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Abstract

With the rapid growth of visual content, deep learning

to hash is gaining popularity in the image retrieval com-

munity recently. Although it greatly facilitates search ef-

ficiency, privacy is also at risks when images on the web

are retrieved at a large scale and exploited as a rich mine

of personal information. An adversary can extract private

images by querying similar images from the targeted cat-

egory for any usable model. Existing methods based on

image processing preserve privacy at a sacrifice of percep-

tual quality. In this paper, we propose a new mechanism

based on adversarial examples to “stash” private images

in the deep hash space while maintaining perceptual sim-

ilarity. We first find that a simple approach of hamming

distance maximization is not robust against brute-force ad-

versaries. Then we develop a new loss function by maxi-

mizing the hamming distance to not only the original cate-

gory, but also the centers from all the classes, partitioned

into clusters of various sizes. The extensive experiment

shows that the proposed defense can harden the attacker’s

efforts by 2-7 orders of magnitude, without significant in-

crease of computational overhead and perceptual degrada-

tion. We also demonstrate 30-60% transferability in hash

space with a black-box setting. The code is available at:

https://github.com/sugarruy/hashstash

1. Introduction

A picture is worth a thousand words. The rapid growth of

large image and video collections has made content-based

image retrieval possible at a large scale, e.g. Google [1],

Pinterest [2], Bing [3] and TinEye [4]. Powered by deep

learning, they have been increasingly built into social net-

works [5], e-commerce [6,7](e.g., Pailitao from Taobao [8])

and fashion design [9] to capture semantic similarities from

visual queries for finer results. Social media, e-commerce

websites and even the user’s query are utilized as a rich mine

of images to train these systems. For instance, 100M pho-

tos and videos are uploaded everyday on Instagram [10];

more than 1G products are listed on Ebay [11]. Google

also claims a 7-day storage of queried and uploaded images

∗Corresponding author: Cong Wang, c1wang@odu.edu

and utilizes them for further analysis [12].

Although legislation (e.g. GDPR [13]) imposes restric-

tions on the usage of personal data, for the exploding vol-

ume of visual content, there still remains a vague defini-

tion of ownership as well as a weak legal boundary between

what can be learned and what cannot, from an image. Fur-

ther, users’ awareness of their privacy remains quite sub-

jective towards latent, but sensitive information in their im-

ages. The resourceful visual content can be exploited in be-

wildering ways to learn private information such as family

member, location, income, personal interest or even sexual

orientation for accurate contextual advertising [14–17] or

spear phishing [18]. For example, Facebook has patented

a new application of predicting household demographics

based on image data [19]. Though these applications expe-

dite search efficiency and product offering, they also com-

promise user privacy and make privacy trampling easier at

a large scale. These issues stretch beyond social media and

search engines: any platform with content-based image re-

trieval shares the same risk of privacy leakage.

Unfortunately, there is less incentive for the platforms to

implement privacy guarantees, as long as they are faltering

in the grey area of legislation. It is always up to the users to

protect their own privacy. Previous approaches utilize im-

age processing such as blurring, darkening and occlusion

to evade face recognition [20] or disassociate friend tag-

ging [21], at a sacrifice of degraded visual quality. Another

thread of work is to establish a privacy-respecting protocol

by an identifiable tag [22, 23], so anyone wearing the pri-

vacy tag is excluded from the image. The success of these

systems relies on building sophisticated, trusted protocols

between the users and the platform, that demands commit-

ments from both sides.

These techniques may be fragile in the eyes of deep

learning, which can still extract useful information from

the local descriptors. The state-of-the-art image retrieval

adopts deep hashing for efficient similarity search [24–28].

It quantizes images in the database into low-dimensional bi-

nary codes during training, computes the hamming distance

from the queried image, and returns relevant images (inad-

vertently) gathered by the database. A well-trained model

would return images with high similarity (usually from the

same category). With some categorical information, e.g.,

gathering a few images from the targeted category, an ad-
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versary can query the database and retrieve all the images

including those private ones. Thus, to evade retrieval, pri-

vacy preservation entails opening the box of deep hashing

while maintaining perceptual similarity.

In this paper, we aim to minimize the chances for the pri-

vate images to be extracted by introducing a small, crafted

perturbation on the original image. Studied in [29–32],

deep neural networks are vulnerable to adversarial inputs

- perturbations that are inconspicuous to human eyes can be

added to cause misclassification. In principle, deep hash-

ing should inherit these vulnerabilities by design. A recent

work shows that maximizing the hamming distance from

the original image in hash space would make the system

return an irrelevant image to the query, which can be uti-

lized directly to protect the private images. Nevertheless,

by implementing the strategy, we find that it can only de-

fend weak adversaries, who only exploit the original cate-

gory. Strong adversaries are more common in reality; they

could enumerate all the categories and expose the private

images in brute force. To tackle this challenge, we pro-

pose a new cluster-based weighted distance maximization

that can transform the hash code into the subspaces away

from all the categories.

The main contributions are summarized below. First,

we propose to utilize adversarial techniques for privacy

preservation and identify the limitations of the existing ap-

proach against strong adversaries. Second, we develop a

new mechanism to stash samples into the hash space that

maximizes the hamming distance to all the classes, while

maintaining perceptual similarity. Finally, we conduct ex-

periments on various datasets and demonstrate that the pro-

posed mechanism successfully hardens the attack efforts by

1-3 orders of magnitude compared to [33], while achiev-

ing minimal perceptual dissimilarity. We show that 30-60%

of the protected images can successfully transfer to an un-

known model in a blackbox setting.

The rest of the paper is organized as follows. Section 2

introduces the related works. Section 3 motivates this study

by defining the threat model and identifying the limits of

the existing approach. Section 4 presents a new defense

against strong adversaries. Section 5 evaluates the proposed

mechanism and Section 6 concludes this work.

2. Background and Related Works

2.1. Deep Image Retrieval

Traditional image retrieval works on a vector of hand-

crafted visual descriptors [34, 35], followed by a separate

process of projection and quantization to encode feature

vectors into binary codes. Propelled by the success of

deep learning, the new deep image retrieval enables learn-

ing of pairwise similarity from end-to-end [24–27]. It trans-

forms high-dimensional real-valued inputs into the binary

hash codes so similarity search can be performed efficiently

by calculating the hamming distance. These systems typ-

ically consist of a database and a model. The database

contains a finite set of images as the retrieval results; the

model accepts query and returns retrieved images. The ob-

jective is to learn a nonlinear hash function to map input

x → h(x) ∈ {−1,+1}m into an m-bit binary code. A

typical range of m is between 16 to 128 depending on the

application requirements, which is made less than the orig-

inal image dimension.

In addition to the convolutional and densely connected

layers, a hash layer is introduced for the binarization pro-

cess, in order to mitigate the quantization error. It converts

a continuous representation z into discrete hash code by the

sign function sgn(z). Since the sign function is not compat-

ible with backpropagation due to non-smoothness, the key

is to build a function for continuous approximation. For

example, HashNet [26] adopts the hyperbolic tangent func-

tion, sgn(z) = limβ→∞ tanh(βz). By tuning the scaling

parameter β during the learning process, the function con-

verges to the sign function when β → ∞. Similar to deep

features in their floating point format, hashing concentrates

similar images into a Hamming ball. The system usually de-

fines a retrieval threshold so any image with smaller ham-

ming distance would be returned as the query results. We

refer to the survey [28] for more details.

2.2. Adversarial Examples

In contrast to their super-human capabilities, neural net-

works are highly vulnerable to small perturbations, where

purposely crafted perturbations added to the input can make

the system misbehave at run-time [29–32]. An efficient at-

tack is the fast gradient sign method [30]. It takes a large

step in the gradient directions to maximize the loss function,

by finding a perturbed image x′ with small additive noise ǫ
such that f(x′) 6= f(x).

x′ = x+ ǫ · sgn(∇xL(θ, x, y)), (1)

where L(·) is the loss function. θ is the model parameter. ∇
is the gradient. x is the data and y is the true label. Instead

of making one-step gradient ascent, the method is extended

in [31] as the basic iterative method to apply (1) multiple

times and clip the image within the ǫ-constraint. Empir-

ical experiments demonstrate that these adversarial exam-

ples can not only “fool” the classifier, but also transfer be-

tween different models for black-box attacks [36, 37].

2.3. Privacy Preserving

Previous efforts of preserving privacy online mainly fo-

cus on web analytics [14, 15], mobile advertising [16, 17]

and behavioral tracking [38, 39]. To balance privacy and

utility, a popular approach is through differential privacy

that introduces noise to answers so the service provider can-

not detect the presence or absence of a user. Though these

mechanisms offer provable foundations on a statistical ba-

sis, they are not specialized in protecting inference of a sin-

gle record, such as the private image being retrieved from

the database. Privacy is a growing concern with the wide

adoption of deep learning based search methods. Only a
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few works have utilized adversarial examples for privacy

preservation. In [40], a strategy based on adversarial ex-

amples is developed to disable the object detections so it

cannot identify objects at the first place. An adversarial

technique is also developed in [33] to corrupt semantic re-

lationships and make the retrieval system return irrelevant

images. Our work extends [33] to tackle strong and adap-

tive adversaries.

3. Motivation

This section motivates the research by defining the threat

model and investigating the mechanism in [33] as defense.

3.1. Threat Model

We first present the scenario and assumptions made in

this paper. Platforms such as social networks and search

engines usually collect user information including profile,

email, IP address and most importantly, pictures. The plat-

form has deployed a deep image retrieval system such as

HashNet-ResNet50 [26] to match imagery content from vi-

sual queries for marketing purposes. For profit, the platform

also opens an interface for third-party advertisers or data

brokers (escalated by calling them adversaries) [2, 4], who

can match and retrieve similar images from the database for

accurate advertising [38, 39]. Since the service is rated per

query, the platform does not impose any limit on the num-

ber of queries but the adversaries have a fixed amount of

budget. Users (defenders) have no control over the privacy

policy, therefore, they introduce perturbation to prevent per-

sonal images from being returned as the retrieval results.

The flowchart is illustrated in Fig.1.

To maximize retrieval quality, the adversary collects a

dataset (attack set) to resemble the database. Similarly, the

user also collects a dataset to facilitate the generation of the

perturbations. We assume both data sets are independent

and identically distributed (i.i.d) with the training set. For

simplicity, in this paper, it is implemented by random se-

lections from the test set. As a first proof of concept in the

hash space, we assume the user has complete knowledge

about the model (white-box) as [32, 33], including the in-

formation of category, structure, parameters, hashing mech-

anism and loss function. Then we demonstrate the existence

of black-box transferability of the proposed mechanism in

hash space, when users estimate the model architecture and

parameters at the best effort.

3.2. Hamming Distance Maximization as a Defense

The work of [33] fools the hash-based image retrieval

system by adversarial examples, which can be also lever-

aged as a privacy-preserving technique. The objective is

to maximize the distance between the perturbed image and

the original one, such that the hamming distance exceeds

the retrieval threshold for that category. More formally, it

transforms x into x′ by maximizing their hamming distance

Dh(x, x
′). Dh(x, x

′) can be deduced from the inner prod-

User: Alice

Image Database

Advertiser 

(adversary)

Social Platforms

#location: Paris, Eiffel tower

#people: Alice with 3 friends

#time: evening

#objects: casual wear, branded handbag

P
riv

a
te

In
fo

.

Match 

(location)

 Restaurant Promotion near 

eiffel tower (4 people)

Upload image

Retrieve 

Alice�s photo

1

2

3 Hash code: (1001011�.0101101)

4

5

6

Figure 1: Illustration of the attack flow: ❶ user uploads

a photo to the social platform; ❷ ❸ platform adds the

photo into the database, generates hash code; ❹ ❺ adver-

tiser matches the image via an identical query; ❻ advertiser

exploits location privacy from the image and pushes nearby

promotions onto the user’s mobile (even though she has dis-

abled location access on her phone).

uct of the m-bit hash code [41],

Dh(x, x
′) =

1

2
(m− h(x)h(x′)⊤), hi(x) ∈ {1,−1}1×m

(2)

where i ∈ [1,m] and m = 48 bits for the HashNet-

ResNet50 architecture. The goal is to adjust x′ such that

the hamming distance is maximized, maxx′ L(x′, x) =
− 1

m
h(x)h(x′)⊤. The problem can be re-written into a

least-square style minimization function [33, 41], and shift

the negative hash code by +1 to {0, 2}. The ǫ-constraint

maintains the perceptual similarity between x and x′.

min
x′

Lh(x
′, x) = ‖

1

m
h(x)h(x′)⊤ + 1‖22, (3)

s.t. |x− x′| < ǫ. (4)

Though effective against trivial queries targeting at the

original category of the protected image, the defense is

vulnerable when the adversary enumerates through the rest

categories and extracts the protected image by brute force.

This is because simple maximization of hamming distance

from the original image may unwittingly push the perturbed

image into the vicinity of other categories. Fig.2 visual-

izes such cases in t-SNE on the MNIST dataset. As ob-

served, simply hiding the private images into the subspaces

of some irrelevant categories is still susceptible to stronger

and adaptive adversaries. To gain more insights, we present

some preliminary results based on MNIST [42] and CI-

FAR10 [43] in Fig. 3.

3.3. Key Observations

The adversary could expose all private images by enu-

merating through the entire attack set. Since the adversary

is budget-limited, he wants to minimize such effort. Thus,
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Figure 2: t-SNE visualization of learned hash codes from

MNIST: hamming distance maximization has (accidentally)

driven the private image into an irrelevant category.

we evaluate the average number of queries for the adver-

sary to extract the private images, when a random image is

queried from the attack set each time. If a private image

is mapped to the vicinity of n images in the attack set of

size N , the probability of retrieving this image is n/N . The

expected number of queries is N/n.

Fig.3 shows the expected number of queries against

strong attackers and the defense efforts in terms of itera-

tions to generate the crafted perturbations [33]. The re-

trieval threshold Th is selected according to the best F-1

score and precision.
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Figure 3: Brute-force attacks against [33] as a defense (a)

expected number of queries to extract private images; (b)

defense budget (# iterations).

Observation 1. The attack efforts trend up parabolically

with the increasing hamming distance between x and x′.

However, a strong adversary can still extract the private im-

ages within 100 queries for most of the hamming distances.

Observation 2. The average hamming distance is difficult

to maximize further after a certain number of iterations. For

example, its average saturates around 40 and 35 after 100

iterations on MNIST and CIFAR10 as observed in Fig.3(b),

leaving a large gap to the total hash bits of m = 48.

Observation 3. When the categorical features are more dis-

persed in the hamming space, the protected image is more

prone to fall into the retrieval threshold of some samples.

It is validated in Fig. 3 given that the attacks on CIFAR10

require less effort than MNIST, due to higher intra-class di-

versity of CIFAR10. This makes the defense using ham-

ming distance maximization flimsy in the real world, where

data has complex and high intra/inter-class diversity.

We can see from these observations that defense is chal-

lenging against strong adversaries. Instead of naive maxi-

mization from the original category, the optimization should

be guided within a narrow subspace to avoid being: 1) ex-

posed from the original category; 2) extracted via querying

the rest categories; 3) degrading visual quality. To meet

these requirements, we propose a new mechanism in the

next section.

4. Cluster-based Weighted Distance Maximiza-
tion

We propose a new mechanism called cluster-based

weighted distance maximization. The idea is parallel to the

center loss [44], which aims to enhance the discrimination

of inter-class features and pull the intra-class features to-

wards their centers for better classification. Here, however,

we are learning through the adversarial lens for generat-

ing a hashcode via perturbing the input image, such that

the distance to the hash centers is maximized. To account

for intra-class variations, we represent each class with sev-

eral centers, rather than a single one [44]. The hamming

distance to the centers also exhibits heterogenous distribu-

tions across various categories. Samples may have high

density around the center for some categories while others

may scatter more evenly. Thus, the optimization should be

aware of the intra-class distributions and their hamming dis-

tance to the center; otherwise, the protected image may fall

into high-density regions, where all the samples have simi-

lar hash codes. The attacker can easily exploit these regions

to retrieve the private image with high chances.

Our Mechanism. To address intra-class variations, we fur-

ther partition the hash codes by a clustering method. For

the set of hash codes {h(xi)}i=1,··· ,N , we re-organize them

into a number of k distinct clusters Ci, 1 ≤ i ≤ k. Exist-

ing clustering techniques such as k-means [45] and density-

based DBSCAN [46] can be adopted (their pros and cons

will be compared in Sec. 5.1).

After the clusters are found, we develop a weighted loss

function to characterize the in-cluster hamming distance

distribution. The goal is to push x′ away from the cluster

centers such that the number of samples returned by a query

using x′ is minimized. Because hamming distance is sym-

metric, this is equivalent to our original intention that max-

imizes Dh(x, x
′), so x′ is not returned by the query, when

the attacker queries any image x from Ci. Define Fi(d) as

the cumulative distribution of the number of samples with

distance d from center ci. For a total number of k clusters,
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Figure 4: Least square approximation of in-cluster sam-

ple distributions using hyperbolic tangent, exponential and

quadratic functions on CIFAR10 with k-means clustering

(a) Cluster #6; (b) Cluster #13.

the new objective minimizes a new loss function Lc defined

as,

min
x′

Lc(x
′) =

k
∑

i=1

‖Fi

(1

2
(m− h(x′)h(ci)

⊤)
)

‖22, (5)

s.t.|x− x′| < ǫ. (6)

where h(ci) is the hash code of the i-th cluster center ci, m
is the total hash bits (m = 48).

Optimization. Set the initial image of x′ as x, x′ can be

updated in an iterative manner,

x′ = clipx,ǫ
(

x′ + ǫ · ∇xLc(θ, h(x
′), {h(ci)}

k
i=1)

)

(7)

The gradient of the loss function can be calculated as,

∂Lc

∂h(x′) =
∑k

i=1 2Fi

(

Dh(x
′, ci)

)

∂Fi(Dh(x
′,ci))

∂Dh(x′,ci)
∂Dh(x

′,ci)
∂h(x′)

= −
∑k

i=1 Fi

(

Dh(x
′, ci)

)∂Fi

(

Dh(x
′,ci)

)

∂Dh(x′,ci)
h(ci). (8)

To use gradient-based optimization, Fi(·) should be a dif-

ferentiable function. We learn a least square regression for

each cluster 1 ≤ i ≤ k, based on the hamming distance j to

the center (j ∈ [1, 30]) and the number of samples yj ,

F̂i = argmin
Fi

m
∑

j=1

‖Fi(dj)− yj‖
2
2. (9)

The parameters can be derived by a closed form solution,

β̂ = (dTd)−1dTy.

To examine the effectiveness of regression, we plot the

relationships between the d and y (shown as “Original”)

in Fig.4 for CIFAR10. In most of the cases, the im-

ages are concentrated around the cluster centers (Fig.4(a)).

There are also some clusters that samples are more scat-

tered (Fig.4(b)). To minimize the square error, it is tempting

to adopt high-order polynomials for better characterization,

but they would slow down the defense process due to high

computations. For training stability, we adopt quadratic re-

gression and compare them with nonlinear regressions of

hyperbolic tangent and exponential in Fig. 4. The quadratic

regression demonstrates empirical advantages summarized

by the following properties.

Property 1. The convexity of quadratic function facilitates

the convergence of the loss function. Though both hyper-

bolic tangent and exponential functions fit the distribution

better (almost perfectly for tanh), they are not stable dur-

ing training.

For tanh, the gradient vanishes for most of the clusters

and the loss function is unable to converge. We conjecture

that the failure is due to the original distance distribution

having a high concentration of samples close to the cluster

center and a flat, long tail with gradients almost equal to

zero. Since tanh fits such distribution perfectly, the flat tail

is causing the gradient to vanish and no subsequent updates

from the backpropagation. For the exponential function, it

tends to overfit when d is small (overshoots around the clus-

ter center with small distance). Our test indicates that when

d → 0, Fi(d) → ∞ for some clusters and this brings insta-

bility to the backpropagation process.

Property 2. Denote the quadratic parameters as

(βi
0, β

i
1, β

i
2), 1 ≤ ∀i ≤ k, and the largest hamming dis-

tance to the center (radius) as, ri = maxDh(x, ci), x ∈ Ci.

If −
βi

1

2βi

0

> ri + Th and x is mapped to x′ such that Lc is

minimized, it is guaranteed that x′ will not be returned as

query results.

In Fig.4(a), −
βi

1

2βi

0

is the distance corresponds to the mini-

mum value of the quadratic function, which is the optimiza-

tion goal. If it is larger than the sum of the retrieval thresh-

old and the radius, using any samples from the cluster will

not be able to fetch x′. This condition holds for most clus-

ters because the samples tend to concentrate in high density

around the centers. For the rest of clusters like shown in

Fig.4(b), though optimization is able to reach the minimum

value (around 30 in hamming distance), it has to balance the

influence from other clusters as well. That is, maximizing

the distance to a single cluster may accidently push the pro-

tected image into the proximity of other clusters. Our loss

function is designed in a way to mitigate such effects based

on the in-cluster distributions.

5. Evaluation

The main goal of evaluation is to investigate: 1) effec-

tiveness of the proposed mechanism in both white-box and

black-box settings; 2) defense budget in terms of compu-

tational efforts; 3) perceptual similarity from the original

image.

Dataset. We conduct the experiments on four datasets:

CIFAR10 [43], Fashion-MNIST [47], ImageNet [48] and

Places365 [49]. Places365 mimics the scenario when

privacy is exploited from location similarity. Follow-

ing [26], we randomly select 10% categories of ImageNet

and Places365.

Implementation Details. We train HashNet-ResNet50

for CIFAR10/Fashion and HashNet-ResNet152 for Ima-

geNet/Places365. We randomly select 500 images from the
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Figure 5: Expected number queries to expose the private images with strong and weak adversaries (larger indicates higher

robustness) (a) Weak adversary (Th with best f-1 score); (b) Strong adversary (Th with best f-1 score); (c) Weak adversary

(Th with best precision); (d) Strong adversary (Th with best precision).

test set as the private images to be protected and use the rest

of the test set as the attack set. The retrieval threshold Th is

selected when the best F-1 score (Th = 15, 16, 12, 10) and

the best precision (Th = 8, 6, 8, 8) are achieved for the four

datasets, respectively.

Baselines. We compare our mechanism with a combination

of baselines: no defense and hamming distance maximiza-

tion [33] against the weak adversary and strong adversary.

The weak adversary has some knowledge about the private

image so he only queries the original category. The strong

adversary enumerates through the entire test set of all cate-

gories.

Metrics. Based on the threat model, the adversary ran-

domly picks images from the attack set to expose the private

images. The mechanisms are evaluated thoroughly based

on the following metrics: 1) Expected number of queries of

weak adversary Ew,

Ew =
total # attack images

avg # img retrieved (same class)
.

2) Expected number of queries of strong adversary Es,

Es =
total # attack images

avg # img retrieved (all class)
.

These metrics quantify the efforts from the attacker. 3) De-

fense effort in terms of the number of iterations and com-

putational time using a sole Nvidia GTX1070 GPU. 4) Per-

ceptual difference between x and x′ by the two metrics, a)

mean square error, MSE =
∑

i(x
′
i − xi)

2/N , where xi, x
′
i

are the normalized pixel values of the original and protected

images and N is the dimensionality of the image; b) Struc-

tural similarity index that captures structural similarities to

emulate human visual [50].

5.1. Attack Efforts

Fig.5 compares the attack efforts of the cluster-based

weighted hamming distance maximization (CWDM) with

the hamming distance maximization (HDM) [33] and the

no defense baseline. We can see that with “no defense”, the

adversary can simply extract the private images from the

database within 10 queries for CIFAR10/Fashion and 100
queries for ImageNet/Places365. For weak adversary, our

mechanism CWDM is a little worse or on par with HDM.

This is because the hash code found by CWDM is not as far

as HDM from the original image, because CWDM has to

consider distance from the rest categories to defend strong

adversary. As a result, for strong adversary, CWDM effec-

tively hardens the attack effort by 1-3 orders of magnitude

than HDM, and 2-7 orders of magnitude than “no defense”.

E.g, for best precision, 1.1M, 58M, 0.77M and 20K number

of queries are required on average, which are prohibitive

for attackers with finite resources. In practice, adversaries

may not know exactly what categories the private images

are from, so a viable way is to explore all possible cate-

gories. CWDM successfully enlarges the attack efforts in

this case.

Clustering Techniques. We assess the impact from the

clustering techniques in Fig.6 between k-means [45] and

DBSCAN [46]. For k-means, we increase the number of

clusters k from 15 to 30 for CIFAR10/Fashion, 150 to 300
for ImageNet and 54 to 108 for Places365; for DBSCAN,

we increase EPS (maximum distance between two samples

in order to be clustered) from 0.5 to 3.5. With a larger k, k-

means tends to result more compact clusters with less intra-

cluster distance, which leads to a general trend of higher ro-

bustness against strong adversaries. DBSCAN is more sen-

sitive to distribution density and the value of EPS (e.g., the

surge when eps = 2.5). k-means offers better predictabil-

ity, and performance than DBSCAN by almost an order of

magnitude. The main reason is because DBSCAN explic-

itly categorizes samples with distance larger than the EPS

as outliers; CWDM does not account for these outliers dur-

ing optimization thus leaving some risks, if the attack sam-

ple is identical to the outliers. An exception is Places365

where the learned hashcodes of selected categories are more

concentrated than ImageNet and the outliers are less. This

makes DBSCAN better than k-means on Places365.

5.2. Defense Efforts

Defense efforts are measured by the hardness of finding

the adversarial example in hash space. HDM only pays at-

tention to the original category, thus should be much easier

to optimize in general (which takes about 20 iterations to

reach equilibrium as shown in Fig.3(b)). On the other hand,

CWDM balances the influence from all the class distribu-

tions and the quadratic regression introduce additional com-
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Figure 6: Impact of clustering techniques on attack efforts

(a) k-means; (b) DBSCAN.
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Figure 7: Defense budget (convergence) - hamming dis-

tance from the protected image to different classes (a) CI-

FAR10; (b) ImageNet.

putation overhead. Fig.7 traces the convergence of ham-

ming distance to the original class, average and minimum

distance to all classes. It is observed that CWDM quickly

enlarges the distance from the original class beyond the

retrieval threshold (preventing retrieval from weak adver-

saries). “Minimum distance” tracks the class with the mini-

mum hamming distance. It converges a little slower than the

original class, because it represents those hard classes dur-

ing optimization. This explains why a few samples from

irrelevant classes could still fall into the retrieval thresh-

old and lead to the success of strong adversaries. Overall,

the “average distance” summarizes the convergence from

all classes, and reaches a value larger than the retrieval

threshold so most of the queries should return no result

for protected images. Computationally, using the Nvidia

GTX1070 GPU, an image takes about 4s with 100 itera-

tions, which is quite practical in real applications. A speed-

up strategy is to increase the learning rate, but at a cost of

degraded success rate of generating the protected image.

5.3. Useability

Perturbation Artifacts. We compare the amount of pertur-

bations introduced onto the private images with some ex-

amples in Fig. 8. To visualize the noise clearly, we scale up

their values by four times with a 0.5 uplift to offset any neg-

ative adversarial values. We can see that noise from CWDM

concentrates more around the object, whereas HDM tends

to distribute the noise across the entire image. To quan-

tify the nuances, we further evaluate the average MSE and

SSIM from the original image in Table 1. The MSE is av-

Figure 8: Perturbed image using HDM, CWDM and their

normalized difference to the original image.

MSE(per pixel 10−5) SSIM ([0, 1])

HDM CWDM HDM CWDM

CIFAR10 3.4071 2.0022 0.8971 0.9751

Fashion 2.9107 2.0757 0.8038 0.8907

ImageNet 3.0957 3.2244 0.9614 0.9611

Places365 2.3470 3.0031 0.9721 0.9628

Table 1: Perturbations measured by MSE and SSIM

eraged per pixel value by dividing 224 × 224 × 3. SSIM

falls in the range of [0, 1], where 1 means the image is iden-

tical to the original one, and a less value means the dis-

tortion is higher. For CWDM, the MSE is 37% less than

HDM for CIFAR10/Fashion and SSIM is almost identical

to the original image by reaching a score over 0.9 on aver-

age. This is because the objective of maximized hamming

distance would push the protected image further away from

the original sample in hash space, whereas CWDM is more

moderately looking for a subspace not far from the deci-

sion boundaries (retrieval threshold). The noise for Ima-

geNet/Places365 is slightly higher because more scattered

samples and clusters make it harder to find a subspace to

hide, thereby demanding strengthened perturbations. Fortu-

nately, the additive noise does not turn out to be significant

measured by SSIM (last two columns).

Classification Tasks. Social platforms also provide func-

tions such as automatic photo classification, object and text

recognition. These tasks typically adopt different loss func-

tions (e.g., softmax). Since the perturbations are applied

globally, we show that they do not transfer to the normal

feature space, and mislead softmax classifications. Table

2 demonstrates the accuracy loss of classification tasks by

applying CWDM samples to the original models. The first
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Original Adversarial (CWDM))

HashNet Softmax HashNet Softmax

CIFAR10 0.870 0.904 0.097 0.831

Fashion 0.896 0.936 0.191 0.934

ImageNet 0.882 0.908 0.008 0.817

Places365 0.862 0.853 0.143 0.731

Table 2: Evaluation of potential accuracy loss on classifica-

tion tasks.

two columns are the baselines of the original retrieval ac-

curacy and softmax classification respectively (100 random

categories for ImageNet). The third column shows the ef-

fectiveness of CWDM that reduces retrieval accuracy be-

low 20%. When the protected image are applied to softmax

classification (the fourth column), the result does not ren-

der significant accuracy loss (compared to the 2nd column).

It is interesting to see that, though the hash space pertur-

bations have influence in the normal feature space, neural

networks can treat them as random noise in general so their

existence should not impact other smart applications.

5.4. Blackbox Defense

The previous subsections evaluate the scenario when

users have full knowledge of the architecture and parame-

ters of the model on the server (white-box). In practice, the

proprietary model usually remains a black box to the users,

such that they can only make their best guess of the tar-

get model. Empirical evidence has shown that adversarial

perturbations can transfer across models in normal feature

space [36, 37]. Here, we demonstrate transferability of our

mechanism in the hash space.

We fix the target model (server side) and generate the

protected image using different source models (user side).

Black-box transferability is difficult given that the source

and target models usually have different decision bound-

aries. Strong adversary from the server side can further

take advantages of any nuance in such boundaries to ex-

pose the protected image. Thus, we consider the black-box

scenario to be successful, as long as there are less than n
samples that can be exploited to extract a protected im-

age. We define the defense success rate as the ratio be-

tween the number of protected images that have less than

n retrieval results in the target model and the total number

of protected images. We set n = 100 here since it would

take the adversary considerable efforts to find these 100 im-

ages from the 50K/60K/100K/36K attack sets. We adopt

different architectures on the four datasets due to the per-

formance gap from the original HashNet, i.e., ResNet50

and architectures of less complexity exhibit much lower

accuracy on the ImageNet. Thus, we set ResNet50∗ and

ResNet152∗ as the target models for CIFAR10/Fashion and

ImageNet/Places365 respectively, use ResNet18, ResNet34

and VGG16 as the source model for CIFAR10/Fashion,

and ResNet50, ResNet101 and ResNext101 [51] for Ima-

geNet/Places365.

Table 3 shows the success rate of transferability to tar-

get models (col.2-4) and benchmarks the results with the

“no defense” baseline as the lower bound (col.5). For CI-

FAR10/Fashion, CWDM-protected image can successfully

transfer with a rate of 40-60% within the ResNet family,

possibly due to similar decision boundaries. Transferability

also exists for ImageNet/Places365 about 20-40%. VGG16

has less chance to transfer. Thus, in a blackbox setting, if

the user makes the correct guess of the target architecture,

her images can be protected almost perfectly based on the

previous white-box experiments; if the guess falls off a lit-

tle, she still enjoys nearly 30-50% on average, which offers

considerable improvement over “no defense” (col. 5).

ResN50∗ ResN18 ResN34 VGG16 No def.

CIFAR10 44.13 40.96 22.39 9.8

Fashion 56.99 60.32 51.85 5.8

ResN152∗ ResN50 ResN101 ResNext101 No def.

ImageNet 22.40 36.40 33.40 13.20

Places365 45.09 40.36 30.79 11.86

Table 3: Defense success rate of black-box transferability

from ResNet50∗ and ResNet152∗ to different architectures

(%).

5.5. Discussion

Without knowing our defense, the attacker strives to col-

lect a dataset that resembles the training set to extract the

private, similar images. Our mechanism successfully de-

fends against these attackers when their attack sets are i.i.d.

with the training set. Due to space limit, we will conduct

more experiments to evaluate active attackers when they de-

viate from the i.i.d settings. The accuracy from the original

HashNet also affects the effectiveness of the defense. For

example, ResNet18-50 do not achieve satisfied accuracy to

map semantically similar images into identical and compact

hash codes on ImageNet/Places365. The learned codes are

more scattered, thereby squeezing the optimization space to

successfully perturb the image and prevent from retrieval.

Since the service providers typically finetune their models,

we expect the proposed mechanism to be effective against

the production models with high accuracy.

6. Conclusion

In this paper, we describe efforts to protect private im-

ages from malicious deep image retrieval. We first iden-

tify and experimentally validate the effectiveness of using

adversarial perturbations as a defense in the hash space.

By showing vulnerabilities against strong adversaries, we

propose a new mechanism to find an alternative subspace

that maximizes the weighted hamming distance to all the

classes. We evaluate the efforts from both the attack and de-

fense perspectives, useability, and black-box transferability

with extensive experimental results.
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