
Deep 3D Portrait from a Single Image

Sicheng Xu1* Jiaolong Yang2 Dong Chen2 Fang Wen2 Yu Deng3 Yunde Jia1 Xin Tong2

1Beijing Institute of Technology 2Microsoft Research Asia 3Tsinghua University

Abstract

In this paper, we present a learning-based approach for

recovering the 3D geometry of human head from a single

portrait image. Our method is learned in an unsupervised

manner without any ground-truth 3D data. We represent the

head geometry with a parametric 3D face model together

with a depth map for other head regions including hair and

ear. A two-step geometry learning scheme is proposed to

learn 3D head reconstruction from in-the-wild face images,

where we first learn face shape on single images using self-

reconstruction and then learn hair and ear geometry using

pairs of images in a stereo-matching fashion. The second

step is based on the output of the first to not only improve

the accuracy but also ensure the consistency of overall head

geometry. We evaluate the accuracy of our method both in

3D and with pose manipulation tasks on 2D images. We

alter pose based on the recovered geometry and apply a re-

finement network trained with adversarial learning to ame-

liorate the reprojected images and translate them to the real

image domain. Extensive evaluations and comparison with

previous methods show that our new method can produce

high-fidelity 3D head geometry and head pose manipula-

tion results.

1. Introduction

Reconstructing 3D face geometry from 2D images has

been a longstanding problem in computer vision. Obtain-

ing full head geometry will enable more applications in

games and virtual reality as it provides not only a new way

of 3D content creation but also image-based 3D head rota-

tion (i.e., pose manipulation). Recently, single-image 3D

face reconstruction has seen remarkable progress with the

enormous growth of deep convolutional neutral networks

(CNN) [47, 50, 22, 20, 16]. However, most existing tech-

niques are limited to the facial region reconstruction with-

out addressing other head regions such as hair and ear.

Face image synthesis has also achieved rapid progress

with deep learning. However, few methods can deal with

head pose manipulation from a singe image, which necessi-

*This work was done when S. Xu was an intern at MSRA.

tates substantial image content regeneration in the head re-

gion and beyond. Promising results have been shown for

face rotation [56, 3, 26] with generative adversarial nets

(GAN), but generating the whole head region with new

poses is still far from being solved. One reason could be

implicitly learning the complex 3D geometry of a large va-

riety of hair styles and interpret them onto 2D pixel grid is

still prohibitively challenging for GANs.

In this paper, we investigate explicit 3D geometry re-

covery of portrait images for head regions including face,

hair and ear. We model a 3D head with two components: a

face mesh by the 3D Morphable Model (3DMM) [4], and

a depth map for other head parts including hair, ear and

other regions not covered by the 3DMM face mesh. The

3DMM face representation facilitates easy shape manipula-

tion given its parametric nature, and depth map provides a

convenient yet powerful representation to model the com-

plex hair geometry.

Learning single-image 3D head geometry reconstruction

is a challenging task. At least two challenges need to be ad-

dressed here. First, portrait images come with ground-truth

3D geometry are too scarce for CNN training, especially for

hair which can be problematic for 3D scanning. To tackle

this issue, we propose an unsupervised learning pipeline for

head geometry estimation. For face part, we simply fol-

low recent 3D face reconstruction methods [47, 20, 21, 59]

to learn to regress 3DMM parameters on a corpus of im-

ages via minimizing the rendering-raw input discrepancy.

But for hair and ear, we propose to exploit view change

and train on pairs of portrait images extracted from videos

via minimizing appearance reprojection error. The second

challenge is how to ensure a consistent head structure since

it consists of two independent components. We propose a

two-step shape learning scheme where we use the recovered

face geometry as conditional input of the depth network,

and the designed loss function considers the layer consis-

tency between face and hair geometry. We show that our

two-step unsupervised shape learning scheme leads to com-

pelling 3D head reconstruction results.

Our method can be applied for portrait image head pose

manipulation, the quality of which will be contingent upon

the 3D reconstruction accuracy thus could be used to evalu-
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ate our method. Specifically, we change the pose of the re-

constructed head in 3D and reproject it onto 2D image plane

to obtain pose manipulation results. The reprojected im-

ages require further processing. Notably, the pose changes

give rise to missing regions that need to be hallucinated. To

this end, we train a refinement network using both real un-

paired data and synthetic paired data generated via image

corruption, together with a discriminator network imposing

adversarial learning. Our task here appears similar to im-

age inpainting. However, we found the popular output for-

mation scheme (raw image merged with network-generated

missing region) in deep generative image inpainting [57, 37]

leads to inferior results with obvious artifacts. We instead

opt for regenerating the whole image.

Our contributions can be summarized as follows:

• We propose a novel unsupervised head geometry

learning pipeline without using any ground-truth 3D

data. The proposed two-step learning scheme yields

consistent face-hair geometry and compelling 3D head

reconstruction results.

• We propose a novel single-image head pose manipu-

lation method which seamlessly combines learned 3D

head geometry and deep image synthesis. Our method

is fully CNN-based, without need for any optimization

or postprocessing.

• We systematically compare against different head

geometry estimation and portrait manipulation ap-

proaches in the literature using 2D/3D warping and

GANs, and demonstrate the superior performance of

our method.

2. Related Work

Face and hair 3D reconstruction. 3D face reconstruc-

tion has been a longstanding task. Recently, deep 3D

face reconstruction [47, 50, 22, 20] has attracted consider-

able attention. Our method follows the unsupervised learn-

ing schemes [47, 20] that train a network without ground-

truth 3D data. For hair modeling, traditional methods per-

form orientation-map based optimization and sometimes re-

quire manual inputs [10] or a 3D hair exemplar repository

[9]. Liang et al. [32] and Hu et al. [25] leverage hairstyle

database for automatic hair reconstruction. A deep 3D hair

reconstruction method was proposed in [60], but the recon-

structed hair strand model are not aligned with the input

image thus cannot be used for our purpose.

CNN-based portrait editing and synthesis. Face im-

age editing and synthesis have attracted considerable at-

tention in the vision and graphics community and have

seen fast growth with the deep learning technique. Most

existing CNN-based methods are devoted to editing ap-

pearance attributes such as skin color [12], facial expres-

sion [12, 42, 45, 41, 18], makeup [11, 31], age [58, 12, 52],

and some other local appearance attributes [41, 14, 43].

Few methods worked on head pose manipulation. Per-

haps the most relevant works among them are those syn-

thesizing novel views (e.g., frontal) from an input face im-

age [28, 3, 56]. However, the goals of these methods are not

portrait editing and they do not handle hair and background.

2D warping based facial animation. Some approaches

have been proposed to animate a face image with 2D warp-

ing [2, 18, 53]. Averbuch-Elor et al. [2] proposed to animate

an image by the transferring the 2D facial deformations in

a driving video using anchor points. A refinement process

is applied to add fine-scale details and hallucinate missing

regions. A similar pipeline is proposed by Geng et al. [18],

which uses a GAN to refine the warped images. Wiles et

al. [53] proposes to generate 2D warping fields using neu-

ral networks. Lacking guidance from 3D geometry, there is

no guarantee the face structure can be persevered by these

2D warping methods especially when head pose changes.

3D-guided view synthesis and facial animation. 3D-

guided face image frontalization and profiling have been

used in different domains such as face recognition [46, 62,

23] and face alignment [61]. These methods often only fo-

cus on facial region or handle hair and background naively.

The most sophisticated face rotation method is perhaps due

to Zhu et al. [61], which considers the geometry of the sur-

rounding regions of a face. However, their heuristically-

determined region and depth do not suffice for realistic syn-

thesis, and the rotated results oftentimes exhibit obvious

inconsistency with the raw portraits. Moreover, the back-

ground is warped in [61] to avoid hole filling. Several

works [36, 19] have been presented to synthesize facial ex-

pression leveraging 3D models, but they do not consider

hair geometry and cannot manipulate head pose.

Video and RGBD based face reenactment. Several

works have been presented for face reenactment with video

or RGBD inputs [48, 30, 49]. Thies et al. [48] transfer fa-

cial expression in a source actor video to a target actor video

with the aid of 3D face reconstruction. Kim et al. [30] train

a deep network on each given video to fit the portrait ap-

pearances therein, such that high-quality generation can be

obtained. An RGBD reenactment system is presented by

Thies et al. [49].

3. Overview and Preprocessing

The frameworks of our methods are depicted in Fig. 1.

After image preprocessing (to be described below), we run

two-step 3D reconstruction with two CNNs to estimate 3D

head pose and shape. For head pose manipulation, we first

adjust the pose of the reconstructed shape in 3D and repro-

ject it onto image plane, and then apply a refinement CNN

to obtain the final result.
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Figure 1: Overview of our single-image 3D head reconstruction and head pose manipulation methods.

Preprocessing. Given a portrait image, we perform rough

alignment to centralize and rescale the detected face region

(the image will be re-aligned later to accurately centralize

the 3D head center after the 3D face reconstruction step).

We then run a state-of-the-art face segmentation method of

[33] to segment out the head region, denoted as S , which

includes face, hair and ear regions.

4. Single-Image 3D Head Reconstruction

In this work, we use the perspective camera model with

an empirically-selected focal length. Head pose is deter-

mined by rotation R ∈ SO(3) and translation t ∈ R
3 and

is parameterized by p ∈ R
7 with rotation represented by

quaternion. We now present our method which reconstructs

a 3DMM face as well as a depth map for other head regions.

4.1. Face Reconstruction and Pose Estimation

With a 3DMM, the face shape F and texture T can be

represented by an affine model:

F = F(α,β) = F̄+Bidα+Bexpβ

T = T(δ) = T̄+Btδ
(1)

where F̄ and T̄ are the average face shape and texture; Bid,

Bexp, and Bt are the PCA bases of identity, expression, and

texture respectively; α, β, and δ are the corresponding co-

efficient vectors. We adopt the Basel Face Model [40] for F̄,

Bid, T̄, and Bt, and use the expression bases Bexp of [22]

which are built from FaceWarehouse [7]. After selection of

basis subsets, we have α ∈ R
80, β ∈ R

64 and δ ∈ R
80.

Since ground-truth 3D face data are scarce, we follow

recent methods [47, 20, 16] to learn reconstruction in an

unsupervised fashion using a large corpus of face images.

Our method is adapted from [16] which uses hybrid-level

supervision for training. Concretely, the unknowns to be

predicted can be represented by a vector (α,β, δ,p,γ) ∈
R

239, where γ ∈ R
9 is the Spherical Harmonics coefficient

vector for scene illumination. Let I be a training image and

I ′ its reconstructed counterpart rendered with the network

prediction, we minimize the photometric error via:

lphoto =
∫
F
‖I − I ′(α,β, δ,γ,p)‖2 (2)

where F denotes the rendered face region we consider

here1, and ‖ · ‖2 denotes the ℓ2 norm for residuals on r,

g, b channels. We also minimize the perceptual discrepancy

between the rendered and real faces via:

lper = 1−
< f(I), f(I ′) >

‖f(I)‖ · ‖f(I ′)‖
(3)

where f(·) denotes a face recognition network for identity

feature extraction where the model from [55] is used here.

Other commonly-used losses such as the 2D facial land-

mark loss and coefficient regularization loss are also ap-

plied, and we refer the readers to [16] for more details.

4.2. Hair&Ear Depth Estimation

Our next step is to estimate a depth map for other head

region, defined as H = S − (Sf
⋂
F) where Sf denotes

the face region defined by segmentation. H includes hair

and ear as well as a small portion of segmented face region

that is not covered by the projected 3DMM face. Due to

lack of ground-truth depth data, we train a network using a

collection of image pairs in a stereo matching setup. Note

we use image pairs only for training purpose. The network

always runs on a single image at test time.

Let I1, I2 be a training image pair of one subject

(e.g., two frames from a video) with different head poses

(R1, t1), (R2, t2) recovered by our face reconstruction net-

work. Our goal is to train a single network to predict

both of their depth maps d1 and d2 in a siamese network

scheme [13]. Before training, we first run naive triangula-

tion on regular pixel grids of H1 and H2 to build two 2D

meshes. Given depth map estimate d1, a 3D mesh H1 can

be constructed via inverse-projection. We can transform H1

to I2’s camera system via (R2R
−1

1
,−R2R

−1

1
t1 + t2), and

project it onto image plane to get a synthesized image I ′
2
.

Similar process can be done for generating I ′
1

from I2 and

d2. The whole process is differentiable and we use it to train

our depth prediction network with the following losses.

As in stereo matching, we first enforce color constancy

1For brevity, in our loss functions we drop the notation of pixel variable

in the area integral. We also drop the normalization factors (e.g., 1

NF
in

Eq. 2 where NF is the number of pixels in region F ).

7712



constraint by minimizing the brightness error

lcolor =
∫
H′

2

‖I ′
2
(d1)− I2‖1 +

∫
H′

1

‖I ′
1
(d2)− I1‖1 (4)

where H′
2
= H′

2
(H1, d1) is the warped region from H1

computed by head poses and d1 in the transformation pro-

cess described above; similarly for H′
1
= H′

1
(H2, d2). We

also apply a gradient discrepancy loss which is robust to il-

lumination change thus widely adopted in stereo and optical

flow estimation [6, 5, 54]:

lgrad=
∫
H′

2

‖∇I ′
2
(d1)−∇I2‖1+

∫
H′

1

‖∇I ′
1
(d2)−∇I1‖1 (5)

where ∇ denotes the gradient operator. To impose a spatial

smoothness prior, we add a second-order smoothness loss

lsmooth =
∫
H1

|∆d1|+
∫
H2

|∆d2| (6)

where ∆ denotes the Laplace operator.

Face depth as condition and output. Instead of directly

estimating hair and ear depth from the input image I , we

project the reconstructed face shape F onto image plane to

get a face depth map df . We make df an extra conditional

input concatenated with I . Note df provides beneficial in-

formation (e.g., head pose, camera distance) for hair and

ear depth estimation. In addition, it allows the known face

depth around the contour to be easily propagated to the ad-

jacent regions with unknown depth.

More importantly, we train the network to also predict

the depth of the facial region using df as target:

lface ==
∫
F1−Sh

1

⋂
F1

|d1 − d
f
1
|+

∫
F2−Sh

2

⋂
F2

|d2 − d
f
2
| (7)

where Sh denotes the hair region defined by segmentation.

Note learning face depth via lface should not introduce

much extra burden for the network since df is provided as

input. But crucially, we can now easily enforce the consis-

tency between the reconstructed 3D face and the estimated

3D geometry in other regions, as in this case we calculate

the smoothness loss across whole head regions S1, S2:

lsmooth =
∫
S1

|∆d1|+
∫
S2

|∆d2| (8)

Figure 2 (2nd and 3rd columns) compares the results

with and without face depth. We also show quantitative

comparisons in Table 1 (2nd and 3rd columns). As can be

observed, using face depth significantly improves head ge-

ometry consistency and reconstruction accuracy.

Layer-order loss. Hair can often occlude a part of facial

region, leading to two depth layers. To ensure correct rela-

tive position between the hair and occluded face region (i.e.,

Input w/o face depth with face depth + llayer

Figure 2: 3D head reconstruction result of our method with

different settings.

the former should be in front of the latter), we introduced a

layer-order loss defined as:

llayer=
∫
Sh
1

⋂
F1

max(0, d1 − d
f
1
)+

∫
Sh
2

⋂
F2

max(0, d2 − d
f
2
)

(9)

which penalizes incorrect layer order. As shown in Fig. 2,

the reconstructed shapes are more accurate with llayer.

Network structure. We apply a simple encoder-decoder

structure using a ResNet-18 [24] as backbone. We discard

its global average pooling and the last fc layers, and append

several transposed convolutional layers to upsample the fea-

ture maps to the full resolution. Skip connections are added

at 64×64, 32×32 and 16×16 resolutions. The input image

size is 256× 256. More details of the network structure can

be found in the suppl. material.

5. Single-Image Head Pose Manipulation

Given the 3D head model reconstructed from the input

portrait image, we modify its pose and synthesize new por-

trait images, described as follows.

5.1. 3D Pose Manipulation and Projection

To change the head pose, one simply needs to apply a

rigid transformation in 3D for the 3DMM face F and hair-

ear mesh H given the target pose p̄ or displacement δp. Af-

ter the pose is changed, we reproject the 3D model onto 2D

image plane to get coarse synthesis results. Two examples

are shown in Fig. 3.

5.2. Image Refinement with Adversarial Learning

The reprojected images suffer from several issues. No-

tably, due to pose and expression change, some holes may

appear, where the missing background and/or head region

should be hallucinated akin to an image inpainting process.

Besides, the reprojection procedure may also induce certain

artifacts due to imperfect rendering.
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Input Mixing output lcolor lcolor+ladv Ours

Figure 3: Results of the image refinement network trained

with different settings.

To address these issues, we apply a deep network G to
process these images. For stronger supervision, we lever-
age both paired (i.e., images with ground truth label) and
unpaired data (i.e., our coarse results) to train such a net-
work. To obtain paired data, we take some real images with
various head poses, and synthetically masked out some re-
gions along the head segmentation boundaries. Let J be an

unpaired coarse result, and (R, R̂) be the paired data where

R denotes the corrupted image and R̂ its corresponding real
image, we apply the ℓ1 color loss via

lcolor(G)=EJ

[

∫
B

‖G(J)− J‖1
]

+ ER

[

∫
‖G(R)− R̂‖1

]

(10)

where B denotes the background and the warped head re-

gions of J .
We apply adversarial learning to improve the realism of

the generated images. We introduce a discriminator D to
distinguish the outputs of G from real images, and train G
to fool D. The LS-GAN [35] framework is used, and our
adversarial loss functions for G and D can be written as

ladv(G)=
1

2
EJ

[

(D(G(J))−1)2
]

+
1

2
ER

[

(D(G(R))−1)2
]

, (11)

ladv(D)=
1

2
EJ

[

(D(G(J))−0)2
]

+
1

2
ER

[

(D(G(R))−0)2
]

+ER

[

(D(R̂)−1)2
]

,

(12)

respectively. As shown in Fig. 3, with the aid of the adver-

sarial loss, our model generates much sharper results. How-

ever, some unwanted artifacts are introduced, possibly due

to unstable GAN training.
To remove these artifacts, we further apply a deep feature

loss, also known as perceptual loss [29], for paired data via

lfeat(G)=
∑

i

1

Ni
‖φi(G(R))− φi(R̂)‖1 (13)

where φi is the i-th activation layer of the VGG-19 net-

work [44] pretrained on ImageNet [15]. We use the first

layers in all blocks. Figure 3 shows that our final results

appear quite realistic. They are sharp and artifact-free.

Difference with image inpainting. In our task, the repro-

jected head portrait, though visually quite realistic to human

observer, may contain some unique characteristics that can

Table 1: Average 3D reconstruction error evaluated on

RGBD images from the Biwi dataset [17].

Error (mm) Zhu [61] Oursw/o df Ours

Face 5.05 4.31 3.88

Non-face 8.56 7.39 6.78

be detected by the discriminator. We tried generating re-

fined results to be fed into D by mixing G’s partial output

and the raw input – a popular formulation in deep image in-

painting [57] – via J ′ = M⊙G(J)+(1−M)⊙J where M

is the missing region mask. However, the results are consis-

tently worse than our full image output strategy (see Fig. 3

for a comparison).

Network structure. Our network structures for G and D

are adapted from [51]. The input and output image size is

256×256. More details can be found in the suppl. material.

6. Experiments

Implementation Details. Our method is implemented

with Tensorflow [1].2 The face reconstruction network is

trained with 180K in-the-wild face images from multiple

sources such as CelebA [34], 300W-LP [61] and LFW [27].

To train the head depth network, we collected 11K image

pairs from 316 videos of 316 subjects that contain human

head movements3. The relative rotations are mostly within

5 to 15 degrees. The training took 15 hours on 1 NVIDIA

M40 GPU card. To train the image refinement network,

we collected 37K paired data and 30K unpaired data, and

the training took 40 hours on 4 M40 GPU cards. Due to

space limitation, more implementation details and results

are shown in the suppl. material.

6.1. Results

The results from our method will be presented as fol-

lows. Note all the results here are from our test set where

the images were not used for training.

3D head reconstruction. Figure 4 shows some typical

samples of our single-image 3D head reconstruction results.

As can be observed, our reconstruction networks can pro-

duce quality face and hair geometry given a single portrait

image, despite we did not use any ground-truth 3D data for

training. Various hair styles can be well handled as shown

in the figure. Although the face region and the hair-ear part

have different, disjoint representations (3DMM vs. depth

map) and are reconstructed in two steps, they appear highly

consistent with each other and the resultant head models are

visually pleasing.

For quantitative evaluation and ablation study, we use the

RGBD images from Biwi Kinect Head Pose Database [17]

2Code and trained model will be released publicly.
3We assume hair undergoes rigid motion within small time windows.
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Figure 4: Typical single-image head reconstruction results. Our method can deal with a large variety of face shapes and hair

styles, generating high-quality 3D head models. Note our method is trained without any ground-truth 3D data.

which contains 20 subjects with various hair styles. We

compute the head reconstruction errors of our method us-

ing the depth images as ground-truth geometry. The error is

computed as the average point distances in 3D between the

outputs and ground-truth shapes after 3D alignment. The

results are presented in Table 1, which shows the decent 3D

reconstruction accuracy of our method. It also shows that

the accuracy decreases if face depth is not used as the input

for the depth estimation network, demonstrating the efficacy

of our algorithm design.

Pose Manipulation. Figure 5 presents some pose manip-

ulation results from our method. It can be seen that our

method can generate realistic images with new head poses.

Not only the face identity is well preserved, but also the

hair shapes are highly consistent across different poses. The

background is not disrupted by pose change.

6.2. Comparison with Prior Art

Comparison with Zhu et al. [61]. Zhu et al. [61] pro-

posed a CNN-based 3D face reconstruction and alignment

7715



Figure 5: Typical pose manipulation results. The left column shows the input images to our method, and the other columns

show our synthesized images with altered head poses.

Input [61] [8] [53] Ours

Figure 6: Comparison with the methods of Zhu et al. [61],

Chai et al. [8], and Wiles et al. [53].

approach for single images. It also provides a warping-

based portrait rotation method, originally developed for

training data generation, based on 3D face geometry. To ob-

tain reasonable warping for hair and ear regions, it defines a

surrounding region of the face and heuristically determines

its depth based on face depth. Figure 6 compares the face

Table 2: Average perceptual similarity (deep feature cosine

similarity) between the input and rotated face images.

Chai et al. [8] Ours

Cosine distance 0.829 0.856

rotation results of [61] and ours. It can be seen that [61]’s

results may suffer from obvious distortions. In contrast, our

method can generate new views that are not only more real-

istic but also more consistent with the input images.

Also note that [61] simply warps the whole image in-

cluding the background region. Background change is un-

desired for portrait manipulation but is commonly seen in

previous 2D/3D warping based methods [8, 62, 61, 2]. In

contrast, our method can well preserve the background.

Table 1 compares the 3D reconstruction error of [61] and

our method using images from the Biwi dataset [17]. It

shows that our method outperforms [61] by an appreciable

margin: our errors are 23.17% and 20.79% lower in face

and non-face regions, respectively.

Comparison with Chai et al. [8]. We then compare with

Chai et al. [8], which is a traditional optimization-based

method developed for hair modeling. It also estimates face
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Input [2] Ours [49]

Figure 7: Comparison with Averbuch-Elor et al. [2]. The

input image and result of [2] are from [49].

Source Target FSGAN [38] Ours

Figure 8: Comparison with the FSGAN method of Nirkin et

al. [38]. Images are from [38].

shape by facial landmark fitting. We run the program re-

leased by [8], which requires a few user-provided strokes

before reconstruction and provides 3D view of the input

image after running reconstruction. As shown in Fig. 6,

the method of [8] also leads to some distortions, while our

results are more consistent with the input faces. The differ-

ences in background regions are also prominent.

For quantitative comparison, we consider a face recog-

nition setup and compute the perceptual similarity between

the original images and the warped ones. For fair compari-

son, we use the 10 images shown in [8] (Figure 13) and the

corresponding results therein. For our method, we rotate the

raw faces to same poses as theirs. We use VGG-Face [39]

for deep face feature extraction, and Table 2 shows the

higher perceptual similarity of our results.

Comparison with Averbuch-Elor et al. [2]. In Fig. 7, we

qualitatively compare with a 2D-warping based face reen-

actment method of Averbuch-Elor et al. [2], which drives

a face image with a reference face video for animation. As

can be seen, pose change is problematic for 2D warping and

the result exhibits obvious distortions. Ours contains much

less distortion and appears more realistic. For reference, we

also present in Fig. 7 the result of Thies et al. [49], which

works on RGBD images and builds a target actor 3D model

offline for high-quality reenactment.

Comparison with X2Face [53]. We also compare with

another 2D warping-based face manipulation method,

X2Face [53], where the warping fields are generated by

neural networks. As shown in Fig. 6, the results of [53]

suffer from obvious distortions and cannot handle missing

Figure 9: Failure cases due to (a) wrong segmentation, (b)

obstruction, (c) inaccurate rotation center estimate, and (d)

extreme pose.

regions, whereas ours appear much more natural.

Comparison with FSGAN [38]. Finally, we compare

with a recent GAN-based face swapping and reenactment

method, FSGAN [38]. As shown in Fig. 8, the results of

[38] tend to be over-smoothed. We believe there’s a still

great hurdle for GANs to directly generate fine details that

are geometrically correct, given the complex geometry of

hairs. However, the expression of [38]’s results appears

more vivid than ours especially for the first example. One

of our future works would be integrating fine-grained ex-

pression manipulation into our pipeline.

Failure cases. Our method may fail under several situa-

tions, as illustrated in Fig. 9. For example, erroneous seg-

mentation and obstructions may lead to apparent artifacts.

Our head center is estimated in the face reconstruction step,

and artifacts may appear for a few cases with inaccurate

head center estimates. Our current method can not handle

extreme poses, which we leave as our further work.

Running time. Tested on an NVIDIA M40 GPU, our face

reconstruction, depth estimation and image refinement net-

works take 13ms, 9.5ms, and 11ms respectively to run on

one single image. Segmentation takes 15ms. Interactive

portrait manipulation can be easily achieved by our method.

7. Conclusion

We presented a novel approach for single-image 3D por-

trait modeling, a challenging task that is not properly ad-

dressed by existing methods. A new CNN-based 3D head

reconstruction pipeline is proposed to learn 3D head geome-

try effectively without any ground-truth 3D data. Extensive

experiments and comparisons collectively demonstrated the

efficacy of our proposed method for both 3D head recon-

struction and single-image pose manipulation.
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