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Abstract

The ambiguity in image matching is one of main fac-

tors decreasing the quality of the 3D model reconstructed

by PatchMatch based multiple view stereo. In this paper,

we present a novel method, matching ambiguity reduced

multiple view stereo (MARMVS) to address this issue. The

MARMVS handles the ambiguity in image matching process

with three newly proposed strategies: 1) The matching am-

biguity is measured by the differential geometry property of

image surface with epipolar constraint, which is used as a

critical criterion for optimal scale selection of every sin-

gle pixel with corresponding neighbouring images. 2) The

depth of every pixel is initialized to be more close to the

true depth by utilizing the depths of its surrounding sparse

feature points, which yields faster convergency speed in the

following PatchMatch stereo and alleviates the ambiguity

introduced by self similar structures of the image. 3) In the

last propagation of the PatchMatch stereo, higher priorities

are given to those planes with the related 2D image patch

possesses less ambiguity, this strategy further propagates a

correctly reconstructed surface to raw texture regions. In

addition, the proposed method is very efficient even running

on consumer grade CPUs, due to proper parameterization

and discretization in the depth map computation step. The

MARMVS is validated on public benchmarks, and experi-

mental results demonstrate competing performance against

the state of the art.

1. Introduction

Multi-view stereo (MVS) is a hot research area in com-

puter vision, which offers a cheap and convenient way

to capture the 3D geometry of scenes and objects, and

serves as a main ingredient for many CV applications, e.g.

[40, 26, 25, 24, 8]. A lot of MVS methods with increas-

ingly high performance have been proposed in last decades,

thanks to the public available benchmarks [31, 34, 1, 14].

Due to the successes of SfM algorithms [28, 38, 33] that

Figure 1. The matching ambiguity can be reduced by proper s-

cale and neighbouring image selection. Finding the optimal cor-

responding match for the patch p in reference image I0, if image

I2 is chosen as the neighbour image of p, it will be matched to

several ambiguous patches along the epipolar line L2, however an

unambiguous patch will be matched if image I1 is chosen. On the

other hand, p is ambiguous on both images in smaller scale.

camera pose can be well estimated, the 3D reconstruction

from multiple images can be viewed as a problem of dense

matching across images. The PatchMatch method [4] is a

powerful tool to solve the dense matching problem with

high accuracy and efficiency. Built on the PatchMatch

schema, several methods rank at the top of recent challeng-

ing benchmark [30]. However, the PatchMath method does

not perform well when matching ambiguity occurs, in such

situation many hypotheses can generate high matching s-

cores, and leaving uncertainty for better depth and normal

choosing.

In this paper, we propose a new MVS method to handle

the matching ambiguity issue, and consequently, the accura-

cy and completeness are increased. Firstly, for a given pixel

the matching ambiguity can be possibly reduced by careful-

ly selection of pixel’s scale and the neighbouring images.

The motivation behind is that the matching ambiguity can

be analysed using the geometry of image surface (the height

is the pixel gray-scale intensity), and it varies with differen-

t directions and scales, see Fig. 1. The matching stability

measured by surface normal curvature, is computed in dif-
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ferent scales and directions guided by epipolar constraint,

which is used as one of important factors for the pixel level

scale selection. Secondly, by initializing the depth value in

a smaller range using the depth information of the surround-

ing feature points of each pixel, it suppresses the ambiguity

introduced by repeated image texture and also accelerates

the speed of depth map convergency. And thirdly, the ambi-

guity is further reduced by giving higher priority for planes

with higher matching stability in the following propagation

step that propagating correctly reconstructed surfaces to raw

texture regions.

For large scale scene reconstruction with high resolution

images, the efficiency is quite an important factor to be tak-

en into account. Many methods become impractical due to

heavy computation burden and huge memory requirement.

We propose an efficient way to handle the most time con-

suming part, the PatchMatch stereo for depth map compu-

tation. By proper parametrization and parameter discretiza-

tion of the homography, the homography matrices mapping

an image patch on the reference image to a warped patch on

the neighbour image can be pre-computed and stored. This

is time saving especially for high resolution images, since

now we do not need to compute the homography mapping

at every single pixel. This strategy gains a speed up by a

factor of more than 10, as a result the proposed method is

very efficient even implemented on consumer-grade CPUs.

In summary, the main contributions of this paper are in

three folds:

• A new method for optimal pixel level scale selection is

proposed by the analysis of image surface using differ-

ential geometry and epipolar geometry.

• A PatchMatch based method for depth map compu-

tation is proposed, by using the proposed matching

stability as a priority, it alleviates the ambiguity intro-

duced by image raw texture regions.

• An efficient strategy is proposed for depth map com-

putation, which increases the computational speed by

10 times.

2. Related Work

According to Ref. [31], MVS methods can be sorted

into four classes depend on how the 3D scenes are formu-

lated, voxel based methods, surface evolution based meth-

ods, feature point growing based methods, and depth-map

merging based methods. The proposed method belongs to

the last class, which takes the output of common SfM soft-

wares [28, 38, 33] as input and produces dense point cloud

by merging individual depth maps. A typical depth map

merging based MVS method generally follows the pipe line

of image selection, stereo matching, depth map filtering and

fusion. In each step, it may varies from one to another.

Computing the depth map of a given reference image is

generally by performing a dense stereo matching between

reference image and neighbouring images. Nowadays, the

most popular method for dense matching must be the Patch-

Match algorithm, based on which, many MVS methods

rank at the top of several benchmarks [31, 34, 1, 30], even

with some deep learning based methods emerged in recen-

t years [43, 36, 17, 23, 42]. The PatchMatch algorithm is

primarily designed to compute the nearest neighbour field

between images [4], which shows great power in efficiently

solving pixel labeling problems when the label set is very

large. Bleyer et al. [7] introduce this method into bilocu-

lar stereo with impressive results obtained, since with the

PatchMatch schema the disparity and normal can be mod-

eled in continuous space and solved efficiently. Shen [32]

extends this frame work into multi-view stereo for depth

map computation, then merges the depth maps into a sin-

gle point cloud. Many other works [45, 13, 29] with im-

pressive results have been proposed by more sophisticated

image choosing or depth propagation.

Despite the success of these methods, they share the

same drawback inherited from the PatchMatch algorithm,

when compared with some other excellent works [18, 19].

Since the original PatchMatch method only has a data ter-

m, which is unable to handle the matching uncertainty in

large raw texture regions. Several multi-scale approaches

[37, 39, 41] have been proposed to deal with the large raw

texture regions by down-sampling the source images typi-

cally into 3 scales and merging the depth images computed

in these scales. This problem can also be fixed in some

extent by using super pixel approaches [27, 20], that en-

force the pixel within the same super pixel share the same

pixel label. However, this can bring some artifacts, since

the supper pixels on 2D image do not always consist with

the geometry in 3D space, such as curved surfaces. Com-

pared to the previous image-level multi-scale approaches,

our method choose the optimal scale for each pixel. As the

multi-scale approach in our method is not done by image

down-sampling, thus it is able to cover more dense scales

and it does not surfer from the inaccuracy introduced by im-

age down-sampling. Moreover, as the scale for every pixel

is determined before depth map computation, that for each

pixel we only compute the depth in the optimal scale, which

is more time saving than computing the depth in several s-

cales and merging them into a single one.

The computational efficiency is quite an important fea-

ture for MVS method, since the images captured by devices

nowadays are with increasingly higher resolution. So, G-

PU compatible methods [2, 3, 45] have been proposed by

modifying the sequential propagation direction of the orig-

inal PatchMatch stereo algorithm. To further utilize the ca-

pabilities of GPUs, Galliani et al.[13] propose a diffusion-

like propagation schema, and which is improved by Xu and
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Tao [41] by sampling more candidates in each group of the

checkerboard pattern and only propagating those with low

matching cost. Different to these methods accelerating the

computation speed by using more powerful hardware de-

vices, our method is friendly to those with lower computa-

tional capability, and efficient even on consumer grade cpus.

3. MARMVS: The Method

Our method is detailed in 3 parts. In Section 3.1, the am-

biguity in image matching is analysed with the measures to

compute the similarity between two image patches, and we

also propose corresponding method to reduce this ambigui-

ty by proper scale and neighbour image selection for every

single pixel. In Section 3.2, the pipe line to compute the

depth map is given, besides conventional techniques, strate-

gies to reduce the ambiguity are given in detail. In addition,

we also design a solution to efficiently compute the depth

maps. In Section 3.3, we briefly talk about our method for

depth map filtering and fusion, for every 3D point the con-

sistency is measured across views and between its neigh-

bour pixels, which is a flexible strategy for controlling the

trade off between accuracy and completeness for the recon-

structed model, especially for those parts only visible in two

views.

3.1. Pixel Level Scale Selection

It is routinely required to compute the depth map of ev-

ery reference image for depth map based MVS methods. To

compute the depth of a given pixel x in the reference image,

similar to existing methods, we follow the typical procedure

of PatchMatch stereo. The space propagation is performed

after random depth and random normal initialization, and

the propagation is also performed after depth map refine-

ment via random optimization. In the propagation and op-

timization steps, a 3D plane will replace the current plane

if it is supposed to be a more accurate approximation of the

corresponding local object surface, which is determined by

whether a higher matching score can be generated by the

new 3D plane. Based on the epipolar geometry, the for-

mer operation is equivalent to find the optimal correspond-

ing match along the epipolar line. Denote p a patch cen-

tered at x, in raw texture and repetitive texture regions it

occasionally happens that several candidate patches in the

neighbouring image all posses high similarity scores to the

patch p, which leaves uncertainty in optimal depth decision.

But the location of the correct patch p
′

in the neighbour im-

age is prior unknown, it is impracticable to check whether p

is similar to the patches along the epiploar line close to p
′

.

However, based on the epipolar constraint, we can check

that if the patch p is similar to its own surrounding patches

on the epipolar line related to p
′

.

The similarity between two image patches can be mea-

sured by many methods, such as NCC [44, 16, 21], SSD

[9, 11, 10], or key-point descriptors [35]. Among them,

the methods possessing the ability of being robust for s-

mall image patch matching and being invariant to different

light conditions are preferred. As the invariance for differ-

ent light conditions is usually required, that high similarity

score can be obtained between two image patches if they are

approximately linear dependent. Let p(X,σ) be an image

patch with X the center and σ the scale which is propor-

tional to the window size. Let L(X, In) be the epipolar line

on the reference image passing through X , and In is cor-

responding neighbouring image. We can turn the problem

of reducing the matching ambiguity at pixel X to searching

a proper scale σ and neighbour image In, so that the patch

p(X,σ) is less linear correlated to its surrounding patches

along the epipolar line L(X, In). This substantially requires

the patch p(X,σ) curved in the epipolar line direction, if we

view this patch as a part of image surface (the intensity is

the height) in corresponding image scale. It is naturally to

use normal curvature to estimate how the image surface is

curved in a specific epipolar line direction.

Based on the epipolar geometry, all the epipolar lines on

the reference image Ir corresponding to the neighbouring

image In intersect at the epipole e(Ir, In), thus the direc-

tion of epipolar line L(X, In) passing through X and cor-

responding to neighbour image In can be determined by X

and e(Ir, In). According to [15], homogeneous coordinates

of the epipole e = (x, y, z) is the right null-vector of the

fundamental matrix F :

Fe = 0. (1)

Since F is a 3 × 3 matrix and has rank 2, there only exists

one group of linearly correlated solutions, thus the position

of the epipole e(Ir, In) is fixed and can be computed by

solving Eq. 1. The fundamental matrix F defined from

image I to I
′

can be computed with the internal and external

camera parameters obtained from SfM method:

F = [P
′

C]×P
′

P+, (2)

where P+ is the pseudo-inverse of P , C is the camera cen-

ter related to I and [·]× defines the skew-symmetric matrix

corresponding to cross product.

After the direction of epipolar line through each pixel is

computed, the corresponding normal curvature in different

image scales can be derived from differential geometry [12]

and scale space theory [22].

Let I(x, y) represent pixel intensity at (x, y), and write

the image surface in form of vector equation:

r(x, y) = (x, y, I(x, y)), (3)

Taking first and second partial derivatives on Eq. 3, we

have rx = (1, 0, Ix), ry = (0, 1, Iy), rxx = (0, 0, Ixx),
ryy = (0, 0, Iyy), rxy = (0, 0, Ixy). The surface normal
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at (x, y) is n =
rx×ry

||rx×ry||
. With these derivatives and the

surface normal, the coefficient matrix of first and second

fundamental form can be computed:

I :

[

E F

F G

]

=

[

rx · rx rx · ry

rx · ry ry · ry

]

=

[

1 + I2x IxIy
IxIy 1 + I2y

]

II :

[

L M

M N

]

=

[

rxx · n rxy · n

rxy · n ryy · n

]

=

[

Ixx Ixy
Ixy Iyy

]

√

1 + I2x + I2y

(4)

Denote n⃗ = (u, v) a unit vector in the direction of the

epipolar line L(X, In), denote (a, b) the coordinate of X

on reference image, the epipolar line can be represented by

the parametric equations:

x(t) = ut+ a (5)

y(t) = vt+ b (6)

Combining the Eqs. 3, 5, and 6, a curve on the image

surface is defined r(x(t), y(t)), whose orthogonal projec-

tion on the image plane is the epipolar line L(X, In). The

direction of the tangent line of the curve r(x(t), y(t)) is

ω = urx + vry . Since rx and ry are base vectors of the

tangent plane of the image surface at X , denote δ = [u, v],
the normal curvature at X with direction ω is

k(X,ω) =

δ

[

L M

M N

]

δT

δ

[

E F

F G

]

δT
. (7)

Note, in Eq. 7 the image scale is ignored, but we need to

compute the normal curvatures in different scale to deter-

mine the matching window size of each pixels. Actually,

this can be done by calculating the first and second deriva-

tives of the image in different scale, then the first and second

fundamental form are obtained via Eqs.4 and the normal

curvature can be computed by Eq. 7. For computational

efficiency, instead of computing the derivatives after convo-

luting the image with different gaussian kernel, it could be

done by convolution of the origin image with the derivatives

of the gaussian kernel based on the property that:

∂i+j

∂xi∂yj
[G(x, y, σ)∗I(x, y)] = I(x, y)∗

∂i+j

∂xi∂yj
G(x, y, σ),

(8)

where G(x, y, σ) is the gaussian kernel with σ the scale, and

∗ represents the convolution operator. Ref. [6] presents an

efficient technique to approximate the first and second order

Gaussian derivatives by using box filters and integral im-

ages, which is a contributory factor for the efficiency of the

benchmark detector and descriptor. With this computation

strategy, the time used for normal curvature computation is

Figure 2. Illustration of scale selection for each pixel in the refer-

ence image. Image (A) is the reference, image (B) is a neighbour-

ing image of (A). The results are drawn in image (C), the color of

each pixel represents a specific selected window size ranging from

7× 7 to 63× 63, where for the smallest window size are depicted

in blue and the biggest are depicted in gray.

Table 1. The side length of the window for stereo matching in our

method.

l0 l1 l2 ... ln
7 11 15 ... 4n+7

negligible, for example, the normal curvature is able to be

calculated in 10 scales within 1 second for an image with

resolution of 3072× 2048.

It is known that the smaller scale we choose the better lo-

cal detail is preserved, on the other hand, the larger scale of-

ten yields increased completeness but over smoothed local

structure. Hence, to the purpose of preserving fine details of

rich texture regions and increasing completeness of raw tex-

ture regions, for each pixel in the reference image, the size

of the matching window is set according to the smallest s-

cale available to generate a stable match. This is achieved

by searching the normal curvature from the first scale to the

largest scale until it reaches a threshold T (T=0.01 and the

pixel intensity is within [0,1] in our method). The sizes of

matching windows in our method are ranged from l0× l0 to

ln×ln, as shown in table 1, l0 defines the smallest matching

window which is set to 7 and is fixed in our method, ln may

varies depends on the scene to be reconstructed. A typical

example of pixel level scale selection is illustrated in Fig. 2.

3.2. Depth Map Computation

The depth maps in our method are computed following

the procedure of existing PatchMatch stereo based MVS

methods, the differences are: 1)The depth range for every

single pixel in a reference image is initialized randomly

within smaller range determined by depth information of

surrounding feature points output by SFM method, leading

to faster depth convergence. 2)The window size related to a

neighbour image is chosen for every individual pixels based

on the criteria introduced in section 3.1, thus the proposed

method can preserve fine structure in rich texture region-

s while increase the completeness in raw texture regions.

3)In the final propagation, the normal curvature is taken in-
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Figure 3. Suppose we require the reconstructed error of pixel xr to

be less than ∆X , we should select a desired neighbouring image

for xr , on which the projection ∆x of ∆X should be larger than

0.5 pixel.

to consideration, which further propagates an unambiguous

plane to raw texture region with even higher completeness

achieved.

3.2.1 Neighbouring Images Selection

To compute the depth map of a reference image, several

neighbour images should be selected for stereo matching.

The two principle rules of existing methods for neighbour

image selection are: 1) a good neighbour image should

have enough overlap area with the reference image; 2) there

should exist enough base line to generate a stable triangula-

tion, or it will affect the accuracy of the reconstructed mod-

el. Based on the first rule, for a given image, it will be

chosen as a neighbouring image if it shares sufficient fea-

ture points with the reference image. And for the second

rule, instead of computing the average triangulation angle

of the feature point, we give a more accurate measurement.

Suppose the relative error of the reconstructed 3D model is

required to be less than ϵ (ϵ = 0.001 in our method). Let X

be a 3D point from SfM, and move X a bit to X
′

along the

ray passing through camera center C of reference image Ir,

then we have: X
′

= (1+ ϵ)X − ϵCr. Denote x
′

n and xn as

the projections of X
′

and X on the neighbouring image In
respectively, A is the point set containing the common 3D

points of the reference image and the neighbour image. The

threshold τ rejecting the candidates above is computed as:

τ =
1

|A|

∑

X∈A

∣

∣

∣

∣

∣

∣
x

′

n − xn

∣

∣

∣

∣

∣

∣
. (9)

The neighbouring image candidates with τ < 0.5 are re-

moved, and in the remaining images, we keep top 8 images

ranked by the number of common 3D points as neighbour-

ing images.

3.2.2 Parameters Initialization

In PatchMatch based stereo matching methods, it usually

assigns a random depth d and a random normal vector n⃗ for

every pixel in the reference image, then the stereo match-

ing is turned out to be an optimization problem of finding d

and n⃗ that minimizing the matching cost between reference

image and its neighbouring images. In our method, besides

the parameter d and n⃗, a random number i is also assigned

to every pixel in the reference image, which represents the

ID of the selected neighbouring image for stereo matching.

More precisely, we assign a parameter set U with four ran-

dom parameters to each pixel p = (a, b) in the reference

image:

U := {d, φ, θ, i} , (10)

where d is the depth of pixel, φ and θ define the normal of

a plane, i is the neighbouring image ID. Let V = [x, y, z],
the first three parameters in Eq. 10 actually define a plane

π in the camera coordinate system of the reference image:

n⃗V T +D = 0, (11)

where n⃗ = [sin(φ)cos(θ), sin(φ)sin(θ), cos(φ)], and

D = −dn⃗K−1
r [a b 1]T . To get uniformly distributed ran-

dom normal vectors, we pick two random variates u ∈ [0, 1)
and v ∈ [0.5, 1), then

{

φ = cos−1(2v − 1)

θ = 2πu
(12)

is used to generate normal vectors which are uniformly dis-

tributed on hemisphere surface.

As for the parameter d, different to existing method that

assign a random value between the depth range of the refer-

ence image, we shrink this range to the max and min depth

of four closest feature points in four regions, as depicted in

Fig.4. It is very efficient to find the most closest feature

point in an area by using the method in chamfer matching

[5], which calculates the shortest distance for every non-

edge points to the edge points. With dynamical program-

ming, it only needs to scan the image once to find the closest

feature point for all non-feature points in a specific area.

The last parameter i for every pixel is initialized with

a ID number randomly chosen from the neighbour images

candidates which are selected by the method in Section

3.2.1.

3.2.3 Plane Propagation and Refinement

After the random initialization of the parameters, plane

propagation and refinement are performed alternately to ob-

tain the final depth map. In both steps, for every pixel, a

new plane will replace current plane, if it is able to generate

a higher score:

S = ((1− α)Spho + αSsta)Stri, (13)

where Spho is the photometric consistency estimated by

Zero-mean Normalized Cross correlation (ZNCC), Ssta
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Figure 4. The depth value of point X are randomly assigned in

the range determined by the depth of the four most closest feature

points F1, F2, F3, and F4 in four region respectively.

represents the matching stability of current patch, which is

measured by the normal curvature k and defined as Ssta =
min(e

k
0.01

−1, 1), Stri is used to reject those unable to gen-

erate a stable triangulation:

Stri =

{

1 if ∆x > 0.5

0 otherwise
, (14)

in which, ∆x represents the projection of the displacement

of the 3D point, as depicted in Fig.3, and it is computed as:

∆x =

∣

∣

∣

∣

∣

−−−→
CnX −

−−−→
CnX · P⃗axis
−−−→
CnX

′

· P⃗axis

−−−→
CnX

′

∣

∣

∣

∣

∣

fx + fy

2
−−−→
CnX · P⃗axis

.

(15)

The parameter α controls the influence of the matching sta-

bility. In the first two propagations and refinements we set

α = 0. In the last propagation, we set α = 0.1 which is

an empirical value from experiments, it is able to propa-

gate correctly reconstructed surfaces to raw texture regions,

and also it avoids propagating them into surface discontinue

area.

3.2.4 Efficient Implementation

For PatchMatch based depth map computation, the most

time consuming part is the calculation of the homograph

matrix mapping of the image patches from the reference im-

age to its neighbouring images, as it is conducted on every

pixel with generally more than ten times. Denote [a, b, 1]
the homogeneous coordinates of a pixel with normal n⃗ and

depth d, according to [32, 29], the homography matrix in-

duced by the plane defined in Eq. 11 is computed as:

H =KI
′ (RI

′R−1

I +
RI

′ (CI
′ − CI)n⃗

D
)K−1

I

=KI
′RI

′R−1

I K−1

I +KI
′RI

′ (CI
′ − CI)n⃗K

−1

I

1

−dn⃗K−1

I [a b 1]T
.

(16)

Note, for a pair of images I and I
′

, the term

KI
′RI

′R−1

I K−1

I is a constant matrix for every pixel in I ,

the term KI
′RI

′ (CI
′ −CI)n⃗K

−1

I only depends on the sur-

face normal n⃗, and the last term depends on the coordinates

of specific pixel, the surface normal n⃗ and a depth value.

For computational efficiency, the first term is pre-computed

and cached as M1. For the second term, since at every pix-

el, the n⃗ is randomly sampled on the half spherical surface

of a unit sphere, if we make a uniform discrete sampling of

the hemisphere surface densely enough, then the n⃗ can be

sampled in a discrete vector set N rather than on the con-

tinuous spherical surface. In our implementation, the set

N contains about 0.5 million vectors. This is achieved by

uniform sampling of u ∈ [0, 1) and v ∈ [0.5, 1) with the

sampling step length set to 0.001, then we get φ and θ by

Eq. 12, each pair of φ and θ defines a vector on the sphere

surface. For each n⃗ ∈ S, we compute and store the second

term in Eq. 16, then we get a set of matrices M2(n⃗). The

n⃗K−1

I in the third term of Eq. 16 can also be computed and

stored as M3(n⃗). The Eq. 16 is rewritten as

H = M1 +
M2(n⃗)

−dM3(n⃗)[a b 1]T
, (17)

where M1 and M2(n⃗) are 3 × 3 matrices, M3(n⃗) is 1 × 3
matrix, and they are all pre-computed. Compared to Eq. 16

the computational complexity is largely reduced.

3.3. Depth Map Fusion

The aim of depth map fusion is to merge all the depth

maps into a single point cloud while filtering out the incor-

rect and redundant points by consistency checking. In our

method, the consistency is checked not only crossing differ-

ent views, but also with the neighbouring pixels, which is

based on the idea that local object surface is continuous and

can be viewed in more than one view. Suppose the tangent

plane is defined by a 3D point and a normal, the discrepancy

between two tangent planes is computed as:

d =
1

2

(
∣

∣

∣
(X −X

′

) · n⃗
∣

∣

∣
+

∣

∣

∣
(X −X

′

) · n⃗′

∣

∣

∣

)

. (18)

In our method, two tangent planes are consistent only if

d smaller than the error related to the distance to the camera

center e|X − Cr|, where e is the relative error. To check

the consistency at pixel xr in a depth map, we first compute

the discrepancy to its 8 neighbouring pixels, and similar op-

eration is done on its neighbouring images, as illustrated in

Fig. 5. If there are no less than N1 pixels of the neighbour-

ing image consisting with xr, we say this neighbouring im-

age is consistent with xr. Only there are N2 neighbouring

images and N3 neighbouring pixels of xr passing the con-

sistency checking, the related 3D points and the normals are

averaged and saved to the point cloud. The set of thresholds

Ω := (e,N1, N2, N3) are used to balance the accuracy and

completeness of the reconstructed model.
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Figure 5. Illustration of consistency checking between neighbour-

ing pixels and across neighbouring images. The consistency

checking is first conducted on xr and its eight neighbouring pixels.

And then, since the coordinates of xn are floating point numbers,

so there are 4 closest pixels to xn, then the consistency checking

is done between xr and the 4 pixels on the neighbouring image.

Figure 6. Depth maps after initialization, first propagation, first re-

finement and second propagation by using (C0, C1, C2) and with-

out using (B0, B1, B2) the proposed depth initial method.

Figure 7. Depth maps corresponding to the matching scale set to

minima (B), maxima (C), and adaptively by the proposed method

(D).

4. Experimental Results and Discussion

Experiments are carried out on a PC with Intel Core i7

9700k CPU and 32G RAM. The proposed method is im-

plemented in C++ and executed in 8 parallel threads on

CPU. Qualitative and quantitative evaluation are performed

on ETH3D benchmark [30] and Strecha benchmark [35].

We first test the effectiveness of each critical individual part

of our method, and then the overall evaluation is done by

comparing the proposed method with the state of the art.

The criteria proposed in [30] are used for evaluation: the

completeness, the accuracy and the F1 score which is har-

Figure 8. Depth maps obtained before (column (B)) and after (col-

umn (C)) the proposed propagation schema.

monic mean of completeness and accuracy.

4.1. Evaluation of Individual Parts

We have tested three individual parts of the proposed

method, the pixel level scale selection, the depth initializa-

tion, and the strategy of plane propagation, which are sup-

posed to be the core contributions of our method. To evalu-

ate one part of our method, parameters of all other parts are

set to defaults.

4.1.1 Pixel Level Scale Selection

The choosing of proper scale in image matching affects the

balance between accuracy and completeness. To test the ef-

fectiveness of the pixel level scale selection, we compared

our results obtained with the results by setting the scale to

minima and maxima respectively. As the qualitative com-

parison in Fig. 7, when the scale is set to minima, it pre-

serves the thin structure of the object but also brings many

noises in large textureless regions, on the other hand, when

the scale is set to maxima, it removes the noises in tex-

tureless regions but also over blurs the object surfaces and

edges. It is apparent that the proposed pixel level scale s-

election preserves the thin structure well and also reduces

the noise in textureless regions. Quantitative comparison is

given in table 2, the MaxScale and MinScale denote the

results obtained by setting the matching scale to maxima

and minima respectively. They both suffers from inferior

accuracy and completeness.

4.1.2 Pixel Level Depth Initialization

The method for depth value initialization proposed in Sec-

tion 3.2.2 has the ability of accelerating convergency speed

of the depth image and reducing the matching ambiguity

introduced by repetitive image structure. For visual inspec-

tion, as shown in Fig. 6, a quite clean depth image is ob-

tained by our method only after two times of propagations

and refinements. On the other hand, when the depth value
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Figure 9. Comparison to state of the arts.

Table 2. Results (F1 score, accuracy, and completeness) on the

ETH3D high-resolution multi-view training datasets by removing

or replacing individual parts of our method.

Method
1cm 2cm 5cm

F1 A C F1 A C F1 A C

MARMVS 68.04 70.00 66.85 79.21 81.98 77.19 88.39 91.86 85.65

MaxScale 63.84 60.54 66.16 72.83 69.39 76.52 81.31 78.76 83.96

MinScale 56.29 69.16 47.19 65.36 81.54 54.25 72.79 91.92 60.31

WithoutI 62.05 63.36 59.74 70.97 73.29 69.56 79.34 82.30 76.81

WithoutP 60.54 70.31 53.12 69.93 81.77 60.98 78.29 90.76 68.87

is randomly initialized in the range of min and max depth

of the reference image, the computed depth image is rather

noisy, especially in the areas that possess raw texture or

symmetrical structure. Quantitative comparison is given in

table 2, our method without using the depth initialization

strategy is denoted as WithoutI , it can be seen that the ac-

curacy is decreased.

4.1.3 Plane Propagation

The plane propagation is aiming at propagating a better

plane to neighbouring pixels, but differently from tradition-

al methods, we combine the matching stability and match-

ing score to evaluate whether a plane is better than the cur-

rent one. As illustrated in Fig. 8, many false depth values

are corrected by propagating stable matched planes to tex-

tureless area. A quantitative comparison is given in table 2,

our method without using the propagation strategy is denot-

ed as WithoutP , we can see that without this strategy the

completeness is reduced.

4.1.4 Runtime Evaluation

In our experiment, for a reference image whose resolution

is 6000 × 4000 pixels, it usually takes about 500 seconds

to compute the depth map in a single CPU thread running

at 4.0GHZ. Though this is not as fast as some GPU based

method [41, 13], but it offers an option for devices with low

computational power.

w

Table 3. F1 score, accuracy, and completeness, on the ETH3D

high-resolution multi-view test dataset, the best results are marked

in bold.

Method
1cm 2cm 5cm

F1 A C F1 A C F1 A C

PMVS 36.22 81.70 25.07 44.16 90.08 31.84 52.22 94.97 39.19

Gipuma [13] 34.77 69.55 27.47 45.18 84.44 34.91 57.99 95.31 45.11

COLMAP [29] 61.27 83.75 50.90 73.01 91.97 62.98 83.96 96.75 75.74

OPENMVS 60.03 63.23 59.20 70.56 77.77 78.54 88.74 92.27 73.02

ACMM [41] 70.80 77.50 64.35 80.78 90.65 74.34 89.14 96.30 83.72

TAPA-MVS [27] 66.60 75.16 61.82 79.15 85.71 74.94 88.16 92.49 85.02

MARMVS 71.51 67.72 76.76 81.84 80.24 84.18 90.30 90.32 90.63

4.2. Overall Evaluation

Typical results on the ETH3D dataset is depicted in Fig.

9, our method possesses the highest completeness, and from

table 3, we can see that it also has the highest F1 score a-

mong the state-of-the-art methods.

5. Conclusion

In this paper, we have presented a novel MVS system

named MARMVS that efficiently handles the ambiguity in

image matching process. Without using any prior knowl-

edge of the scene and without using powerful computing

devices, the MARMVS produces competing results against

the state of the art on large scene reconstruction with high

resolution images, which offers a compelling choice for

those with low computational capability platforms. In fu-

ture works, we plan to improve the quality of the recon-

structed model by learned prior knowledge of surface ge-

ometry information.
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