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Abstract

Modern image classification systems are often built

on deep neural networks, which suffer from adversarial

examples—images with deliberately crafted, imperceptible

noise to mislead the network’s classification. To defend

against adversarial examples, a plausible idea is to obfus-

cate the network’s gradient with respect to the input image.

This general idea has inspired a long line of defense methods.

Yet, almost all of them have proven vulnerable.

We revisit this seemingly flawed idea from a radically

different perspective. We embrace the omnipresence of ad-

versarial examples and the numerical procedure of crafting

them, and turn this harmful attacking process into a useful

defense mechanism. Our defense method is conceptually

simple: before feeding an input image for classification,

transform it by finding an adversarial example on a pre-

trained external model. We evaluate our method against a

wide range of possible attacks. On both CIFAR-10 and Tiny

ImageNet datasets, our method is significantly more robust

than state-of-the-art methods. Particularly, in comparison to

adversarial training, our method offers lower training cost

as well as stronger robustness.

1. Introduction
Deep neural networks have vastly improved the perfor-

mance of image classification systems. Yet they are prone

to adversarial examples. Those are natural images with de-

liberately crafted, imperceptible noise, aiming to mislead

the network’s decision entirely [5, 41]. In numerous appli-

cations, from face recognition authorization to autonomous

cars [36, 43], the vulnerability caused by adversarial exam-

ples gives rise to serious security concerns and presses for

efficient defense mechanisms.

The defense, unfortunately, remains grim. Recent stud-

ies [34, 45, 12] suggest that the prevalence of adversarial

examples may be an inherent property of high-dimensional

natural data distributions. Facing this intrinsic difficulty of

eliminating adversarial examples, a plausible thought is to

conceal them—making them hard to find. Indeed, a long
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Figure 1. A simple and effective defense mechanism. Given an

input image, our defense method first transforms it through the pro-

cess of crafting adversarial examples on a pre-trained simple model

fb, deliberately adding strong adversarial noise. The transformed

image is then fed into another model fa for classification. The

same pipeline is applied in both training and inference.

line of works aims to obfuscate the network model’s gradient

with respect to its input [50, 14, 49, 7, 39, 33], motivated by

the fact that the gradient information is essential for crafting

adversarial examples: the gradient indicates how to perturb

the input to alter the network’s decision.

Yet, almost all these gradient obfuscation based defenses

have proven vulnerable. In their recent seminal work, Atha-

lye et al. [2] presented a suite of strategies for estimating

network gradients in the presence of gradient obfuscation.

Adversarial examples crafted by their method have success-

fully fooled many existing defense models, some of which

even yield 0% accuracy under their attack.

We revisit the idea of gradient obfuscation but take a

radically different approach. Instead of expelling adversarial

examples, we embrace them. Instead of obstructing the way

of finding adversarial examples on a model, we exploit it to

strengthen the robustness of another model.

Our defense is conceptually simple: before feeding an in-

put image to a classification model, we transform it through

the process of finding adversarial examples on an external

model. Mathematically, if we use f(x) to denote the model

that classifies an input image x, our defense model is ex-

pressed as f(g(x)), where g(·) represents the process of

finding an adversarial example near x on a pre-trained exter-

nal model (see Fig. 1).
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The robustness of our defense model f(g(x)) stems from

the fundamental difficulties of estimating the gradient of

g(x) with respect to x. Finding an adversarial example

amounts to searching for a local minimum on a highly fluctu-

ated objective landscape [26]. As a result, g(x) is not an ana-

lytic function, not smooth, not deterministic, but an iterative

procedure with random initialization and non-differentiable

operators. We show that all these traits together constitute a

highly robust defense mechanism.

We play devil’s advocate in attacking our defense model

thoroughly. We examine a wide range of possible attacks,

including those having successfully circumvented many pre-

vious defenses [2]. Under these attacks, we compare the

worst-case robustness of our method with state-of-the-art

defense methods on both CIFAR-10 and Tiny ImageNet

datasets. Our defense demonstrates superior robustness over

those methods. Particularly, in comparison to models opti-

mized with adversarial training—by far the most effective

defense against white-box attacks—our method offers simul-

taneously lower training cost and stronger robustness.

2. Related Work
Adversarial attack. The seminal work of Biggio et al. [5]

and Szegedy et al. [41] first suggested the existence of ad-

versarial examples that can mislead deep neural networks.

The latter also used a constrained L-BFGS to find adversar-

ial examples. Goodfellow et al. [13] later introduced Fast

Gradient Sign Method (FGSM) that generates adversarial ex-

amples more efficiently. Madry et al. [26] further formalized

the problem of adversarial attacks and proposed Projected

Gradient Descent (PGD) method, which further inspires

many subsequent attacking methods [11, 8, 28, 19]. PGD-

type methods are considered the strongest attacks based on

first-order information, namely the network’s gradient with

respect to the input [26]. To compute the gradients, the ad-

versary must have full access to the network structure and

parameters. This scenario is referred as the white-box attack.

When the adversary has no knowledge about the model,

the attack, referred as black-box attack, is not as easy as

the white-box attack. By far the most popular black-box

attack is the so-called transfer attack, which uses adversarial

examples generated on a known model (e.g., using PGD) to

attack an unknown model [30]. Several methods (e.g., [44,

3, 52, 16]) are proposed to improve the transferability of

the adversarial examples so that the adversarial examples

generated on one model are more likely to fool another

model. Another type of black-box attacking methods is

query-based [6, 37, 9, 1, 20]: they execute the model many

times with different input in order to learn the behavior of

the model and construct adversarial examples.

While our defense is motivated by attacks in white-box

scenarios, we evaluate our method under a wide range of pos-

sibilities, including both white-box and black-box attacks.

Adversarial defense. The threat of adversarial examples

has motivated active studies of defense mechanisms. By

far the most successful defense against white-box attacks is

adversarial training [26, 13, 38], and a rich set of methods

has been proposed to accelerate its training speed or further

improve its robustness [51, 54, 21, 13, 46, 35, 53, 29, 27]. In

comparison to adversarial training, our method offers both

stronger robustness and lower training cost.

To defend against gradient-based attacks (such as the

PGD attack), a natural idea is to obfuscate (or mask) network

gradients [30, 44]. To this end, there exist a long line of

works that apply random transformation to input images [50,

14], or employ stochastic activation functions [10] and non-

differentiable operators in the model [49, 7, 39, 33].

Unfortunately, many of these methods have proven vulner-

able by Athalye et al. [2], who introduced a set of attacking

strategies, including a method called Backward Pass Differ-

entiable Approximation (BPDA), to circumvent gradient ob-

fuscation (see further discussion in Sec. 3.1 and 3.3). Since

then, a few other gradient obfuscation based defenses have

been proposed [23, 31, 17, 42, 22]. But those works either

report degraded robustness under BPDA attacks [23, 31] or

neglected the evaluation against BPDA attacks [17, 42, 22].

Thus far, gradient obfuscation is generally considered

vulnerable (and at least incomplete) [2]. We revisit gradient

obfuscation, and our defense demonstrates unprecedented

robustness against BPDA and other possible attacks.

3. Defense via Adversarial Transformation
We now present a simple approach to defend against ad-

versarial attacks. We will first motivate and describe our

adversarial transformation (Sec. 3.1 and 3.2), and then pro-

vide the rationale of why it improves adversarial robustness

(Sec. 3.3 and 3.4), backed by empirical evidence (Sec. 4).

3.1. Motivation: Input Transformation
An attempt that has been explored in adversarial defense—

albeit unsuccessfully so far—is the defense via input transfor-

mation. Consider a neural network model fa that classifies

the input image x (i.e., evaluating fa(x)). Instead of feed-

ing x into fa directly, this defense approach transforms the

input image through an operator g before presenting it to the

classification model (i.e., evaluating fa(g(x))).
The transformation g is applied in both training and infer-

ence. Provided a training dataset X , the network weights θ

are optimized by solving

θ∗ = argmin
θ

E
(x,y)∈X

[ℓ(fa(g(x);θ), y)] , (1)

where x and y are respectively the image and its correspond-

ing label drawn from the training dataset, and ℓ is the loss

function (such as cross entropy for classification tasks). Cor-

respondingly, at inference time, the model predicts the label

of an input image x by evaluating fa(g(x)).
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Input transformation g(·) offers an opportunity to im-

plement the idea of gradient obfuscation. For example, by

transforming the input image with certain randomness such

as random resizing and padding [50], the network gradients

become hard to estimate.

Another use of g(·) for defense is to remove the noise

(or perturbations) in adversarial examples. For instance, g(·)
has been used to restore a natural image from a potentially

adversarial input, by projecting it on a GAN- or PixelCNN-

represented image manifold [33, 39] or regularizing the input

image through total variation minimization [14].

These input-transformation-based defense mechanisms

seem plausible. Yet they are all fragile. As demonstrated

by Athalye et al. [2], with random input transformation, ad-

versarial examples can still be found using Expectation over

Transformation [3], which estimates the network gradient

by taking the average over multiple trials (more details in

Sec. 3.3). The noise-removal transformation is also ineffec-

tive. One can use Backward Pass Differentiable Approxima-

tion [2] to easily construct effective adversarial examples. In

short, the current consensus is that input transformation as a

defense mechanism remains vulnerable.

We challenge this consensus. We now present a new input

transformation method for gradient obfuscation, followed by

the explanation of why it is able to avoid the shortcomings

of prior work and offer stronger adversarial robustness.

3.2. Adversarial Transformation
Our input transformation operation takes an approach op-

posite to the intuition behind previous methods [14, 39, 33].

In contrast to those aiming to purge input images of the adver-

sarial noise, we embrace adversarial noise. As we will show,

our transformation injects noticeably strong adversarial noise

into the input image. This seemingly counter-intuitive op-

eration is able to strengthen the network model in training,

making it more robust.

Our transformation operation relies on another network

model fb, whose choice will be discussed later in Sec. 3.4.

The model fb is pre-trained to perform the same task as fa.

Then, given an input image x, the transformation operator

g(·) is defined as the process that finds the adversarial exam-

ple nearby x to fool fb. Formally, this process is meant to

reach a local minimum of the optimization problem,

g(x) = argmin
x′∈∆x

ℓ(fb(x
′), yL), (2)

where ℓ(·) is the loss function as used in network training (1);

and yL is the adversarial target, setting to be the input x’s

least likely class predicted by fb. The adversarial examples

are restricted in ∆x, an L∞-ball at x, defined as ‖x′ −
x‖∞ < ∆. The perturbation range ∆ is a hyperparameter.

Transformation g(x) defined in (2) can be implemented

using any gradient-based attacking methods (such as Deep-

fool [28] and C&W [8]). We choose to use the least-likely

(a) (b) (c)
Figure 2. To launch a valid attack from an input image (a), the

adversarial example (b) must be perceptually similar to the original

image (e.g., here ∆ = 0.031). Otherwise, it can be easily pin-

pointed. In our method, the transformed image is used for training

fa, not attacking. We therefore intentionally add much stronger

adversarial noise to the input (c) (here ∆ = 0.2). The strong noise

helps to strengthen the robustness of fa and defend against BPDA

attacks (see Sec. 3.3).

class projected gradient descent (LL-PGD) method [19, 44].

LL-PGD is an iterative process, wherein each iteration up-

dates the adversarial example by the rule,

x′
t = Πx′∈∆x

[

x′
t−1 − ǫ · sgn(∇xℓ(fb(x

′
t−1), yL))

]

. (3)

Here x′
t denotes the adversarial example after t iterations;

sgn(·) is the sign function, and Πx′∈∆x
[·] projects the image

back into the allowed perturbation ball ∆x. This iterative

process starts from a random perturbation of input image x,

namely x+ δ, where each element (pixel) in δ is uniformly

drawn from [−∆,∆]. The output x′
N (after N iterations) is

the transformed version of x. In other words, g(x) = x′
N ,

which we refer as adversarial transformation.

After defining the adversarial transformation g(·) based

on the pre-trained model fb, we use g(·) to train the model

fa as described in (1). At inference time, the label of an

image x is predicted as fa(g(x)). Figure 1 illustrates the

pipeline of our method.

Differences from adversarial training. With adversarial

transformation, our training process superficially resembles

the adversarial training, because both training processes need

to search for adversarial examples of the input training data.

But fundamental differences exist. In adversarial training, a

single model fa is used for crafting adversarial examples and

evolving itself at each epoch, whereas our method involves

two models: the model fb is pre-trained and stays fixed

during both the training of fa and the inference using fa.

The consequence of using a fixed external model fb for

adversarial transformation is substantial. As we will discuss

in Sec. 3.4, fb can be chosen much simpler than fa. As

a result, crafting the adversarial examples on fb has lower

cost than that on fa, and thus our training process is faster

than adversarial training (see experiments in Sec. 5). More

remarkably, the adversarial transformation using fb makes

the model fa much harder to attack, as explained next.

3.3. Rationale behind Adversarial Transformation

Embracing adversarial noise. Given an input image x,

our adversarial transformation effectively adds perturbation
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noise to x. The perturbation range ∆ controls how much

noise is added. Normally, in adversarial attacks, ∆ is set

small to generate adversarial examples perceptually similar

to the input image. But when we use adversarial attacks (on

fb) as a means of input transformation for training fa, we

have the freedom to use a much larger ∆, thereby adding

noticeably stronger adversarial noise (see Fig. 2-c).

At training time, the excessively strong adversarial noise

forces the network fa to learn how to classify robustly. This

is because perturbations crafted on an external model can

approximate the adversarial examples of the model under

training (an insight inspired the prior work [44]). This reason,

although valid, can not explain how our method is able to

avoid the deficiencies of prior defense methods. There exist

deeper reasons:

Randomness. The adversarial noise added by our g(x) is

randomized, since the update rule (3) always starts from the

input image with a random perturbation (i.e., x + δ with

uniformly sampled δi ∼ [−∆,∆]). Randomization is not

new; prior defenses also employ randomized transformations

to the input. But they have been circumvented by Expecta-

tion Over Transformation (EOT) [2, 3]. EOT attack first

estimates the gradient of expected f(g(x)) with respect to x

using the relationship ∇Eg̃∼T f(g̃(x)) = Eg̃∼T ∇f(g̃(x)),
where g̃(·) is a deterministic version of g(·) sampled from

the distribution of randomized transformations T . It then

uses the estimated gradients in PGD-type attacks to generate

adversarial examples. Thus, the feasibility of EOT hinges

on a reliable estimation of ∇f(g̃(x)). In our method, g̃(x)
corresponds to solving the optimization problem (2) starting

from a particular sample x+ δ.

In what follows, we examine a range of strategies that

have been successfully used to estimate ∇f(g̃(x)) in prior

defense methods (and thus break them), and show that our

method is robust against all those attacking strategies.

Automatic differentiation. By chain rule, the estimation

of ∇f(g̃(x)) requires the knowledge of g̃(x)’s Jacobian

(first-order derivatives) Dg̃(x). A straightforward attempt

to this end is by unrolling the iterative steps (3) and using

automatic differentiation (AD) [47] to compute Dg̃(x). Yet,

this is infeasible. As shown in (3), the iterative steps involves

non-differentiable operators including sgn(·) and Πx′∈∆x
[·].

Thus, directly applying AD leads to erroneous estimation of

Dg̃(x), which in turn obstructs the search for adversarial ex-

amples. Our early experiments indeed show that virtually no

adversarial examples crafted using AD can fool our model.

Backward Pass Differentiable Approximation (BPDA).

To circumvent the defense using non-differentiable opera-

tors, Athalye et al. [2] introduced a strategy called Back-

ward Pass Differentiable Approximation (BPDA) to esti-

mate the defense model’s gradients. The idea is to replace

the non-differentiable operators in g̃ with differentiable ap-

proximations, and estimate the derivatives Dg̃(x) in AD by

Figure 3. (left) We show a 1D depiction of our input transforma-

tion g(x), the process aiming to find the local minimum of the

optimization problem (2). Starting from an x0 at the red dot, g(x)
will reach a position at the red star. Perturbing x0 toward one side

(to the red square), g(x) will still reach the red star, and in this way,

the finite difference gradient vanishes. But if x0 is perturbed to

the green square, g(x) will reach the green star—an entirely dif-

ferent local minimum, and the finite difference gradient explodes.

(right) We plot
∂g̃i(x)
∂xj

(for particular i and j here) estimated by

finite difference method (4) with an increasing hj . When hj is

extremely small (< 10−5), the estimated gradient vanishes; as hj

increases, the estimated gradient fluctuates severely, due to the

reason illustrated on the left.

computing the AD’s forward pass using the original g̃ and

computing its backward pass using g̃’s differentiable approx-

imation. BPDA has succeed in gradient-based attacks (such

as PGD and C&W [8]) toward many prior defenses, allowing

the adversary to craft efficient adversarial examples.

When applying BPDA to estimate the gradients of our

defense model, we replace sgn(·) and Πx′∈∆x
[·] in (3) with

their differentiable approximations (see Sec. 4.1 for details).

We found that if the number of iterations (LL-PGD steps)

for applying (3) is low (i.e., ≤ 2), BPDA indeed enables the

adversary to find valid adversarial examples. But when the

number of iterations is set moderately high (i.e., > 4), BPDA

is greatly thwarted; the adversary can hardly find any valid

adversarial example (see Sec. 4.1). This is because the dif-

ferentiable approximations must be applied in each iteration,

and as the number of iterations increases, the approximation

error accumulates rapidly.

Finite difference gradients. Another strategy for estimat-

ing Dg̃(x) is the classic finite difference estimation. Each

element in the Jacobian matrix Dg̃(x) can be estimated using

∂g̃i(x)

∂xj

≈
1

2h
[g̃i(x+ hj)− g̃i(x− hj)] , (4)

where g̃i(x) indicates the i-th element (or pixel) of the trans-

formed image, and hj is a vector with all zeros except the

j-th element (or pixel) which has a value h.

Our defense inherently thwarts this attacking strategy.

It causes the adversary to suffer from either exploding or

vanishing gradients [2]. Figure 3-left shows a 1D depic-

tion illustrating this phenomenon in our method. Indeed,

our experiments confirm that it is too unreliable to estimate

derivatives using (4) (see Fig. 3-right).

Reparameterization. Vanishing and exploding gradients

have been exploited as a defense mechanism [39, 33]. Yet
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those defenses have been proven vulnerable under a reparam-

eterization strategy [2]. This strategy aims to find some dif-

ferentiable function h(·) for a change-of-variable x = h(z)
such that g̃(h(z)) ≈ h(z). If such a function h(·) can be

found, then one can compute the gradient of the differen-

tiable function f(h(z)) to launch adversarial attack.

To break our defense using this strategy, one must find an

h(·) that constructs the adversarial examples of fb directly

(so that g̃(h(·)) = h(·)), without solving the optimization

problem (2). We argue that finding such an h(·) is extremely

hard. If h(·) could be constructed, we would have a direct

way of crafting adversarial examples; PGD-type iterations

would not be needed; and the entire territory of adversarial

learning would be redefined—which are unlikely to happen.

Indeed, we implemented this strategy by training a neural

network model hθ that aims to minimize ‖hθ(x)− g̃(x)‖2
over the natural image distribution. This attempt is futile.

Our experiments show that the generalization error of the

trained hθ is too high to launch any valid adversarial attack

(see Appendix A.2). This conclusion also echos the prior

studies [4, 48], which show that learning-based adversarial

attacks usually perform worse than gradient-based attacks.

Identity mapping approximation. Some prior defense

methods also use an optimization process to transform the

input image—for example, the optimization that aims to

erase adversarial noise from the input image [14, 33]. In

those defenses, the transformed image g(x) remain similar

to the input x. Consequently, as shown in [2], those defenses

can be easily circumvented by replacing g(·) with the identity

mapping in the backward pass of BPDA attack.

Similarly, in our defense, if the perturbation range ∆
in (3) for defining g(·) were set small, g(x) (the adversarial

example of fb) would be close to x, and our defense would

be at risk. To prevent this vulnerability, we must ensure that

g(·) be far from the identity mapping. This requires us to set

a relatively large ∆. In practice, we use ∆ = 0.2 for pixel

values ranging in [0, 1] (see details in Sec. 4.1).

It turns out that a relatively large ∆ is necessary but not

sufficient. The choice of the network model fb also affects

how far g(x) is from x statistically, as we will discuss next.

3.4. Choosing Pre­trained Model fb

A large perturbation range ∆ allows our adversarial trans-

formation g(·) to output an image far from the input. Yet,

because of the randomness in g(·), a large ∆x can not guar-

antee that g(x) is statistically different from x. If the expec-

tation over the transformation Eg̃∼T g̃(x) remains close to

x, our defense method may still suffer from the aforemen-

tioned BPDA attack, in which identity mapping can be used

to approximate g(·) in the backward pass.

This intuition is supported by an empirical discovery. We

experimented with an input transformation g(·) constructed

using an untrained model f̄b whose weights are assigned

Expected
Adv. Image

Input Image 0 epoch
 = 0.006

1 epoch
 = 0.034

5 epochs
 = 0.048

15 epochs
 = 0.137

20 epochs
 = 0.141

Adv. trained
 = 0.263

Figure 4. We apply the adversarial transformation g(·) defined on

different models fb to an input image (top-left). Corresponding to

the six images toward the right are the fb models (with the same

network structure) untrained, trained with an increasing number of

epochs, and adversarially trained. In each of those six images, we

visualize the normalized difference between the input x and the ex-

pectation over transformation (EOT) image Eg̃∼T g̃(x) (estimated

using 5000 samples). The L∞ norms of the difference images are

shown under the images. Image in the red box (bottom-left) is the

EOT image Eg̃∼T g̃(x) produced using an adversarially trained fb
model. Because we intentionally use a large perturbation range

∆ = 0.2, this image has pronounced artifacts.

randomly. As shown in Fig. 4 and the first column in Table 1,

the expectation over transformation Eg̃∼T g̃(x) is indeed

close to x (in L∞ norm), and the BPDA attack with identity

mapping approximation can easily fool this defense model.

Next, we train a series of models f
(i)
b , each obtained with

an increasing number of training epochs. We found that

as the number of training epochs increases, the expectation

over transformation Eg̃∼T g̃(x) resulted by using each of

these f
(i)
b models drifts further away from x, that is, ‖x−

Eg̃∼T g̃(x)‖∞ increases. Meanwhile, the defense model

f(g(·)) trained with the corresponding f
(i)
b becomes more

robust, yielding increasingly better robust accuracy under

the BPDA attack (see Table 1).

Remarkably, we discover that an even larger distance

‖x − Eg̃∼T g̃(x)‖∞ can be obtained, if the model fb is

adversarially trained. When used in g(·), the adversarially

trained model fb further improves the robustness of our

defense model. This discovery confirms our intuition.

Computational performance. The choice of fb also af-

fects the computational cost of our defense method. A com-

plex network structure of fb makes g(·) expensive, which in

turn imposes a large performance overhead on both the train-

ing of fa and the inference using fa. Therefore, a simple

network structure is preferred.

The freedom of choosing a simple network fb brings our

method a performance advantage over adversarial training.

In adversarial training, adversarial examples are crafted on

the classification network fa for each input image at every
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Untrained 1 epoch 2 epochs 5 epochs 10 epochs 15 epochs 20 epochs Adv. trained

Standard Acc. 81.8% 81.6% 82.4% 83.0% 82.4% 82.2% 82.7% 82.9%

BPDA-I Acc. 30.6% 30.7% 40.0% 46.4% 62.3% 63.1% 62.9% 80.5%

Avg. L∞ dist. 0.005 0.033 0.036 0.067 0.130 0.133 0.136 0.272

Table 1. Discovery for choosing fb. Corresponding to individual columns are fb models untrained, trained with an increasing number

of epochs, and adversarially trained. For the defense model fa(g(·)) equipped with each fb, we evaluate its standard accuracy (first row)

and robust accuracy (second row) under the BPDA-I attack (see Sec. 4.1). The third row shows ‖x− Eg̃∼T g̃(x)‖∞ where Eg̃∼T g̃(x) is

estimated using 5000 samples. Notice the correlation between the increase of the L∞ distance and the increase of adversarial robustness.

epoch. In our training, however, by choosing a model fb
simpler than fa, it becomes faster to find adversarial exam-

ples. As shown in our experiments (in Sec. 5), in comparison

to adversarial training, our defense requires shorter training

time, and at the same time offers stronger robustness.

Guiding rules. In summary, we present two guiding rules

for choosing fb. 1) fb should be chosen to yield a large

‖x− Eg̃∼T g̃(x)‖∞ value. Given an fb’s network structure,

adversarial training on fb (in pre-training step) is preferred.

2) Meanwhile, the structure of fb should be as simple as

possible. In Appendix A.1, we report fb’s network structure

that we use in our experiments.

4. Devil’s Advocate

We now play devil’s advocate in attacking our defense

method. In our defense, the network gradient with respect to

the input (i.e., ∇fa(g(x))) is intentionally undefined. Thus

one can not craft adversarial examples by directly applying

PGD-type methods on our defense (recall Sec. 2). We there-

fore evaluate our defense against a range of other possible

attacks, including those discussed in Sec. 3.3. Later in Sec. 5,

we will compare the worst-case robustness of our defense

under these attacks with various recently proposed defense

methods. We also release our code for public evaluation1.

Common experiment setups. Experiments in this section

are conducted on CIFAR-10 dataset [18] with standard train-

ing/test split. We use ResNet18 [15] as the classification

model fa and a small VGG-style network for fb, whose de-

tails are given in Appendix A.1. All models are trained for 80

epochs using Stochastic Gradient Descent (SGD) (constant

learning rate=0.1, momentum=0.9). Our adversarial transfor-

mation g(·) performs LL-PGD update (3) for 13 iterations,

each with a stepsize ǫ = ∆/6. The perturbation range ∆
varies in individual experiments, and will be reported therein.

Metric. Following prior work, our evaluation uses an accu-

racy measure defined as the ratio of the number of correctly

classified images to the total number of tested images. We

refer to this measure as standard accuracy if the tested im-

ages include only clean images, and as robust accuracy if

the tested images consist of adversarially crafted images.

1https://github.com/a554b554/DefenseByAttack

4.1. BPDA Attack and the Variants

BPDA attack [2], as reviewed in Sec. 3.3, is a powerful

way to estimate network gradients that are obfuscated by

defense methods. The estimated gradients are then used in

PGD-type methods (if the defense is deterministic) or the

EOT method (if the defense is randomized) for crafting ad-

versarial examples. BPDA has circumvented a handful of

recent defense techniques [14, 50, 25, 39, 7] that implement

gradient obfuscation, in many defenses resulting in 0% ro-

bust accuracy. We therefore evaluate our defense against it

and its possible variants.

Differentiable approximation on backward pass. The

update rule (3) in our adversarial transformation involves two

non-differentiable operators, namely, sgn(·) and Πx′∈∆x
(·),

whose specific forms are given in Appendix A.3. To launch

BPDA attack, we need to replace them with differentiable

operators and compute their derivatives. We experimented

with two different smooth approximations of sgn(·): the

soft sign function x
1+|x| and tanh function ex−e−x

ex+e−x . The

smooth approximation of Πx′∈∆x
(·) is not explicitly defined.

Instead, we directly approximate its derivative using

d

dx
Πx′∈∆x

(x) ≈

{

1, if |x| < ∆,
1

(1+|x|)2 , otherwise.
(5)

Reported in Fig. 5, the experiments show that our defense is

robust to this attack, as long as the number of LL-PGD steps

N in g(·) is not too small (i.e., N > 5).

If the number of LL-PGD steps N is set too small, BPDA

attack is indeed able to find adversarial examples (Fig. 5).

Therefore, another attempt one may ponder is to craft adver-

sarial examples on a model trained with a small N (N ≤ 3),

and use them to transfer attack our defense (which is trained

with a larger N ). This attack remains ineffective (see details

in Appendix A.3). We conjecture that this is because the

adversarial examples for the model with a small N have a

different distribution from that with a larger N [30, 40].

Identity mapping approximation. Another possible at-

tack is by replacing the input transformation g(·) with the

identity mapping for gradient estimation in BPDA backward

pass (recall discussion in Sec. 3.3). We refer this attack as

BPDA-I attack. Under this attack, several previous defenses

(e.g., [33, 39, 14]) have been nullified.
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Figure 5. Robustness under BPDA. We evaluate the robust accu-

racy of our defense under two versions of BPDA attacks, which

replace sgn(·) in (3) with soft sign (in orange) and tanh (in green),

respectively. The resulting two robust accuracies are compared

with our defense model’s standard accuracy (in blue) evaluated

with clean (natural) images. Along X-axis, we repeat this evalu-

ation, each time with an increasing number of LL-PGD steps (3)

in our adversarial transformation g(·). To highlight only the effect

of the smooth approximations of sgn(·) and Π
x
′∈∆x

(·), we factor

out the randomness in our defense by disabling the random start

at the beginning of (3). After the network gradient is estimated

using BPDA, we use PGD to search for adversarial examples with

a maximum perturbation size of 0.031 (in L∞ norm). The PGD

search takes 50 iterations with a stepsize 0.002.

We applied BPDA-I attack on our defense. The attack

setup and results are summarized in Fig. 6. As the pertur-

bation size ∆ in the adversarial transformation increases,

the robust accuracy of our method increases. The robust

accuracy is always upper bounded by the standard accuracy,

which decreases gradually as ∆ increases. If ∆ is too large,

the excessive perturbations to the input make the network fa
harder to learn and thus lower the standard and robust accu-

racies. Empirically, ∆ = 0.2 offers the best performance.

Reparameterization. In Sec. 3.3, we described another

BPDA strategy, one that uses reparameterization to smoothly

approximate our adversarial transformation g(·). As dis-

cussed therein, it is extremely hard to directly derive the

reparameterization function. Instead, we attempted to train

a Fully Convolutional Network [24] to represent h(z). We

denote this network as h(x;θ), whose weights are optimized

with the loss function, ℓ(θ) = Ex∈X ‖h(x;θ)− g(x)‖
2
.

Here X represents the distribution of natural images (we use

CIFAR-10 as the training dataset).

Our experiment shows that although we can reach a low

loss value in training h(x;θ), the loss on test dataset always

stays high, indicating that h(x;θ) is always overfitted. As

a result, the adversarial examples resulted in this way have

almost no effect on our defense model—the accuracy drop

under this attack is within 1% from the standard accuracy.

See Appendix A.2 for the details of this experiment.

4.2. Gradient­Free Attacks

Several attacking methods require no gradient informa-

tion of the model, and they can be employed to potentially

threaten our defense. As discussed in Sec. 2, these attacks

fall into two categories: transfer attack and query-based at-

Figure 6. Robustness w.r.t. perturbation size. We test our de-

fense robustness using independently trained defense models with

increasing perturbation range ∆ used in g(·). The standard ac-

curacy (blue curve) is measured using clean images. The robust

accuracies under BPDA-I attack (Sec. 4.1) and WT attack (Sec. 4.2)

are in orange and green, respectively. In our input transformation,

we enable random start of (3). Therefore, in BPDA-I attack, we

use 500 samples of g̃(·) for EOT gradient estimation. The gradient-

descent setup is the same as that in the earlier experiments in Fig. 5.

tack. Against both types of attacks we evaluate our defense.

White-box transfer attack. In white-box setting, the ad-

versary has full knowledge of our defense model. A tempt-

ing idea is to generate adversarial examples on the classi-

fier model fa, and use them to transfer attack our defense

model fa(g(·)). Note that this differs from BPDA-I attack

in Sec. 4.1, where fa is used only in the backward pass for

gradient estimation while the forward pass still uses the full

model fa(g(·)). Here, in contrast, adversarial examples are

generated solely on fa. We refer this attack as White-box

Transfer (WT) attack, and report the robust accuracies of our

defense in Fig. 6, along with the results under BPDA-I attack.

We found that our model’s robustness performances under

both attacks are similar, and ∆ = 0.2 is the best choice.

One may realize another attacking possibility by noticing

the way we choose fb (on which we perform adversarial

transformation). In Sec. 3.4, we present that fb should be

chosen such that for a given natural image x the average

transformation Eg̃∼T g̃(x) stays far from x. Thus, it seems

plausible to first generate adversarial examples on fa us-

ing PGD attack starting from the average transformation

Eg̃∼T g̃(x), and use them to attack our full model fa(g(·)).
However, thanks to the large perturbation range ∆x we use

(recall Sec. 3.3), Eg̃∼T g̃(x) is always far from a natural

image (see the image in the red box of Fig. 4). Thus the

adversarial examples generated in this way all have easily

noticeable artifacts; they are not valid.

Black-box attacks. We also evaluate our defense against

the black-box attacks, including the black-box transfer at-

tack [30] and two most recently introduced query-based

attacks, HopSkipJumpAttack (HSJ) [9] and GenAttack

(GA) [1]. In Table 2, we summarize the robust accuracies of

our model under these attacks, along with two baselines from

the same classification model (fa) optimized respectively

using standard training and adversarial training.
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Defense Model Clean Transfer HSJ GA

No defense 92.9% 1.3% 3.6% 5.8%

Madry et al. [26] 81.7% 77.5% 72.1% 78.4%

Ours 82.9% 78.1% 82.0% 81.9%

Table 2. Robustness under black-box attacks. In the transfer

attack, adversarial examples are crafted on an independently trained

ResNet18 model. The query-based attacks are performed using a

third-party library foolbox [32] with default parameters to launch

these attacks. All adversarial examples are restricted in the L∞

ball with a perturbation size of 0.031.

5. Comparisons and Further Evaluation

Comparisons. We now compare the robustness of our

method with other state-of-the-art defense methods under

white-box attacks. Unlike many others that can be attacked

using PGD-type methods, our defense model is inherently

non-differentiable, immune to direct PGD attacks. There-

fore it is not possible to compare all these defense methods

under exactly the same attacks. Instead, we compare the

worst-case robustness of our method under all the attacks

described in Sec. 4 with other methods.

The comparison results on CIFAR-10 dataset are sum-

marized in Table 3, where Astd is the standard accuracy

tested with clean images, and Arob is the worst-case robust

accuracy under all tested attacks. The methods indicated

by a star (*) are those circumvented by Athalye et al. [2].

We include their results therein as a reference. The other

defense methods (including ours) all use ResNet18 as their

classification model, trained with SGD (learning rate=0.1,

momentum=0.9) for 80 epochs.

On CIFAR-10 dataset, the most effective attack on our

method is the black-box transfer attack (see Sec. A.4 for

detail), the robust accuracy under this attack is 73.4%. The

worst-case robust accuracy of our method under BPDA at-

tack and its variants (Sec. 4.1) is 80.2%. Nevertheless, our

robustness performance is significantly better than the state-

of-the-art methods, as shown in Table 3.

We also performed the comparisons on Tiny ImageNet

dataset, and our method demonstrates significantly stronger

robustness as well, improving robust accuracy from 18% to

40.2%. The results are reported in details in Appendix A.5.

Sufficiency of EOT samples. Our defense is randomized,

and when using EOT to attack our method we take 500 sam-

ples of g̃(·) (recall experiments in Fig. 6). Here we conduct

additional experiments to ensure the sufficiency of using

500 samples for estimating the expectation. As shown in

Fig. 7, when the perturbation size ∆ is small and the number

of samples is also small (e.g., < 100), increasing sample

size indeed allows EOT to better attack our method. How-

ever, when the perturbation size is set to 0.2, the value we

consistently use throughout all our evaluations, EOT attacks

became persistently inefficient, regardless of the sample size.

Therefore, we conclude that 500 samples in EOT allow thor-

Method Astd Arob Attack Method

No defense 92.9% 0.0% PGD

Madry et al. [26] 81.7% 42.7% PGD

Zhang et al. [54] 80.4% 44.6% PGD

Xie et al. [51] 83.8% 45.2% PGD

Guo et al.* [14] 87.4% 0.0% BPDA

Buckman et al.* [7] 89.8% 0.0% BPDA

Dhillon et al.* [10] 81.1% 0.0% BPDA

Song et al.* [39] 82.0% 5.0% BPDA

Ours (under BPDA) 82.9% 80.2% BPDA

Ours 82.9% 73.4% Transfer

Table 3. Comparisons on CIFAR-10. Methods indicated by * are

those circumvented in [2]. We evaluate other methods using the

code provided in the original papers, training them using the same

network and hyperparameters as our method. The perturbation

range of all adversarial examples is ∆ = 0.031. The last column

indicates the most efficient attacking method that produces the

worst robustness. The second last row indicates the worst-case

robustness of our method under all BPDA-type attacks, while the

last row indicates our worst-case robustness under all attacks.

Figure 7. Robustness w.r.t. EOT samples. When using EOT to

attack our method, we sample our adversarial transformation with

different random starts x+ δ to estimate the expected ∇fa(g(x)).
When ∆ = 0.1 (blue curve), increasing the sample size allows EOT

to better attack our defense, until it plateaus. But when ∆ = 0.2
(orange curve), EOT becomes persistently inefficient.

ough evaluation of our defense against EOT.

6. Conclusion

We have presented a simple defense mechanism against

adversarial attacks. Our method takes advantage of the nu-

merical recipe that searches for adversarial examples, and

turns this harmful process into a useful input transformation

for better robustness of a network model. On CIFAR-10

and Tiny ImageNet datasets, it demonstrates state-of-the-art

worst-case robustness under a wide range of attacks. We

hope our work can offer other researchers a new perspective

to study the adversarial defense mechanisms. In the future,

we would like to better understand the theoretical properties

of our adversarial transformation and their connections to

stronger adversarial robustness.
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