
On the Acceleration of Deep Learning Model Parallelism with Staleness

An Xu1, Zhouyuan Huo1, and Heng Huang∗1,2

1Electrical and Computer Engineering Department, University of Pittsburgh, PA, USA
2JD Finance America Corporation, Mountain View, CA, USA

{an.xu, zhouyuan.huo, heng.huang}@pitt.edu

Abstract

Training the deep convolutional neural network for com-

puter vision problems is slow and inefficient, especially

when it is large and distributed across multiple devices. The

inefficiency is caused by the backpropagation algorithm’s

forward locking, backward locking, and update locking

problems. Existing solutions for acceleration either can

only handle one locking problem or lead to severe accu-

racy loss or memory inefficiency. Moreover, none of them

consider the straggler problem among devices. In this pa-

per, we propose Layer-wise Staleness and a novel efficient

training algorithm, Diversely Stale Parameters (DSP), to

address these challenges. We also analyze the convergence

of DSP with two popular gradient-based methods and prove

that both of them are guaranteed to converge to critical

points for non-convex problems. Finally, extensive exper-

imental results on training deep learning models demon-

strate that our proposed DSP algorithm can achieve signif-

icant training speedup with stronger robustness than com-

pared methods.

1. Introduction

The deep convolutional neural network is an important

method for solving computer vision problems such as clas-

sification, object detection, etc. However, as the neural net-

works get deeper and larger [8, 17, 10, 31, 34, 24], the re-

quired expensive training time has become the bottleneck.

Data parallelism [33, 23, 3] and model parallelism [22, 20]

are two standard parallelism techniques to utilize multiple

devices for efficient training.

The data parallelism for efficient distributed training has

been well studied and implemented in existing libraries

∗Corresponding Author. This work was partially supported by U.S.

NSF IIS 1836945, IIS 1836938, IIS 1845666, IIS 1852606, IIS 1838627,

IIS 1837956.

[1, 4, 12, 35, 14, 16], but the model parallelism is still under-

explored. In this paper, we focus on the model parallelism,

where the deep neural network (DNN) benefits from being

split onto multiple devices. But the resource utilization of

standard model parallelism can be very low. The backprop-

agation algorithm [29, 21] typically requires two phases to

update the model in each training step: the forward pass

and backward pass. But the sequential propagation of ac-

tivation and error gradient leads to backward locking and

forward locking [18] respectively because of the computa-

tion dependencies between layers. The update locking [18]

exists as the backward pass will not start until the forward

pass has completed. This sequential execution keeps a de-

vice inefficiently waiting for the activation input and error

gradient.

Several works have been proposed to address these lock-

ing issues (Figure 1). [18] uses Decoupled Neural Interfaces

(DNI) to predict the error gradient via auxiliary networks,

so that a layer uses the synthetic gradient and needs not to

wait for the error gradient. [27] lets hidden layers receive

error information directly from the output layer. However,

these methods can not converge when dealing with very

deep neural networks. [2] proposes layer-wise decoupled

greedy learning (DGL), which introduces an auxiliary clas-

sifier for each block of layers so that a block updates its

parameters according to its own classifier. But the objective

function of DGL based on greedy local predictions can be

very different from the original model. GPipe [11] proposes

pipeline parallelism and divides each mini-batch into micro-

batches, which can be regarded as a combination of model

parallelism and data parallelism. However, the forward and

backward lockings of the micro-batch still exist, and the up-

date locking is not addressed because GPipe waits for the

whole forward and backward pass to finish before updating

the parameters. [15] proposes Decoupled Parallel Back-

propagation (DDG), which divides the DNN into blocks

and removes the backward locking by storing delayed er-

ror gradient and intermediate activations at each block. But

2088

......

F B
F B

F B

F B
F B

F B

F R B
F R B

F B

F R B
F R B

F B

GPipe

Training Progress (K=3, two consecutive mini-batches displayed)
Backward

Locking

Forward

Locking
Method

BP

FR

DSP

Yes Yes

Yes No

No No

Yes

(micro-

batch)

Yes

(micro-

batch)

DDG Yes No

F

B

Micro-batch forward

Micro-batch backward

F

R

B

Mini-batch forward

Mini-batch recomputation

Mini-batch backward

Idle

time

F
R

B

F
R

B

F B

F
R

B

F
R

B

F B

F
F

F B
B

B F
F

F B
B

B

......

......

......

......

F
F F F B B B

B B B
B B

FF
FFF

F
F F F B B B

B B B
B B B

FF
FFFB

3 Blocks

Figure 1. Sketches of different methods with three blocks. The forward and recomputation are overlapped in DSP.

DDG suffers from large memory consumption due to stor-

ing all the intermediate results, and cannot converge when

the DNN goes further deeper. Features Replay (FR) [13, 36]

improves DDG via storing the history inputs and recomput-

ing the intermediate results. Nevertheless, blocks in DDG

and FR still need to wait for the backward error gradient.

Besides, neither DDG nor FR addresses the forward lock-

ing problem.

To overcome the aforementioned drawbacks, we first

propose Layer-wise Staleness, a fine-grained staleness

within the model to allow different parts to be trained

independently. Incorporating staleness is useful for effi-

cient asynchronous execution without synchronization bar-

rier [9], which can be interpreted as another form of lock-

ing/dependency. The introduction of preset Layer-wise

Staleness enables each part of the convolutional neural net-

work (CNN) to run in a very flexible way with a certain

degree of asynchrony. Based on the concept of Layer-wise

Staleness, we propose a novel parallel CNN training algo-

rithm named as Diversely Stale Parameters (DSP), where

lower layers use more stale information to update parame-

ters. DSP also utilizes the recomputation technique [5, 7] to

reduce memory consumption, which is overlapped with the

forward pass. Our contributions are summarized as follows:

• We propose Layer-wise Staleness and Diversely Stale

Parameters (§3) which breaks the forward, backward

and update lockings without memory issues.

• To ensure the theoretical guarantee, we provide con-

vergence analysis (§4) for the proposed method. Even

faced with parameters of different Layer-wise Stale-

ness, we prove that DSP converges to critical points for

non-convex problems with SGD and momentum SGD.

• We evaluate our method via training deep convo-

lutional neural networks (§5). Extensive empirical

results show that DSP achieves significant training

speedup and strong robustness against random strag-

glers.

2. Background

We divide a CNN into K consecutive blocks so that

the whole parameters x = (x0, x1, ..., xK−1) ∈ R
d,

where xk ∈ R
dk denotes the partial parameters at block

k ∈ {0, 1, ...,K − 1} and d =
∑K−1

k=0 dk. Each block

k computes activation hk+1 = fk(hk;xk), where hk de-

notes the input of block k. In particular, h0 is the input

data. For simplicity, we define F (h0;x0;x1; ...;xk) :=
fk(...f1(f0(h0;x0);x1)...;xk) = hk+1. The loss is

L(hK , l), where l is the label. Minimizing the loss of a K-

block neural network can be represented by the following

problem:

min
x∈Rd

f(x) := L(F (h0;x0;x1; ...;xK−1), l). (1)

Backpropagation algorithm computes the gradient for

block k following chain rule via Eq. (2). The forward lock-

ing exists because the input of each block is dependent on

the output from the lower block. The backward locking

exists because each block cannot compute gradients until

having received the error gradient Gh from the upper block.

Besides, the backward process can not start until the whole

forward process is completed, which is known as the update

locking.

{

Ghk
= ∂fk(hk;xk)

∂hk

Ghk+1
, GhK

= ∂L(hK ,l)
∂hK

Gxk
= ∂fk(hk;xk)

∂xk

Ghk+1
.

(2)

After computing the gradients, stochastic gradient de-

scent (SGD) [28] and its variants such as stochastic uni-

fied momentum (SUM) [37], RMSPROP [32] and ADAM

[19] are widely used for updating the model. SGD updates

2089

warm-up steady

0

0

0

0

1

1 2

1 1

2
0 0

2 2 3 3 4 4

3

3
1 1 4

2 2 5
3 3

4
0 0 5

1 1 6
2 2Worker 0

Worker 1

Worker 2

i Forward batch i i Backward batch i i Recompute batch i

𝑡 = 0 𝑡 = 1 𝑡 = 2 𝑡 = 3 𝑡 = 4 𝑡 = 5 𝑡 = 6

Figure 2. DSP(1,1,0;4,2,0) with Layer-wise Staleness of {4,2,0} (the index difference between the forward and backward batch). Worker

k ∈ {0, 1, 2} holds block k.

via xn+1 = xn − αG(xn; ξ), where xn is the parameters

when feeding the nth data (batch), α is the learning rate,

and G(xn; ξ) is the stochastic gradient. SUM updates the

parameters via Eq. (3), where β is the momentum constant

and y is the momentum term. When s = 1, SUM reduces

to stochastic Nesterov’s accelerated gradient (SNAG) [26].

{

yn+1 = xn − αG(xn; ξ), ys,n+1 = xn − sαG(xn; ξ)

xn+1 = yn+1 + β(ys,n+1 − ys,n).

(3)

3. Diversely Stale Parameters

In this section, we propose a novel training method

named Diversely Stale Parameters (Figure 2). We first de-

fine layer-wise staleness and related notations in Section

3.1, then the motivation and formulation of DSP gradient

in Section 3.2, finally the practical implementation using

queues for pipelined batch input in Section 3.3.

3.1. Layer­Wise Staleness

Let the data be forwarded with parameters x0 at times-

tamp t0, x1 at timestamp t1, . . ., and xK−1 at timestamp

tK−1. For simplicity we denote the Forward Parame-

ters as {xtk
k }k=0,...,K−1. Similarly we denote the Back-

ward Parameters as {xt2K−1−k

k }k=0,...,K−1. Then we de-

fine Layer-wise Staleness as ∆tk = t2K−k−1−tk ≥ 0. We

preset each block’s Layer-wise Staleness to a different value

to break the synchronization barrier of backpropagation.

We also denote the maximum Layer-wise Staleness as

∆t = maxk=0,1,...,K−1 ∆tk. It is worth noting that a) in

standard backpropagation algorithm (Eq. (2)), Layer-wise

Staleness ∆tk = 0; and b) Feeding data index is not identi-

cal to timestamp/training step.

3.2. DSP Gradient

We first set the constraints of DSP as t0 < t1 < . . . <
tK−1 ≤ tK < tK+1 < . . . < t2K−1 such that both the de-

pendencies in the forward and backward pass no longer ex-

ist, because we do not need them to finish in the same times-

tamp anymore. The non-decreasing property corresponds

to the fact that the data needs to go through the bottom lay-

ers before the top layers, and the error gradient needs to go

through the top layers before the bottom layers.

Based on backpropagation algorithm and Eq. (2), we

should compute the gradients according to the following

formulas as we are updating the Backward Parameters

{xt2K−1−k

k }k=0,...,K−1,

Gxk
=

∂F (h0;x
t2K−1

0 ; ...;x
t2K−1−k

k)

∂x
t2K−1−k

k

Ghk+1

Ghk
=

∂F (h0;x
t2K−1

0 ; ...;x
t2K−1−k

k)

∂F (h0;x
t2K−1

0 ; ...;x
t2K−2−k

k−1)
Ghk+1

GhK
=

∂L(F (h0;x
t2K−1

0 ; ...;xtK
K−1), l)

F (h0;x
t2K−1

0 ; ...;xtK
K−1)

.

(4)

However, during the forward pass the input of block k is

F (h0;x
t0
0 ; ...;x

tk−1

k−1). Therefore we incorporate the recom-

putation technique and utilize both the Forward Parameters

and Backward Parameters to compute DSP gradient as fol-

lows,

Gxk
=

∂F (h0;x
t0
0 ; ...;x

tk−1

k−1 ;x
t2K−1−k

k
)

∂x
t2K−1−k

k

Ghk+1

Ghk
=

∂F (h0;x
t0
0 ; ...;x

tk−1

k−1 ;x
t2K−1−k

k
)

∂F (h0;x
t0
0 ; ...;x

tk−1

k−1)
Ghk+1

GhK
=

∂L(F (h0;x
t0
0 ; ...;x

tK−1

K−1), l)

F (h0;x
t0
0 ; ...;x

tK−1

K−1)
.

(5)

The intuition behind the DSP gradient of Eq. (5) is that

it is equivalent to Eq. (4) when the model converges to a

local optimum where the gradient is zero (xtk
k = x

t2K−1−k

k

afterwards).

2090

3.3. Batch Pipeline Input

The computation of the DSP gradient breaks the forward

and backward dependencies/lockings of the same data as it

will not appear in different blocks at the same timestamp.

The update locking is naturally broken.

For the parallel implementation of DSP as shown in Fig-

ure 2, we incorporate the data batch pipeline to keep all

the blocks being fed with different data batches and run-

ning. The data source consecutively feeds data input. Dif-

ferent blocks transport and process different data via FIFO

queues. As a result, the data travels each block at differ-

ent timestamps. Specifically, each block k maintains an in-

put queue Mk, output queue Pk and gradient queue Qk of

length 1+mk, 1+pk and 1+qk respectively. We denote it as

DSP (p0, ..., pK−1;m0, ...,mK−1). {qk} is determined by

{pk} and {mk} because the input should match the corre-

sponding error gradient. We manually split the model to dif-

ferent workers to balance the workload at the steady stage.

Apart from adopting recomputation to reduce memory

consumption, DSP overlaps recomputation with the forward

pass to save time. Using queues also make DSP overlap

the communication between blocks with computation. The

FIFO queues allow for some asynchrony which is effective

for dealing with random stragglers. The ideal time com-

plexity of DSP is O(TF+TB

K
) and the space complexity is

O(L+
∑K−1

k=0 (mk+pk+qk)), where TF and TB are serial

forward and backward time, and L is the number of layers.

mk also represents the Layer-wise Staleness ∆tk of block

k. K and the FIFO queues length mk+1, pk+1, qk+1 ≪ L
for deep models, so the extra space cost is trivial.

4. Convergence Analysis

The convergence of DSP with SGD is first analyzed, then

DSP with Momentum SGD. For simplicity, we denote the

Forward and Backward Parameters of data n as xn′

and xn

respectively.

Assumption 1. (Bounded variance) Assume that the DSP

stochastic gradient G(x; ξ) satisfies Var [G(x; ξ)] ≤ σ2.

Note E [G(x; ξ)] = G(x) 6= ∇f(x).

Assumption 2. (Lipschitz continuous gradient) Assume

that the loss and the output of the blocks have Lips-

chitz continuous gradient, that is, ∀k ∈ {0, 1, ..,K − 1},

and ∀(x0,1, ..., xk,1), (x0,2, ..., xk,2) ∈ R
d0+d1+...+dk , we

have ‖∇F (h0;x0,1; ...;xk,1)−∇F (h0;x0,2; ...;xk,2)‖ ≤
Lk ‖(x0,1, ..., xk,1)− (x0,2, ..., xk,2)‖; and ∀x1, x2 ∈ R

d,

‖∇f(x1)−∇f(x2)‖ ≤ LK ‖x1 − x2‖.

We define L := maxk∈{0,1,...,K} Lk. Note that

∇F (h0;x0,1; ...;xk,1) and ∇F (h0;x0,2; ...;xk,2) regard-

ing parameters are Jacobian matrices. In fact, this is as-

suming that the partial model consisted of the blocks that

the data has traveled, has Lipschitz continuous gradient.

Assumption 3. (Bounded error gradient) Assume that the

norm of the error gradient that a block receives is bounded,

that is, for any x ∈ R
d, ∀k ∈ {0, 1, ...,K − 2}, we

have

∥

∥

∥

∂fk+1(hk+1;xk+1)
∂hk+1

...∂fK−1(hK−1;xK−1)
∂hK−1

∂L(hK ,l)
∂hK

∥

∥

∥
≤

M and

∥

∥

∥

∂L(hK ,l)
∂hK

∥

∥

∥
≤ M .

This is assuming that the error gradient at each block

does not explode. It is natural to make the above two block-

wise assumptions as we are breaking the neural networks

into blocks.

Lemma 1. If Assumptions 2 and 3 hold, the differ-

ence between DSP gradient and BP gradient regard-

ing the parameters of block k ∈ {0, 1, ...,K − 1}
satisfies ‖∇xk

L(F (h0;x
t0
0 ; ...;x

tK−1

K−1), y) −
Gxk

(x
t2K−1

0 ; ...;xtK
K−1)‖ ≤ LM

∑K−1
i=k

∥

∥

∥
x
t2K−1−i

i − xti
i

∥

∥

∥
.

4.1. DSP with SGD

Theorem 1. Assume Assumptions 1, 2 and 3 hold. Let

c0 = M2K(K + 1)2, and c1 = −(∆t2 + 2) +
√

(∆t2 + 2)2 + 2c0∆t2. If the learning rate αn ≤
c1

Lc0∆t2
, then

∑

N−1

n=0
αnE

∥

∥

∥
∇f(xn

′

)
∥

∥

∥

2

∑

N−1

n=0
αn

≤ 2[f(x0)−f∗]
∑

N−1

n=0
αn

+

Lσ2(2+K∆t2+ 1
4
Kc1)

∑

N−1

n=0
α2

n
∑

N−1

n=0
αn

.

Corollary 1. (Sublinear convergence rate) According

to Theorem 1, by setting the learning rate αn =

min
{

1√
N
, c1
Lc0∆t2

}

, when N is large enough we have αn =

1√
N

and minn=0,...,N−1 E

∥

∥

∥
∇f(xn′

)
∥

∥

∥

2

≤ 2(f(x0)−f∗)√
N

+

Lσ2(2+K∆t2+ 1
4
Kc1)√

N
.

Corollary 2. According to Theorem 1, if the learning

rate αn diminishes and satisfies the requirements in [28]:

limN→∞
∑N−1

n=0 αn = ∞ and limN→∞
∑N−1

n=0 α2
n < ∞,

choose xn randomly from {xn}N−1
n=0 with probabilities pro-

portional to {αn}N−1
n=0 . Then we can prove that it con-

verges to critical points for the non-convex problem due to

limn→∞ E ‖∇f(xn)‖2 = 0.

4.2. DSP with Momentum SGD

Theorem 2. Assume Assumption 1, 2 and 3 hold. Let

c2 = ((1−β)s−1)2

(1−β)2 , c3 = M2K(K + 1)2∆t2(c2 + s2),

c4 = 3+β2c2+2(1−β)2∆t2(c2+s2), and c5 = 2+β2c2
1−β

+

2(1 − β)∆t2(c2 + s2) +
−c4+

√
c2
4
+4(1−β)2c3

2(1−β) . If the fixed

learning rate α satisfies α ≤ −c4+
√

c2
4
+4(1−β)2c3

2(1−β)c3L
, then

1
N

∑N−1
n=0 E

∥

∥

∥
∇f(xn′

)
∥

∥

∥

2

≤ 2(1−β)(f(x0)−f∗)
Nα

+ c5σ
2Lα.

Corollary 3. (Sublinear convergence rate) According

to Theorem 2, by setting the learning rate α =

2091

0 50 100 150 200 250 300
Epoch

10 3

10 2

10 1

100

101
Lo

ss
CIFAR-10, ResNet98, K=3

BP
FR
DSP(1,1,0,4,2,0)
DSP(2,2,0;6,3,0)
DSP(5,5,0;14,7,0)
DNI

0.0 0.2 0.4 0.6 0.8 1.0 1.2
Time (s) ×104

10 3

10 2

10 1

100

101

Lo
ss

CIFAR-10, ResNet98, K=3

0 50 100 150 200 250 300
Epoch

10 3

10 2

10 1

100

101

Lo
ss

CIFAR-10, ResNet164, K=3

BP
FR
DSP(1,1,0;4,2,0)
DSP(2,2,0;6,3,0)
DSP(5,5,0;14,7,0)
DNI

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Time (s) ×104

10 3

10 2

10 1

100

101

Lo
ss

CIFAR-10, ResNet164, K=3

0 50 100 150 200 250 300
Epoch

10 3

10 2

10 1

100

101

Lo
ss

CIFAR-10, ResNet164, K=4

BP
FR
DSP(1,1,1,0;6,4,2,0)
DSP(2,2,2,0;9,6,3,0)
DSP(3,3,3,0;15,10,5,0)
DNI

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Time (s) ×104

10 3

10 2

10 1

100

101

Lo
ss

CIFAR-10, ResNet164, K=4

Figure 3. Training loss (solid line) and testing loss (dash line) for ResNet98, ResNet164 on CIFAR-10. The first row and second row plots

the loss regarding the training epochs and time respectively.

min{ 1√
N
,
−c4+

√
c2
4
+4(1−β)2c3

2(1−β)c3L
}, when N is large enough

we have α = 1√
N

and minn=0,...,N−1 E

∥

∥

∥
∇f(xn′

)
∥

∥

∥

2

≤
2(1−β)(f(x0)−f∗)√

N
+ c5σ

2L√
N

.

Remark 1. The convergence performance of DSP is af-

fected by Layer-wise Staleness rather than the staleness be-

tween different blocks.

2092

Table 1. Best Top-1 Test Accuracy

ResNet164 ResNet98

CIFAR-10 CIFAR-100 CIFAR-10 CIFAR-100

BP 94.41% 75.66% 93.38% 72.66%

K=3

FR 94.55% 76.25% 93.60% 73.27%

DSP(1,1,0;4,2,0) 94.68% 76.05% 93.36% 72.99%

DSP(2,2,0;6,3,0) 93.98% 76.00% 93.68% 73.70%

DSP(3,3,0;10,5,0) 93.37% 76.29% 93.27% 73.38%

K=4

FR 94.44% 75.84% 93.26% 72.41%

DSP(1,1,1,0;6,4,2,0) 94.32% 76.22% 93.41% 73.14%

DSP(2,2,2,0;9,6,3,0) 94.87% 75.59% 93.06% 72.89%

DSP(3,3,3,0;15,10,5,0) 93.34% 75.15% 93.45% 72.96%

0 50 100 150 200 250 300
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Av
er

ag
e

G
ra

di
en

t
D

iff
er

en
ce

×10 4 CIFAR-10, ResNet164, K=4
DSP(1,1,1,0;6,4,2,0) block0
DSP(1,1,1,0;6,4,2,0) block1
DSP(1,1,1,0;6,4,2,0) block2
DSP(1,1,1,0;6,4,2,0) block3
DSP(3,3,3,0;15,10,5,0) block0
DSP(3,3,3,0;15,10,5,0) block1
DSP(3,3,3,0;15,10,5,0) block2
DSP(3,3,3,0;15,10,5,0) block3

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Time (s) ×105

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Lo
ss

CIFAR-100, ResNet1001, K=4

BP-4
FR
DSP(1,1,1,0;6,4,2,0)

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

Te
st

 T
op

-1
 A

cc
ur

ac
y

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Time (s) ×103

10 2

10 1

100

Lo
ss

CIFAR-10, VGG-19, K=3

BP
FR
DSP(1,1,0;4,2,0)

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

Te
st

 T
op

-1
 A

cc
ur

ac
y

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Time (s) ×104

10 2

10 1

100

Lo
ss

CIFAR-10, ResNeXt-29, 8x64d, K=4

BP
FR
DSP(1,1,1,0;6,4,2,0)

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Te
st

 T
op

-1
 A

cc
ur

ac
y

Figure 4. Top left: Average difference of DSP and BP gradient regarding the number of parameters. The rest: Training loss (solid line),

testing loss (dash line) and test top-1 accuracy(dot line).

5. Experiments

Experiment Settings We implement DSP in TensorFlow

[1] and run the experiments on Nvidia Tesla P40 GPUs.

The model is divided into K blocks and distributed onto K
GPUs. Data augmentation procedures include random crop-

ping, random flipping, and standardization. We use SGD

with the momentum constant of 0.9. In CIFAR experiments,

the batch size is 128. We train ResNet98 and ResNet164

for 300 epochs. The weight decay is 5 × 10−4 and the ini-

tial learning rate is 0.01 (test performance could be a little

lower than 0.1 [25]) with a decay of 0.1 at epoch 150, 225;

ResNet1001 is trained for 250 epochs. The weight decay is

2× 10−4 and the initial learning rate is 0.1 with a decay of

2093

Table 2. Robustness (ResNet164, CIFAR-10, K=3). Each GPU is randomly slowed down.

Slow down percentage

GPU 20% 50% 100% 150%

FR 8.977% 28.52% 97.06% 359.2%

DSP(1,1,0;4,2,0) 6.017% 16.14% 37.44% 70.99%

DSP(2,2,0;6,3,0) 7.465% 16.01% 36.57% 54.57%

DSP(3,3,0;10,5,0) 7.391% 18.15% 32.10% 53.42%

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8
Time (s) ×105

0.40

0.45

0.50

0.55

0.60

0.65

0.70

Te
st

 A
cc

ImageNet, ResNet18, K=3

BP
FR
DSP(1,1,0;4,2,0)

0.0 0.2 0.4 0.6 0.8 1.0
Time (s) ×106

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

Te
st

 A
cc

ImageNet, ResNet50, K=3

BP-3
FR
DSP(1,1,0;4,2,0)

Figure 5. Test accuracy@1 on the ImageNet dataset.

0.1 at epoch 100, 150, 200; VGG-19 and ResNext-29 are

trained for 200 epochs. The weight decay is 5 × 10−4 and

the initial learning rate is 0.01 with a decay of 0.1 at epoch

100, 150. We also train ResNet on ImageNet for 90 epochs.

The batch size is 256, the weight decay is 1× 10−4 and the

initial learning rate is 0.1 with a decay of 0.1 at epoch 30,

60, 80. There are four compared methods:

• BP: The standard implementation in TensorFlow. BP

(or BP-K) runs on one (or K) GPUs.

• DNI: The Decoupled Neural Interface algorithm in

[18]. The auxiliary network consists of two hidden and

one output convolution layers with 5 × 5 filters and

padding size of 2. The hidden layers also use batch-

normalization and ReLU.

• FR: The Features Replay algorithm proposed by [13].

• DSP: Our Diversely Stale Parameters.

5.1. Faster Training

The DSP convergence curves regarding training epochs

are nearly the same as FR and BP, while DNI does not con-

verge as shown in Figure 3. But the epoch time of DSP is

much less. Due to the overlap of communication and com-

putation, the overheads of DSP are much less than model

parallel BP and the speedup can even exceed K. However,

it is important that the model should be properly distributed

onto different blocks such that the workload of each com-

puting device is balanced. If not, the overall speed will be

mostly determined by the slowest device. To further demon-

strate the scalability of DSP, we also run experiments on

VGG-19 [30], ResNeXt-29 [34], ResNet1001 on the CI-

FAR dataset, and ResNet18 and ResNet50 on the ImageNet

[6] dataset as shown in Figure 4 and Figure 5 respectively.

The speedup is summarized in Table 3 (GPipe paper only

reports speedup of ResNet101 and AmoebaNet-D (4,512)).

Our proposed DSP improves the speedup compared with its

counterparts from x0.5 to x3.1 based on different datasets,

model and the value of K. Note that the implementation

of DSP involves some inefficient copy operations due to

limited supported features of the deep learning framework,

which means that DSP could achieve a potentially even

faster speedup.

5.2. Robustness

To show that DSP is more resilient to the straggle prob-

lem due to the FIFO queues introduced, we randomly slow

down each GPU by a certain percentage with a probabil-

ity of 1/3 and run the experiments on ResNet164 (Table

2). The performance of FR degrades a lot because it does

not break the forward locking nor completely decouple the

backward pass. In comparison, DSP is very robust with the

best slow down percentage always less than 1/3 of the cor-

2094

Table 3. Speedup Comparison Results.

CIFAR-10 CIFAR-100 ImageNet

ResNet164 ResNext-29 VGG-19 ResNet1001 ResNet50 ResNet101

K, batch size (4, 128) (4, 128) (3, 128) (4, 128) (3, 256) (4, 128)

BP / BP-K x1 / - x1 / - x1 / - - / x1 - / x1 x1 / -

FR x1.7 x1.3 x1.1 x1.9 x1.6 x1.7

GPipe - - - - - x2.2

DSP x2.7 x2.4 x1.5 x4.8 x3.0 x2.7

Table 4. Best Top-1 Test Accuracy on ImageNet (K=3).

Method ResNet18 ResNet50

BP 69.89% 75.35%

FR 68.94% 74.47%

DSP(1,1,0;4,2,0) 68.95% 74.91%

responding GPU slow down percentage. When the upper

or lower block suddenly slows down, the current block’s

feeding data and gradient queues are less likely to be empty

if the length of the queue is long. When the straggler

effect is not serious, increasing the Layer-wise Staleness

will not bring performance gain; when it is serious instead,

DSP benefits a lot from increasing the Layer-wise Stale-

ness. Generally speaking, longer queues improve DSP’s re-

silience to random stragglers, which is shown in Table 2.

5.3. Generalization

Table 1 and Tabel 4 show the best top-1 test accuracy on

the CIFAR and ImageNet dataset respectively. The test per-

formance of DSP is better than BP and FR on the CIFAR

dataset. From Lemma 1 we know that the DSP gradient

deviates from the BP gradient due to the Layer-wise Stal-

eness. This difference becomes small as the training pro-

ceeds but could impose small noise and help find a better

local minimum on the comparatively less complex CIFAR

classification problem.

In comparison, on the ImageNet dataset, the Layer-wise

Staleness can lead to performance degradation. By intu-

ition, it is similar to asynchronous distributed training where

the whole gradient is of the same staleness. But in DSP, the

more fine-grained Layer-wise Staleness will impose differ-

ent blocks with different staleness effects. Potential solu-

tions could be using staleness-aware methods as proposed

in asynchronous distributed training area, e.g. gradient

compensation and staleness-aware learning rate, to alleviate

the staleness effect. Another possible direction is to balance

the staleness effect between all the blocks. Moreover, when

compared with FR, DSP’s test accuracy is slightly better.

On ResNet18, the test accuracy of FR and DSP is very sim-

ilar, but on ResNet50 there is a 0.44% gain using DSP. Be-

sides, on the more complicated ResNet50 architecture, the

performance degradation resulting from the staleness effect

is smaller than that on ResNet18.

5.4. Gradient Difference

Here we attest our theoretical analysis of Lemma 1 via

checking the difference between the DSP and the BP gradi-

ent on the CIFAR dataset with the ResNet164 model. From

the top-left figure of Figure 4, we can see that the difference

between the DSP and BP gradient drops very fast to the con-

verged value as the training proceeds. This difference drops

even faster for upper blocks where the Layer-wise Staleness

effect is milder. It confirms the motivation behind the DSP

algorithm that the DSP gradient will finally be similar to

the BP gradient. Moreover, the lower blocks suffer from a

larger difference. When the Layer-wise Staleness keeps in-

creasing, the difference will also increase, which matches

Lemma 1 well. Moreover, as the learning rate drops, the

difference between the DSP gradient and the BP gradient

will drop a lot. This implies that a smaller learning rate

should be used when we need to deal with a larger number

of blocks where the Layer-wise Staleness effect becomes

non-trivial. This is also shown in Theorem 1 and 2 that the

learning rate should be decreased to make sure it converges

at the stated speed.

6. Conclusion

In this paper, we have proposed Layer-wise Staleness

and DSP, a novel way to fast train neural networks. DSP is

proved to converge to critical points for non-convex prob-

lems with SGD and Momentum SGD optimizer. We ap-

ply DSP to train CNNs in parallel and the experiment

results confirm our theoretical analysis. Our proposed

method achieves significant training speedup, strong re-

silience to random stragglers, better generalization on the

CIFAR dataset and reasonable performance on the Ima-

geNet dataset. The speedup can exceed K compared with

the model parallel BP. Potential future works include how

to alleviate the staleness effect when we need to utilize a

further larger number of blocks; how to automatically de-

termine the proper model splitting strategy for load balance

among devices; efficiently incorporating DSP with data par-

allelism to achieve even faster training speed.

2095

References

[1] Martı́n Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen,

Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghe-

mawat, Geoffrey Irving, Michael Isard, et al. Tensorflow:

A system for large-scale machine learning. In 12th USENIX

Symposium on Operating Systems Design and Implementa-

tion (OSDI’ 16), pages 265–283, 2016.

[2] Eugene Belilovsky, Michael Eickenberg, and Edouard Oy-

allon. Decoupled greedy learning of cnns. arXiv preprint

arXiv:1901.08164, 2019.

[3] Léon Bottou. Large-scale machine learning with stochastic

gradient descent. In Yves Lechevallier and Gilbert Saporta,

editors, Proceedings of COMPSTAT’2010, pages 177–186,

Heidelberg, 2010. Physica-Verlag HD.

[4] Tianqi Chen, Mu Li, Yutian Li, Min Lin, Naiyan Wang,

Minjie Wang, Tianjun Xiao, Bing Xu, Chiyuan Zhang, and

Zheng Zhang. Mxnet: A flexible and efficient machine

learning library for heterogeneous distributed systems. arXiv

preprint arXiv:1512.01274, 2015.

[5] Tianqi Chen, Bing Xu, Chiyuan Zhang, and Carlos Guestrin.

Training deep nets with sublinear memory cost. arXiv

preprint arXiv:1604.06174, 2016.

[6] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,

and Li Fei-Fei. Imagenet: A large-scale hierarchical image

database. In 2009 IEEE conference on computer vision and

pattern recognition, pages 248–255. Ieee, 2009.

[7] Andreas Griewank. An implementation of checkpointing for

the reverse or adjoint model of differentiation. ACM Trans.

Math. Software, 26(1):1–19, 1999.

[8] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Delving deep into rectifiers: Surpassing human-level perfor-

mance on imagenet classification. In Proceedings of the

IEEE international conference on computer vision, pages

1026–1034, 2015.

[9] Qirong Ho, James Cipar, Henggang Cui, Seunghak Lee,

Jin Kyu Kim, Phillip B Gibbons, Garth A Gibson, Greg

Ganger, and Eric P Xing. More effective distributed ml via

a stale synchronous parallel parameter server. In Advances

in neural information processing systems, pages 1223–1231,

2013.

[10] Jie Hu, Li Shen, and Gang Sun. Squeeze-and-excitation net-

works. In Proceedings of the IEEE conference on computer

vision and pattern recognition, pages 7132–7141, 2018.

[11] Yanping Huang, Yonglong Cheng, Dehao Chen, Hy-

oukJoong Lee, Jiquan Ngiam, Quoc V Le, and Zhifeng

Chen. Gpipe: Efficient training of giant neural networks us-

ing pipeline parallelism. arXiv preprint arXiv:1811.06965,

2018.

[12] Yuzhen Huang, Xiao Yan, Guanxian Jiang, Tatiana Jin,

James Cheng, An Xu, Zhanhao Liu, and Shuo Tu. Tangram:

bridging immutable and mutable abstractions for distributed

data analytics. In 2019 {USENIX} Annual Technical Con-

ference ({USENIX}{ATC} 19), pages 191–206, 2019.

[13] Zhouyuan Huo, Bin Gu, and Heng Huang. Training neural

networks using features replay. In Advances in Neural Infor-

mation Processing Systems, pages 6659–6668, 2018.

[14] Zhouyuan Huo, Bin Gu, and Heng Huang. Large

batch training does not need warmup. arXiv preprint

arXiv:2002.01576, 2020.

[15] Zhouyuan Huo, Bin Gu, qian Yang, and Heng Huang. De-

coupled parallel backpropagation with convergence guaran-

tee. In Jennifer Dy and Andreas Krause, editors, Proceedings

of the 35th International Conference on Machine Learning,

volume 80 of Proceedings of Machine Learning Research,

pages 2098–2106, Stockholmsmässan, Stockholm Sweden,

10–15 Jul 2018. PMLR.

[16] Zhouyuan Huo and Heng Huang. Straggler-agnostic

and communication-efficient distributed primal-dual algo-

rithm for high-dimensional data mining. arXiv preprint

arXiv:1910.04235, 2019.

[17] Sergey Ioffe and Christian Szegedy. Batch normalization:

Accelerating deep network training by reducing internal co-

variate shift. arXiv preprint arXiv:1502.03167, 2015.

[18] Max Jaderberg, Wojciech Marian Czarnecki, Simon Osin-

dero, Oriol Vinyals, Alex Graves, David Silver, and Koray

Kavukcuoglu. Decoupled neural interfaces using synthetic

gradients. In Proceedings of the 34th International Con-

ference on Machine Learning-Volume 70, pages 1627–1635.

JMLR. org, 2017.

[19] Diederik P Kingma and Jimmy Ba. Adam: A method for

stochastic optimization. arXiv preprint arXiv:1412.6980,

2014.

[20] Alex Krizhevsky. One weird trick for parallelizing convo-

lutional neural networks. arXiv preprint arXiv:1404.5997,

2014.

[21] Yann LeCun, Bernhard Boser, John S Denker, Donnie

Henderson, Richard E Howard, Wayne Hubbard, and

Lawrence D Jackel. Backpropagation applied to handwrit-

ten zip code recognition. Neural computation, 1(4):541–551,

1989.

[22] Seunghak Lee, Jin Kyu Kim, Xun Zheng, Qirong Ho,

Garth A Gibson, and Eric P Xing. On model paralleliza-

tion and scheduling strategies for distributed machine learn-

ing. In Advances in neural information processing systems,

pages 2834–2842, 2014.

[23] Mu Li, David G Andersen, Alexander J Smola, and Kai Yu.

Communication efficient distributed machine learning with

the parameter server. In Advances in Neural Information

Processing Systems, pages 19–27, 2014.

[24] Yuejiang Liu, An Xu, and Zichong Chen. Map-based deep

imitation learning for obstacle avoidance. In 2018 IEEE/RSJ

International Conference on Intelligent Robots and Systems

(IROS), pages 8644–8649. IEEE, 2018.

[25] Zhuang Liu, Mingjie Sun, Tinghui Zhou, Gao Huang, and

Trevor Darrell. Rethinking the value of network pruning.

arXiv preprint arXiv:1810.05270, 2018.

[26] Yurii Nesterov. Introductory lectures on convex optimiza-

tion: A basic course, volume 87. Springer Science & Busi-

ness Media, 2013.

[27] Arild Nøkland. Direct feedback alignment provides learning

in deep neural networks. In Advances in neural information

processing systems, pages 1037–1045, 2016.

2096

[28] Herbert Robbins and Sutton Monro. A stochastic approxi-

mation method. The annals of mathematical statistics, pages

400–407, 1951.

[29] David E Rumelhart, Geoffrey E Hinton, Ronald J Williams,

et al. Learning representations by back-propagating errors.

Cognitive modeling, 5(3):1, 1988.

[30] Karen Simonyan and Andrew Zisserman. Very deep convo-

lutional networks for large-scale image recognition. arXiv

preprint arXiv:1409.1556, 2014.

[31] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe,

Jonathon Shlens, and Zbigniew Wojna. Rethinking the in-

ception architecture for computer vision. 2016 IEEE Confer-

ence on Computer Vision and Pattern Recognition (CVPR),

pages 2818–2826, 2016.

[32] Tijmen Tieleman and Geoffrey Hinton. Lecture 6.5-rmsprop:

Divide the gradient by a running average of its recent mag-

nitude. COURSERA: Neural networks for machine learning,

4(2):26–31, 2012.

[33] Leslie G Valiant. A bridging model for parallel computation.

Communications of the ACM, 33(8):103–111, 1990.

[34] Saining Xie, Ross B. Girshick, Piotr Dollár, Zhuowen Tu,

and Kaiming He. Aggregated residual transformations for

deep neural networks. 2017 IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), pages 5987–5995,

2017.

[35] An Xu, Zhouyuan Huo, and Heng Huang. Optimal gradi-

ent quantization condition for communication-efficient dis-

tributed training. arXiv preprint arXiv:2002.11082, 2020.

[36] Qian Yang, Zhouyuan Huo, Wenlin Wang, and Lawrence

Carin. Ouroboros: On accelerating training of transformer-

based language models. In Advances in Neural Informa-

tion Processing Systems 32, pages 5519–5529. Curran As-

sociates, Inc., 2019.

[37] Tianbao Yang, Qihang Lin, and Zhe Li. Unified convergence

analysis of stochastic momentum methods for convex and

non-convex optimization. arXiv preprint arXiv:1604.03257,

2016.

2097

