] visualization for the synthesized features

of the baseline and SDGN on AwA1. As shown in Fig-

ure 6, the features produced by baseline are tightly crowd-

ing together, and a bunch of target features are close to or

even overlap source features, e.g., “mouse” features (purple

crosses) and “bat” features (purple dots). While the synthe-

sized target features of SDGN are evidently pushed away

from source features, e.g., “bat” features (purple dots) and

“killer+whale” features (blue crosses). Moreover, features

have more segregated clusters for both source and target do-

mains. Synthesized samples in the same category become

more compact. This verifies that SDGN is powerful in dis-

entangling feature distributions of different domains, and

constructing more discriminative representations.

5. Conclusions
In this paper, we propose a Self-supervised Domain-

aware Generative Network for GZSL. We explore self-

supervised learning in the feature generating model, with

anchors acting as a bridge between seen and unseen classes.

Based on the multi-label derived from anchors, we conduct

a cross-domain triplet mining to exploit the cross-domain

relations. Experiments show the effectiveness. In the fu-

ture, we will apply our model for visual tracking [50, 51].
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