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Abstract

In this work, we introduce a novel local pairwise de-

scriptor and then develop a simple, effective iterative

method to solve the resulting quadratic assignment through

sparsity control for shape correspondence between two ap-

proximate isometric surfaces. Our pairwise descriptor is

based on the stiffness and mass matrix of finite element ap-

proximation of the Laplace-Beltrami differential operator,

which is local in space, sparse to represent, and extremely

easy to compute while containing global information. It al-

lows us to deal with open surfaces, partial matching, and

topological perturbations robustly. To solve the resulting

quadratic assignment problem efficiently, the two key ideas

of our iterative algorithm are: 1) select pairs with good (ap-

proximate) correspondence as anchor points, 2) solve a reg-

ularized quadratic assignment problem only in the neigh-

borhood of selected anchor points through sparsity control.

These two ingredients can improve and increase the num-

ber of anchor points quickly while reducing the computation

cost in each quadratic assignment iteration significantly.

With enough high-quality anchor points, one may use vari-

ous pointwise global features with reference to these anchor

points to further improve the dense shape correspondence.

We use various experiments to show the efficiency, quality,

and versatility of our method on large data sets, patches,

and point clouds (without global meshes).

1. Introduction

Geometric modeling and shape analysis is ubiquitous

in computer vision, computer graphics, medical imaging,

virtual reality, 3D prototyping and printing, data analysis,

etc. Shape correspondence is a basic task in shape regis-

tration, comparison, recognition, and retrieval. Unlike im-

ages, shapes do not have a canonical representation domain

or basis and do not form a linear space. Moreover, their

embedding can be highly ambiguous even for intrinsically

identical ones. Further complications in practice include

noise, topological perturbations (holes), partial shapes, and

lack of a good triangulation. These difficulties pose both

modeling and computational challenges for shape modeling

and analysis.

For dense shape correspondence, the first step is to de-

sign desirable descriptors, pointwise, or pairwise. Point-

wise descriptors can be extrinsic and local (in space)

[39, 18, 14, 34], or intrinsic (invariant under isometric

transformation). Extrinsic pointwise descriptors usu-

ally have difficulties in producing accurate dense cor-

respondence, especially if there is non-rigid transforma-

tion involved. Many intrinsic pointwise descriptors in

the space domain, such as geodesics distance signatures

[41], heat kernel signatures [37], wave kernel signa-

tures [5], and in spectrum domain using eigen-functions

of the Laplace-Beltrami operator (LBO) have been pro-

posed [33, 27, 40, 10, 23, 24]. For example, functional

maps [29] aims to find proper linear combinations of trun-

cated basis functions, e.g., eigen-functions of the Laplace-

Beltrami operator, based on some prior knowledge, e.g.,

given landmarks and/or region correspondence, as the

pointwise descriptor. Then various nearest neighbor search-

ing or linear assignment methods are used in the descrip-

tor space to find the dense point correspondence. These

intrinsic pointwise descriptors are typically nonlocal and

require to solve certain partial differential equations, e.g.,

the Laplace-Beltrami equation, on a well-triangulated mesh.

Hence they can be sensitive to topological perturbations

and boundary conditions. Moreover, pointwise descriptors

based on a truncated basis in the spectrum domain lose fine

details in the geometry. On the other hand, using good

pairwise descriptors, such as pairwise geodesic distance

matrix[43] or kernel functions [42], to find shape correspon-

dence is usually more robust and accurate since the match-

ing needs to satisfy more and stricter constraints to mini-

mize some kind of distortion. However, a very challenging

computational problem, a quadratic assignment problem

(QAP) which is NP-hard, needs to be solved [25]. Differ-
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ent kind of methods have been proposed to solve the QAP

approximately in a more computational tractable way e.g

sub-sampling [38], coarse-to-fine [44], geodesic distance

sparsity enforcement methods [16] and various relaxation

approaches [2, 8, 20, 26, 13, 15]. One popular approach is

to relax the nonconvex permutation matrix (representing

pointwise correspondence) constraint in the QAP to a dou-

bly stochastic matrix (convex) constraint [2, 13]. However,

both the pairwise descriptor and the doubly stochastic ma-

trix are dense matrices, which causes the relaxed QAP still

challenging to solve even for a modest size problem.

In this work, we propose a novel approach for dense

shape correspondence for two nearly isometric surfaces

based on local pairwise descriptor and an efficient itera-

tive algorithm with sparsity control for the doubly stochas-

tic matrix to solve the relaxed QAP. The main novelty and

contribution of our proposed method include:

1) A local pairwise descriptor using the combination of the

stiffness (corresponding to the finite element approxima-

tion of the LBO) and the mass matrix (corresponding to lo-

cal area scaling). It only involves interactions among local

neighbors and is extremely simple to compute. Note that all

local interactions are coupled like heat diffusion through the

whole shape. In other words, global and full spectral infor-

mation of LBO is embedded implicitly in our pair-wise de-

scriptor. Due to the locality, the descriptor enjoys stability

and good performance for open surfaces and with respect

to topological perturbations, as shown in Figure 1 and by

more examples in Section 5. The sparsity of the pairwise

descriptor also reduces the computation cost for the relaxed

QAP.

2) An efficient iterative algorithm with sparsity control

for the resulting relaxed QAP. We first use a local dis-

tortion measurement (see Section 3.1 for details) to select

pairs from both shapes with good correspondence as an-

chor points for the next iteration. Using regularity of the

map, we enforce that the neighborhood of anchor points

can only map to the neighborhood of the corresponding an-

chor points which induces a sparsity structure in the doubly

stochastic matrix. It results in a significant reduction of vari-

ables and hence, the computation cost in each iteration. As

we demonstrate in the numerical experiments, the number

of high-quality anchor points grow quickly with iterations.

Here is the outline of our paper. We introduce our

quadratic assignment model based on a local pairwise de-

scriptor in Section 2 and then present an efficient iterative

algorithm to solve the quadratic assignment problem with

sparsity control in Section 3. In Section 4, we extend our

method to point cloud data and patch matching. Numerical

experiments are demonstrated in Section 5 and conclusion

follows.

Figure 1: Example of partial matching with topological

changes. Topological changes are highlighted by red cir-

cles. The first column indicates the patch locations. Extra

points in the first patch are colored in blue in column two.

The third column is the mapping result using SHOT, and the

last column is the mapping result from our method.

2. Quadratic Assignment Model Using Local

Pairwise Descriptors

Given two manifolds M1 and M2 sampled by two point

clouds P1 = {xi}ni=1 and P2 = {yi}ni=1 respectively,

the typical task of dense shape correspondence is to find

a point-to-point map between P1 and P2. Let Q1 ∈ Rn×n

and Q2 ∈ Rn×n be two given pairwise descriptors, e.g.,

pairwise geodesic distance, between two points in P1 and

P2 respectively. The shape correspondence problem can be

casted as the following QAP:

argmin
P∈Πn

‖PQ1 −Q2P‖2F (1)

where P ∈ Rn×n is a permutation matrix with binary {0, 1}
elements and each row and column sum is 1, and ‖ · ‖F is

the Frobenius norm of a matrix.

Since the QAP problem is NP-hard [35], it is common

to relax the permutation matrix in (1) to a doubly stochastic

matrix, D ∈ Dn = {D ∈ Rn×n|D~1 = ~1, DT~1 = ~1, Dij ≥
0}, in the shape registration context [2, 8, 20, 26]. The dou-

bly stochastic matrix representation not only convexifies the

original QAP (1) but also provides a more general proba-

bilistic interpretation of the map. However, there remain at

least two major computational challenges to solve the re-

laxed QAP for correspondence problems between shapes of

relatively large size. First, the usual choice of pairwise de-

scriptors, such as pairwise distance [43], heat kernel [11],

and wave kernel [5] are represented as dense matrices and

so are the doubly stochastic matrix. It can pose a storage and

memory issue when two shapes are of large size even before

conducting any computation. In this case, certain approxi-

mation has to be used, such as sub-sampling methods [38],

truncation of pairwise descriptors or spectrum approxima-

tion [3], though they may lead to accuracy problems due to

the approximation error. Computationally, single dense ma-
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trix multiplication of the pairwise descriptor matrix and the

doubly stochastic matrix requires O(n3) operations, where

n is the number of points. More seriously, the relaxed QAP

is usually solved by an iterative method. Due to the cou-

pling of all elements of the doubly stochastic matrix, i.e.,

every element is affected by all other elements, elements

corresponding to good matching can be influenced by those

corresponding to the wrong matching initially, which can

cause a slow convergence of the optimization process espe-

cially when the initial guess is not good enough. Further-

more, for data with noise or distortion, the QAP may prop-

agate the distortion or noise in one region to other regions

and cause the solution to the QAP unsatisfactory.

To tackle the aforementioned challenges for the QAP, we

propose the following relaxed quadratic assignment using

sparse pairwise descriptors and develop an efficient itera-

tive algorithm with sparsity control for the doubly stochas-

tic matrix to find high-quality dense landmarks. These land-

marks are then used in the final post-processing step to con-

struct the full correspondence.

2.1. Sparse pairwise descriptors

Let (M, g) be a closed 2-dimensional Rieman-

nian manifold, the LBO is defined as ∆(M,g)ψ =

1√
G

2
∑

i=1

∂

∂xi
(
√
G

2
∑

j=1

gij
∂ψ

∂xj
) [12], here gij is the inverse

of gij and G = det(g). LBO is an elliptic and self-adjoint

operator intrinsically defined on the manifold; thus, it is

invariant under isometric transformation. The LBO eigen-

system satisfies:

∆(M,g)ψi = −λiψi,

∫

M

ψiψjds = δij (2)

and uniquely determines the underlying manifold up to

isometry [7]. Spectral geometry is widely used in shape

analysis [33, 27, 40, 37, 10, 23, 29, 24, 36].

In practice, M is discretized by a triangular mesh T =
{τℓ} with vertices V = {xi}ni=1 connected by edges E =
{eij}. For each edge eij connecting points pi and pj , we

define the angles oppositeEij as angles αij and βij . Denote

the stiffness matrix as S, given by [31, 32]

Sij =

{

− 1
2 [cotαij + cotβij ] i ∼ j

∑

k∼i S(i, k) i = j
(3)

where ∼ denotes the connectivity relation by an edge. The

mass matrix M is given by

Mij =

{

|τ1|+|τ2|
12 i ∼ j

∑

k∼i M(i, k) i = j
(4)

where |τ1| and |τ2| are the areas of the two triangles shar-

ing the same edge ij. On the one hand, the eigensystem of

LBO can be computed as Sψ = λMψ, which suggests S

and M implicitly contain the spectrum information of LBO

which can be used to determine a manifold uniquely up to

isometry. On the other hand, it has been rigorously shown

a global rigidity theorem on the Stiffness matrix, i.e. two

polyhedral surfaces share the same Stiffness matrices if on

only if their corresponding metrics are the same up to a scal-

ing [17]. Note that the mass matrix fixes the scaling factor.

Furthermore, both of these two matrices are local which are

not sensitive to boundary conditions or topological pertur-

bations. Therefore, we expect that S and M together can

serve as good sparse pairwise descriptors in a QAP formu-

lation for shape correspondence.

2.2. Relaxed QAP for shape correspondence

Given two surfaces M1 and M2 discretized by triangu-

lar meshes with vertices {xi}ni=1 and {yi}ni=1 respectively.

We denote the corresponding stiffness matrices by S1, S2
and the corresponding mass matrices by M1 and M2. Rep-

resenting a point-to-point mapping between M1 and M2

by a permutation matrix P ∈ Πn, we propose the follow-

ing QAP problem to construct the point-to-point mapping

between these two surfaces:

min
P∈Πn

1

2
‖PS1 − S2P‖2F +

µ

2
‖PM1 −M2P‖2F , (5)

Where µ is a balance parameter. The stiffness matrix cap-

tures local geometric information, and the mass matrix

captures local area information of the discretized surface.

Both matrices have a sparsity structure with the number of

nonzero entries linearly scaled with respect to the number

of points. This nice sparse property of both matrices al-

ready alleviates the memory issue for large data sets signifi-

cantly. In addition, since both descriptors only capture local

geometric information, it potentially allows the proposed

model to handle partial matching problem, open surfaces,

and topological changes.

Since the proposed QPA is NP-hard, we relax the permu-

tation matrix to a doubly stochastic matrix representation of

the mapping:

min
D∈Dn

1

2
‖DS1 − S2D‖2F +

µ

2
‖DM1 −M2D‖2F (6)

As an advantage of this relaxation, each row of D can be

interpreted as the probability of a point on M1 mapping to

points on M2. Now the relaxed QAP (6) is convex and

can be solved by well-known algorithms in convex pro-

gramming. Here, we use projected gradient descent algo-

rithm with Barzilai-Borwein step size solve this optimiza-

tion problem (see details in Section 3.4).

3. Dynamically sparsity-enforced QAP

As we pointed out before, the relaxed QAP problem (6)

is still difficult to solve if dense doubly stochastic matrices
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are used in the optimization process. To overcome those

difficulties, we propose an iterative algorithm that 1) selects

candidates for well-matched pairs as anchor points, 2) en-

forces a dynamic sparsity structure of the doubly stochastic

matrix by using regularity of the map, i.e., nearby points on

the source surface should be mapped to nearby points on the

target surface, in the neighborhood of those paired anchor

points in each iteration. These two ingredients both reduce

the computation cost in each iteration (only sparse matri-

ces are involved) and increase the number of well-matched

pairs quickly since only candidates for well-matched points

are used to guide the iterations.

3.1. Local distortion test

To define a desired sparsity structure for the doubly

stochastic matrix D in the relaxed QAP (6), we first need to

detect candidates for well-matched pairs, or equivalently to

remove those definitely ill-matched points, dynamically in

each iteration. Motivated by the Gromov-Wasserstein dis-

tance [28] and the unsupervised learning loss in [19], we

introduce the following criterion to quantify location dis-

tortion of a mapping at a point on the source manifold.

Definition 1 (Local distortion criterion) Let φ : M1 →
M2 be a map between two isometric manifolds. For any

point x ∈ M1, consider its γ-geodesic ball in M1 as

Bγ(x) = {y ∈ M1 | dM1
(x,y) ≤ γ}. local distortion

of φ at x is defined as:

Fγ(φ)(x) =
1

|Bγ(x)|

∫

y∈Bγ(x)

DEφ(x,y)dy (7)

where DEφ(x,y) =
1

γ
|dM1

(x,y) − dM2
(φ(x), φ(y))| is

the difference between the geodesic distance dM1
, dM2

on

the two corresponding manifolds, and |Bγ | is the volume of

Bγ .

We have the following straightforward properties:

1. If φ is an isometric map, Fγ(φ)(x) = 0, ∀x ∈
M1, γ > 0.

2. If Fγ(φ)(x) = 0, ∀x ∈ M1 for some γ > 0, φ is

isometric.

In discrete setting, M1 is represented as {xi}ni=1, M2 is

represented as {yi}ni=1and the map φ is discretized as a

one-to-one map between {xi}ni=1 and {yi}ni=1. We use the

following discrete approximation:

Fγ(φ)(xi) ≈
∑

xj∈Bγ(xi),xj 6=xi
M1(j, j)DEφ(xi,xj)

(

∑

xj∈Bγ(xi),xj 6=xi
M1(j, j)

)

(8)

to quantify how much φ is distorted locally and use it to

prune out those points that have large local distortion in the

next iteration for the QAP. In practice, we specify a number

ǫ and view xi as a candidate of well-matched anchor point

for φ if F(φ)(xi) < ǫ. Together with φ(xi), we extract a

collection of anchor pairs {(xi, φ(xi))}ki=1 which are used

to define sparsity pattern in the doubly stochastic matrix D
dynamically in the relaxed QAP (6). It is important to note

that current anchor pairs will be re-evaluated and updated in

later iterations.

3.2. Dynamic sparsity for doubly stochastic matri­
ces

Suppose a collection of anchor pairs {(xi, φ(xi))}ki=1

have been selected using the local distortion test. In the next

iteration, a sub-QAP only involving points in the neighbor-

hood of selected anchor pairs are solved. We further enforce

a sparsity structure on the doubly stochastic matrix for the

sub-QAP based on the following two rules.

1. Each anchor point is mapped to its corresponding an-

chor point;

2. Points in the neighborhood of an anchor point on the

source surface are mapped to the neighborhood of the

corresponding anchor point on the target surface.

Let N (x) denote the neighborhood of a given point on

a manifold, e.g., a geodesic ball Br centered at x on

the manifold, or simply points in the l-th ring of x on

a triangular mesh. Define N ({xi}ki=1) =
⋃k

i=1 N (xi)

and N ({φ(xi)}ki=1) =
⋃k

i=1 N (φ(xi)). For the dou-

bly stochastic matrix D in the relaxed QAP (6), we only

update variables with indices corresponding to the set

N ({xi}ki=1)×N ({φ(xi)}ki=1) together with the following

sparsity constraints

Dt,s =











δφ(xs),yt
, if xs ∈ {xi}ki=1

0, if xs ∈ N (xi) and yt /∈ N (φ(xi))

0, if yt ∈ N (φ(xi)) and xs /∈ N (xi)

.

(9)

By limiting the optimization region and enforcing the

previous two sparsity constraints, the number of variables in

the QAP problem after the sparsity enforcement is greatly

reduced from O(n2) to O(n). This can dramatically reduce

computation cost. Moreover, since the anchor points are

fixed, it will no longer be influenced by other points in the

current optimization process; on the contrary, it will enforce

a positive influence on the neighboring points.

In practice, we always choose the size of Bγ(x) in the

distortion test smaller than the size of sparsity control neigh-

borhood N (x) to allow the growth of anchor points in the

next iteration. In our experiments, we choose Bγ(xi) as

points included in the second ring of xi and N (xi) as points

included in the fourth ring of xi. The larger Bγ is, the more
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precise anchor points will be; the larger sparsity neighbor-

hood N (x) is, the faster the number of anchor points grows.

However, computation cost also increases for each QAP it-

eration when Bγ(x) and N (x) become larger since the dou-

bly stochastic matrix is less sparse.

Once the sparsity regularized D is obtained, we update

the point-to-point mapping φ by choosing the largest ele-

ment in each row. Then, we find a new collection of anchor

pairs by the distortion test based on the updated φ. Fig-

ure 2 illustrates an example of this procedure in the first

5 iterations. Ideally, one should grow anchor points until

all points are covered. However, because of noise and/or

non-isometry, the growth of high-quality anchor points usu-

ally slows down after a few iterations. Moreover, even the

exact solution of QAP (1) may not produce a desirable re-

sult. To balance between efficiency and accuracy, we find

that 5 iterations of relaxed QAP (6) is good enough to find

enough high quality anchor points. We then use a post-

processing step to construct the correspondence for the re-

maining points with the help of matched anchor pairs.

Figure 2: Growth of anchor pairs. Red points in each col-

umn from left to right represent the location of anchor pairs

from iteration 1 to 5.

3.3. Post Processing

The aforementioned sparsity enforced quadratic assign-

ment model based on local features is effective in grow-

ing anchor points from initial seed points in the regions

where there is no significant non-isometric distortion. How-

ever, for regions where there is significant distortion, such

as near fingertips or elbow regions of humans in different

poses, local features may not be enough to produce sat-

isfactory results. To construct a full correspondence and

improve mappings in those regions, one can use global

pointwise descriptors with reference to those already well-

matched anchor pairs. There are various options for the fi-

nal post processing step. For example, we use Heat Ker-

nel Signature (HKS) [37] for closed surfaces in our ex-

periments. Let H1(x,x
′, t) and H2(y,y

′, t) denote HKS

on M1 and M2 respectively. Given {xi, φ(xi)}ℓi=1 as the

(sub)set of high quality anchor pairs obtained from solving

the QAP (6), we construct pointwise descriptors of length

ℓ for those x ∈ M1,y ∈ M2 not in the anchor pair set

as {H1(x,xi, t)}ℓi=1, {H2(y, φ(xi), t)}ℓi=1. Then we sim-

ply perform a nearest neighborhood search in this descriptor

space to find the correspondence for non-anchor points. For

patches, we use geodesic distance to the chosen anchor pairs

on the corresponding surfaces as the pointwise descriptor.

3.4. Numerical Algorithms

We use projected gradient descent with Barzilai-Borwein

step size [6], summarized in Algorithm 1, with the dynamic

sparsity constraints (9) in each iteration to solve (6). The

initial doubly stochastic matrix D0 can be a random matrix

or using the initial guess provided by SHOT feature [39]

satisfying the sparsity constraint by projection (12). SHOT

feature only need to be computed once at the very begin-

ning to provide the initial doubly stochastic matrix D0 and

select anchor points for the first iteration. In later iterations,

initial guess can be provided by projectingD from previous

iteration according to the new sparsity constraint.

Algorithm 1 Projected gradient decent for (6)

repeat

1.Yk+1 = Dk − αk∇D(‖DkS1 − S2Dk‖
2
F + µ‖DkM1 −

M2Dk‖
2
F )

2.Dk+1 = argmin
D∈Dn

‖D − Yk+1‖
2
F

until

Note that we only update entries of D corresponding to

those points in the neighborhood of selected anchor pairs

N ({xi}ki=1) ×N ({φ(xi)}ki=1) and perform the projection

on the set of doubly stochastic matrix D satisfying the spar-

sity constraint (9). Let C be the indicator matrix for the

sparsity constraint

Ct,s =











δφ(xs),yt
, if xs ∈ {xi}ki=1

1, if xs ∈ N (xi) and yt ∈ N (φ(xi))

0, otherwise

.

(10)

The solution to the projection step in Algorithm 1

Dk+1 = argmin
D∈Dn

‖D − Y ‖2F , s.t. (9) (11)

is given by

Dk+1 =
(

Y +
|YC | − |C|

|C|2
~1~1T

− (Y T

C
~1−~1)⊘ ~c~1T −~1((YC~1−~1)⊘ ~r)T

)

C

(12)

where (·)C = (·) ⊙ C, | · | = ~1T (·)~1, C~1 = ~r, CT~1 = ~c
and ⊙, ⊘ are Hadamard product and Hadamard division.

We further relax our problem by neglecting the nonegative

constraint as suggested in [1]. This strategy further reduces

the computation cost without causing any problem in all of

our experiments.

9517



Our iterative method for the relaxed QAP (6) is summa-

rized in Algorithm 2. Starting from an initial point-to-point

map φ0 (or converted from an initial doubly stochastic ma-

trix), the three steps in each iteration are: 1© Update the set

of anchor pairs using (8); 2© Update the doubly stochastic

matrix by Algorithm 1 with sparsity constraint based on up-

dated anchor pairs; 3© Convert the doubly stochastic matrix

to an updated point-to-point map by choosing the index of

the largest element in each row.

Note that all anchor pairs are updated and improved (by

decreasing local distortion tolerance ǫ) during the iterations.

Geometrically, our iterative method is like matching by re-

gion growing from anchor pairs. The local distortion crite-

rion allows us to efficiently and robustly select a few reason-

ably good anchor points from a fast process (but not neces-

sarily accurate dense correspondence), such as SHOT. Then

anchor pairs will grow as well as improve due to gradually

diminishing local distortion tolerance during iterations. In

our experiments, we find enough high-quality anchor pairs

after 5 iterations by decreasing ǫ from 5 to 1. Then we use

these anchor pairs to construct the correspondence of re-

maining points in the final post-processing step as described

in Section 3.3.

Algorithm 2 Iterative method for relaxed QAP with dy-

namic sparsity control

Input a point-to-point map φ0, iteration steps n, {ǫi}
n

1 and

parameter µ.repeat

1. Find anchor pairs {(xi, φ
k(xi)) | F(φk)(xi) < ǫk}. De-

fine N k

1 = N ({xi}
k

i=1) and N k

2 = N ({φk(xi)}
k

i=1).
2. Compute Dk+1 by Algorithm 1 with sparsity constraint

(9) on N k

1 ×N k

2 .

3. Update φk+1(xs) = yt, where t = argmaxDk+1(s, :).
until n steps are reached

Since we start with a relatively large local distortion tol-

erance for initial anchor pairs, our method is quite stable

with respect to the initialization. Moreover, as we decrease

the tolerance with iterations, anchor pairs selected earlier

can be updated in later iterations. We remark that the above

algorithm can be straightforwardly extended to shape corre-

spondence between two point clouds with different sizes by

using a rectangular doubly stochastic matrix with the right

dimension.

4. Discussion

Point cloud matching We can easily extend our method

to point clouds, raw data in many applications, without a

global triangulation by constructing the stiffness and mass

matrices at each point using the local mesh method [22]

with an adaptive-KNN algorithm.

In [22], the local connectivity of a point p on the mani-

fold M is established by constructing a standard Delaunay

triangulation in the tangent plane at p of the projections of

its K nearest neighbors. However, the classical KNN with

fixed K is not adaptive to local geometric feature size or

sampling resolution, which may lead to a loss of accuracy.

So we introduce the following adaptive-KNN.

Let λi1 ≥ λi2 ≥ λi3 be the corresponding eigenvalues the

local normalized co-variance matrix. The key idea of our

adaptive-KNN is that the local patch should not deviate too

much from a planar one for a good linear approximation

of the local geometry. Hence we gradually decrease K by

removing the m furthest points each time until the ratio λi3
by λi1 (invariant of local sampling density and patch size)

is smaller than a given threshold or a lower bound for K is

reached.

Patch matching In real applications, well-sampled data

for 3D shapes are not easy to obtain. Instead, holes, patches,

or partial shapes are more common in real data. Correspon-

dence between shapes with topological perturbations, artifi-

cial boundaries, and different sizes are difficult for methods

based on global intrinsic descriptors in general. For exam-

ple, the spectrum of LBO is sensitive to boundary condi-

tions and topological changes.

However, since our method is based on local features, the

effect of boundary conditions and topological perturbations

are localized too. Hence our method can be directly applied

to those scenarios with good performance. For example,

our iterative method for the relaxed QAP using anchor pairs

and sparsity control fits the smaller patch into the larger one

nicely for partial matching (see Figure 1). For post process-

ing in patch matching, we switch from HKS to geodesic

distance signature since HKS is sensitive to boundary con-

ditions.

5. Experiment Results

We evaluate the performance of our method through var-

ious tests on data sets from TOSCA [9] and SCAPE [4]

and on patches extracted from TOSCA. All inputs for our

tests are raw data without any preprocessing, i.e., no low-

resolution model or pre-computed geodesic distance. Ex-

periments are conducted in Matlab on a PC with 16GB

RAM and Intel i7-6800k CPU. The result of our method

using mesh input is denoted as mesh method, and the result

of our method without using mesh is denoted as point cloud

method.

Error Metric Suppose our constructed correspondence

maps x ∈ M1 to y ∈ M2 while the true correspondence is

x is to y
∗, we measure the quality of our result by comput-

ing the geodesic error defined by e(x) =
dM2

(y,y∗)

diam(M2)
, where

diam(M2) is the geodesic diameter of M2.

Local distortion defined in (7) can also serve as an unsu-

pervised error metric to measure the quality of a map. As

shown in Figure 3, it’s clear that local distortion decreases
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Figure 3: Geodesic error and cumulative density function of

local distortion for 4 sample pairs from the SCAPE data set

(1st row); Original shape and corresponding local distortion

heat map for sample 1 to 4 (2nd row).

Figure 4: Correspondence accuracy on the TOSCA and

SCAPE data sets.

as the geodesic error decreases, which indicates that local

distortion can serve as a good unsupervised metric to quan-

tify the approximate isometry.

Figure 5: Example of matching two patches. The first two

images show the location of the patches; the third image

is the color map on the first patch; the fourth image is the

induced color map based on SHOT feature; the last image

is the induced color map from our mesh method.

TOSCA The TOSCA data set contains 76 shapes of 8

different classes, from humans to animals. The number of

vertices varies from 4k to 50k. We use 5 iterations to grow

the set of anchor pairs. The neighborhood used for local

distortion test for selecting anchor points is the second ring,

and for sparsity control is the fourth ring. The distortion

threshold decreases equally during the iterations from 5 to

1; the gradient descent step size in Algorithm 1 is 75; we

approximate the heat kernel by 300 eigen-functions of the

LBO with a diffusion time t = 50 in the post-processing

step. For point clouds without mesh, we use an initial

K = 200, ratio r = 0.05, and shrink size m = 6 for our

adaptive-KNN; HKS post processing is not used since the

spectrum computed directly from the point cloud is not ac-

curate enough. Results of our mesh method with or with-

out post processing, and point cloud method without post

processing are presented. We compare our method with

the following methods: Blended [21], SGMDS [3], GMDS

[8], Kernel Marching [42], RSWD [24], and HKM 2 corrs

[30]. Figure 4 shows the quantitative result in terms of the

geodesic error metric. Our mesh method outperforms most

of the state-of-art methods. Our mesh method without post-

processing and point cloud method also achieve reasonably

good results.

SCAPE The SCAPE data set contains 72 shapes of hu-

mans in different poses. Each shape has 12,500 vertices. We

use the same parameters as those on TOSCA data set except

for diffusion time t = 0.001 in the post-processing step.

Results of our mesh method with or without post process-

ing, and point cloud method are presented. Figure 4 shows

the quantitative result. Our method achieves the state-of-art

accuracy. Again, our mesh method without post-processing

and point cloud method also achieve reasonably good re-

sults.

Patch Matching We present a few test results for patches

that have holes, boundaries, and partial matching. We paint

the first patch with colors and map the color to the second

patch with the correspondence computed using SHOT [39]

as the pointwise descriptor, which also serves as the initial

guess for our method, and the correspondence computed

from our algorithm to visualize the result. Since HKS is
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Figure 6: Example of matching patches with topological

perturbation and shapes with randomly missing elements.

The first and third columns illustrate the patches and shapes

to match. The top color map of the first patch/shape is

mapped to the second patch/shape using SHOT (middle)

and our method (bottom).

sensitive to boundary conditions and topological changes,

we use geodesic distance to those selected anchor pairs as

pointwise descriptor in the post processing step.

The first test is matching two patches of a dog with dif-

ferent poses from TOSCA, as shown in Figure 5. The

two patches have very irregular boundaries. Using extrin-

sic pointwise descriptors, such as SHOT, fail to give a good

dense correspondence. However, our method performs well

since it uses local pairwise descriptors to find high-quality

anchor pairs and integrates global pointwise descriptor, the

geodesic distance to those anchor pairs, to complete the

dense correspondence.

The second test is matching two patches with topologi-

cal perturbations from TOSCA data, as shown in Figure 6.

The first case is two different poses of a wolf with mesh el-

ements randomly deleted from each surface independently.

The second case is body parts of a cat in different poses with

topological perturbation, the second patch is not connected

at the bottom while the first one is as highlighted in the fig-

ure. Since neither local connectivity distortion nor missing

elements will significantly influence the stiffness matrix or

mass matrix at most points, our method can still produce

good results.

We further test our method on a pair of patches with both

different sizes (partial matching) and topological changes,

as shown in Figure 1. The example is an arm from a centaur

from TOSCA; the first arm has more points, which are in-

dicated in deep blue color. In the second arm, fingertips are

removed, resulting in both size and topology differences.

Even for this challenging example, our method performs

really well.

Time efficiency We list the average run time of several ex-

Model Wolf Centaur Horse Cat David

Number of Vertices 4344 15768 19248 27894 52565

Mesh Method(s) 172 941 1302 1555 2986

Point Cloud Method(s) 168 914 1284 1562 2910

Table 1: Run time in seconds for examples from TOSCA

data set.

amples in TOSCA data set in Table 1. Most state-of-the-art

methods using (dense) pair-wise descriptors and quadratic

assignment (QA) require dense matrix multiplication in

each step which already has super-quadratic complexity.

Although Laplace-Beltrami (LB) eigen-functions can be

used to compress the dense matrix by low-rank approxi-

mation, it is still less sparse or localized and more time-

consuming to compute than our simple, sparse and localized

pair-wise descriptor. Combined with our sparsity-enforced

method for QA, our method has at most O(n2) complexity

which outperforms methods with super-quadratic complex-

ity when handling data with large size. Experimentally, our

method shows complexity even better than O(n2).

6. Conclusion

We develop a simple, effective iterative method to solve

a relaxed quadratic assignment model through sparsity con-

trol for shape correspondence between two approximate

isometric surfaces based on a novel local pairwise descrip-

tor. Two key ideas of our iterative algorithm are: 1) se-

lect pairs with good correspondence as anchor points us-

ing a local unsupervised distortion test, 2) solve a regu-

larized quadratic assignment problem only in the neigh-

borhood of selected anchor points through sparsity control.

With enough high-quality anchor points, various pointwise

global features with reference to these anchor points can

further improve the dense shape correspondence. Extensive

experiments are conducted to show the efficiency, quality,

and versatility of our method on large data sets, patches,

and purely point cloud data.

Similar to many existing methods, our method will have

difficulty in dealing with significant non-isometric distor-

tion and highly non-uniform sampling. These will be fur-

ther studied in our future research.

Acknowledgement

R. Lai’s research is supported in part by an NSF Career

Award DMS–1752934. H. Zhao is partially supported by

NSF DMS-1418422. Part of this research was performed

while the authors were visiting the Institute for Pure and

Applied Mathematics (IPAM), which is supported by the

NSF DMS-1440415.

9520



References

[1] Yonathan Aflalo, Alex Bronstein, and Ron Kimmel. Graph

matching: relax or not? arXiv preprint arXiv:1401.7623,

2014. 5

[2] Yonathan Aflalo, Alexander Bronstein, and Ron Kimmel. On

convex relaxation of graph isomorphism. Proceedings of the

National Academy of Sciences, 112(10):2942–2947, 2015. 2

[3] Yonathan Aflalo, Anastasia Dubrovina, and Ron Kimmel.

Spectral generalized multi-dimensional scaling. Interna-

tional Journal of Computer Vision, 118(3):380–392, 2016.

2, 7

[4] Dragomir Anguelov, Praveen Srinivasan, Hoi-Cheung Pang,

Daphne Koller, Sebastian Thrun, and James Davis. The cor-

related correspondence algorithm for unsupervised registra-

tion of nonrigid surfaces. In Advances in neural information

processing systems, pages 33–40, 2005. 6

[5] Mathieu Aubry, Ulrich Schlickewei, and Daniel Cremers.

The wave kernel signature: A quantum mechanical approach

to shape analysis. In 2011 IEEE international conference on

computer vision workshops (ICCV workshops), pages 1626–

1633. IEEE, 2011. 1, 2

[6] Jonathan Barzilai and Jonathan M Borwein. Two-point step

size gradient methods. IMA journal of numerical analysis,

8(1):141–148, 1988. 5

[7] Pierre Bérard, Gérard Besson, and Sylvain Gallot. Embed-

ding riemannian manifolds by their heat kernel. Geometric

& Functional Analysis GAFA, 4(4):373–398, 1994. 3

[8] Alexander M Bronstein, Michael M Bronstein, and Ron

Kimmel. Generalized multidimensional scaling: a frame-

work for isometry-invariant partial surface matching. Pro-

ceedings of the National Academy of Sciences, 103(5):1168–

1172, 2006. 2, 7

[9] Alexander M Bronstein, Michael M Bronstein, and Ron

Kimmel. Numerical geometry of non-rigid shapes. Springer

Science & Business Media, 2008. 6

[10] M. M. Bronstein and I. Kokkinos. Scale-invariant heat kernel

signatures for non-rigid shape recognition. IEEE Conference

on Computer Vision and Pattern Recognition (CVPR), pages

1704–1711, 2010. 1, 3

[11] Michael M Bronstein and Iasonas Kokkinos. Scale-invariant

heat kernel signatures for non-rigid shape recognition. In

2010 IEEE Computer Society Conference on Computer Vi-

sion and Pattern Recognition, pages 1704–1711. IEEE,

2010. 2

[12] Isaac Chavel. Eigenvalues in Riemannian geometry, volume

115. Academic press, 1984. 3

[13] Qifeng Chen and Vladlen Koltun. Robust nonrigid registra-

tion by convex optimization. In Proceedings of the IEEE

International Conference on Computer Vision, pages 2039–

2047, 2015. 2

[14] Anastasia Dubrovina and Ron Kimmel. Approximately iso-

metric shape correspondence by matching pointwise spectral

features and global geodesic structures. Advances in Adap-

tive Data Analysis, 3(01n02):203–228, 2011. 1

[15] Nadav Dym, Haggai Maron, and Yaron Lipman. Ds++: A

flexible, scalable and provably tight relaxation for matching

problems. arXiv preprint arXiv:1705.06148, 2017. 2

[16] Andrea Gasparetto, Luca Cosmo, Emanuele Rodola,

Michael Bronstein, and Andrea Torsello. Spatial maps: From

low rank spectral to sparse spatial functional representations.

In 2017 International Conference on 3D Vision (3DV), pages

477–485. IEEE, 2017. 2

[17] Xianfeng David Gu, Ren Guo, Feng Luo, and Wei Zeng. Dis-

crete laplace-beltrami operator determines discrete rieman-

nian metric. arXiv preprint arXiv:1010.4070, 2010. 3

[18] Stefan Gumhold, Xinlong Wang, and Rob S MacLeod. Fea-

ture extraction from point clouds. In IMR. Citeseer, 2001.

1

[19] Oshri Halimi, Or Litany, Emanuele Rodolà, Alex Bronstein,
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