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Abstract

Video-based person re-identification (re-ID) is an impor-

tant research topic in computer vision. The key to tackling

the challenging task is to exploit both spatial and tempo-

ral clues in video sequences. In this work, we propose a

novel graph-based framework, namely Multi-Granular Hy-

pergraph (MGH), to pursue better representational capa-

bilities by modeling spatiotemporal dependencies in terms

of multiple granularities. Specifically, hypergraphs with

different spatial granularities are constructed using vari-

ous levels of part-based features across the video sequence.

In each hypergraph, different temporal granularities are

captured by hyperedges that connect a set of graph nodes

(i.e., part-based features) across different temporal ranges.

Two critical issues (misalignment and occlusion) are ex-

plicitly addressed by the proposed hypergraph propagation

and feature aggregation schemes. Finally, we further en-

hance the overall video representation by learning more

diversified graph-level representations of multiple granu-

larities based on mutual information minimization. Ex-

tensive experiments on three widely-adopted benchmarks

clearly demonstrate the effectiveness of the proposed frame-

work. Notably, 90.0% top-1 accuracy on MARS is achieved

using MGH, outperforming the state-of-the-arts. Code

will be released at https://github.com/daodaofr/

hypergraph_reid.

1. Introduction

Person re-identification (re-ID) aims at associating indi-

viduals across non-overlapping cameras, with great poten-

tial in surveillance-related applications. As such, significant

efforts have been made in the past few years to address the

challenging task. In parallel with the prevalence of image-

based person re-ID, person re-ID based on video sequences

has also recently emerged. This is because the richer infor-

mation in videos can be utilized to reduce visual ambigui-
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Figure 1: (a) Illustration of multi-granular spatial and tem-

poral clues, which provide important insights into address-

ing the challenges of misalignment and occlusion in video-

based person re-ID. (b) Standard graphs can only model the

dependency between node pairs, lacking the capability of

modeling long-term temporal dependency. (c) Hypergraphs

can model both short-term and long-term dependencies by

associating multiple nodes within a single hyperedge.

ties, especially for people sharing similar appearances. The

key to solving video-based person re-ID is to concurrently

exploit spatial and temporal clues within video sequences.

In this sense, this work aims to shed light on two important

clues (see Figure 1) for tackling video-based person re-ID.

1) Multi-granularity of spatial clues. As the struc-

tural information of the human body is beneficial for person

identification, part-based models [49, 30, 47] have gener-

ally achieved promising performance in person re-ID. Com-

pared with fixed partitions, multi-granular part-based mod-

els [51, 64] have further enhanced the performance by di-

viding the human body into multiple granularities. In video-

based re-ID, the multi-granular spatial clues are particularly

important since different levels of granularities capture dis-

crepancies between different partitions, thus addressing the

spatial misalignment issue due to inaccurate detection in the

video sequence (see Figure 1(a)). However, in this way,

misalignment can only be solved implicitly to some extent.

To better tackle spatial misalignment, we need to explic-

itly align different body parts across the whole sequence in
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order to achieve more robust re-ID performance. It is there-

fore highly desirable to develop re-ID within a framework

which systematically captures correlations between differ-

ent body partitions, while the same time being able to ex-

ploit multiple spatial granularities.

2) Multi-granularity of temporal clues. Temporal

clues have been extensively studied by previous video-

based re-ID models. Short-term dynamics can be repre-

sented by extracting additional optical flow features [9],

while long-term temporal features can be obtained by uti-

lizing 3D CNNs [32] or temporal feature aggregators [39]

(e.g., Recurrent Neural Networks, RNNs). However, short-

and long-term temporal clues have different functionalities

in discriminative feature learning. For example, in Figure 1,

there is a partial occlusion w.r.t. the short-term temporal

clues; the long-term temporal clues can help reduce its im-

pact. However, only a few works [31, 32] address this issue.

It is thus highly important to design a model that can capture

multi-granular temporal clues.

To explicitly fulfill the above goal, we propose a novel

graph-based framework, named Multi-Granular Hyper-

graph (MGH), which simultaneously exploits spatial and

temporal clues for video-based person re-ID. As shown in

Figure 2, we construct a set of hypergraphs to model mul-

tiple granularities in a video sequence, with graph nodes

representing global or part-level features. Each hypergraph

models a specific spatial granularity, while each hyper-

edge, connecting multiple nodes within a particular tempo-

ral range, captures a specific temporal granularity. Node-

level features are propagated to form graph-level represen-

tations for all hypergraphs, which are aggregated in the final

video representation to achieve robust person re-ID.

Our MGH method has three main advantages. First, it

seamlessly unifies the learning of spatial and temporal clues

into a joint framework, where spatial clues are captured by

different hypergraphs, and short- and long-term temporal

clues are mined with message propagation through differ-

ent hyperedges. Second, compared with standard graphs

which only model correlations between pairs of nodes (see

Figure 1(b)), hypergraphs can model high-order dependen-

cies among multiple nodes (see Figure 1(c)). As a result,

misalignment can be explicitly solved by associating dif-

ferent nodes with their nearest neighbors using hyperedges;

meanwhile, occlusions can be addressed by modeling multi-

granular temporal dependencies with hyperedges across dif-

ferent temporal ranges. Third, node-level features can bene-

fit from the spatial and temporal information in the sequence

by means of HyperGraph Neural Networks (HGNNs) [14],

which greatly facilitate information propagation through

hyperedges. Our main contributions include:

• We formulate video-based person re-ID as a hyper-

graph learning task, yielding robust representations

based on node propagation and feature aggregation.

• To capture multi-granular clues, we design a novel

HGNN architecture (i.e., MGH) to simultaneously ex-

ploit spatial and temporal dependencies in videos.

• The diversity of graph representations corresponding

to different spatial granularities is preserved and en-

hanced by employing an intuitive loss based on mutual

information minimization.

• MGH achieves promising results on three widely-used

re-ID benchmarks. Notably, MGH obtains 90.0% top-

1 accuracy on MARS, one of the largest video re-ID

datasets, outperforming the state-of-the-art models.

2. Related Work

Person Re-identification. Existing works on person re-

ID mainly focus on two sub-tasks, i.e., image-based [16,

66, 67, 7, 2] and video-based [13, 68] person re-ID.

Here, we briefly review some closely related works for

video-based re-ID. Early methods tend to employ hand-

crafted spatiotemporal features, such as HOG3D [28] and

SIFT3D [42]. Other methods try to extract more discrim-

inative descriptors[26, 35] or design more effective rank-

ing algorithms [52, 61, 3]. Recently, various deep learn-

ing models have been proposed and have shown superior

performance compared with hand-crafted features. Some

works [65, 33, 57, 46, 34, 62, 36] leverage the power-

ful learning capability of Convolutional Neural Networks

(CNNs) and perform straightforward spatial/temporal pool-

ing on video sequences to generate global representations.

However, simply pooling the features may lead to a sig-

nificant loss of discriminative information. Other meth-

ods [39, 60, 70, 37, 5] adopt RNNs and attention mecha-

nisms for more robust temporal feature fusion. However

these methods neglect the importance of spatial clues. An-

other class of methods [9, 39] resort to using additional in-

formation on optical flow, and adopt a two-stream struc-

ture [44] for discriminative feature learning. However, opti-

cal flow only represents local dynamics of adjacent frames,

which may introduce noise due to spatial misalignment. 3D

CNNs [24, 48] have also been applied to address video-

based person re-ID [32]. Despite their promising perfor-

mance, these networks are computationally expensive and

difficult to optimize. In this work, we explicitly explore the

multi-granular nature of both spatial and temporal features,

yielding more robust representations for video-based re-ID.

Hypergraph Learning. Graphs are typically leveraged

to model relationships between different nodes. Depending

on the type of data the nodes represent, graphs have been ex-

plored in many computer vision tasks, such as action recog-

nition [55], image classification [8], and person re-ID [6,

43]. Recently, neural networks have been extensively stud-

ied for graph learning, leading to the widespread usage of

Graph Neural Networks (GNNs) [41, 10, 12, 29, 53]. How-
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Figure 2: Detailed architecture of the proposed multi-granular hypergraph learning framework for video-based person re-ID.

For better visualization, we only illustrate the first three spatial granularities and the first two temporal granularities.

ever, conventional graphs can only model pairwise relation-

ships, which prevents their scalability to data with more

complex structures. To this end, hypergraph [69] was intro-

duced to model higher-order relationships between objects

of interest, and has been applied to video segmentation [22]

and image retrieval [23]. In a similar spirit to GNNs, Hyper-

Graph Neural Networks (HGNNs) [14, 59, 4, 25] have re-

cently been proposed to model correlations in hypergraphs

using deep neural networks. Inspired by HGNNs, this work

derives a hypergraph that explicitly models spatiotemporal

dependency in a video sequence. More importantly, muti-

ple spatial and temporal granularities are exploited simulta-

neously in our hypergraph learning framework. As a result,

the final global representation exhibits strong discriminabil-

ity for robust video-based re-ID.

3. Multi-Granular Hypergraph Learning

Although deep learning and temporal modeling ap-

proaches have greatly improved the performance of video-

based person re-ID, it is still difficult to achieve satisfactory

results because of occlusion, misalignment, background

clutter, and viewpoint changes. To further improve the dis-

criminability of feature representations, this paper aims to

explicitly explore the multi-granular nature of spatial and

temporal features. To this end, we design a Multi-Granular

Hypergraph (MGH) learning framework, which models the

high-order correlations between spatial and temporal clues

with a hypergraph neural network. The details of the pro-

posed framework are elaborated as follows.

3.1. MultiGranular Feature Extraction

Recent studies [51, 64] have demonstrated that multi-

granular spatial features have the advantage of generating

more discriminative representations for human bodies. In-

spired by this, we extract multi-granular features for in-

dividuals. Specifically, given an image sequence I =
{I1, I2, ..., IT } containing T images, we use a backbone

CNN model to extract individual feature maps

Fi = CNN(Ii), i = 1, ..., T, (1)

where Fi is a 3D tensor with dimensions C ×H ×W . C is

the channel size, and H and W are the height and width of

the feature map, respectively. We then hierarchically divide

the feature maps into p ∈ {1, 2, 4, 8} horizontal parts w.r.t.

different levels of granularities, and perform average pool-

ing on the divided feature maps to construct a part-level fea-

ture vector. For each granularity, the whole sequence gen-

erates Np = T × p part-level features, which we denote as

h
0 = {h0

1,h
0
2, ...,h

0
Np
}. For example, in each video frame,

the first granularity contains a single global vector, while

the second and third granularities contain two and four part-

level features, respectively, as shown in Figure 2(a).

3.2. MultiGranular Hypergraph

After extracting the initial global or part-based features

of each individual, i.e. initial node features, the next step is

to update the node features by learning correlations among

different nodes. To generate robust representations, it is

necessary to take into account both the spatial and tempo-

ral correlations of individual features. Inspired by the re-

cent success of HGNNs [14, 25], we propose a novel hy-

pergraph neural network for spatiotemporal feature learn-

ing. To explore the spatial and temporal dependencies

within a sequence, HGNNs allow nodes to communicate

with their neighbors through message passing within the

graph. More importantly, compared to standard graph mod-
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Figure 3: Illustration of node feature propagation.

els, hypergraphs can model the high-order dependency in-

volving multiple nodes, which is more flexible and suitable

for modeling the multi-granular correlations in a sequence.

Hypergraph Construction. We propose to capture the

spatial and temporal dependencies by constructing a set of

hypergraphs G = {Gp}p∈{1,2,4,8}, where each hypergraph

corresponds to a specific spatial granularity. Concretely,

Gp = (Vp, Ep) consists of Np vertices Vp and a set of hyper-

edges Ep. Here, we utilize vi ∈ Vp, where i ∈ {1, ..., Np}
to denote the i-th graph node. We define a set of hyperedges

to model short- to long-term correlations in the hypergraph.

To learn short-term correlations, a hyperedge only connects

temporally adjacent features. Mid- and long-range corre-

lations are modeled by hyperedges connecting features of

different temporal lengths. Specifically, for each graph node

vi, we find its K nearest neighbors within specific tempo-

ral ranges, according to the feature affinities between nodes.

Then we utilize a hyperedge to connect these K+1 nodes,

as shown in Figure 2(b). Mathematically,

eit = {vi, ∀vj ∈ NK(vi)}, s.t. |vi − vj | ≤ Tt, (2)

where NK is the neighborhood set containing the top-K

neighbors, | ∗ | denotes the temporal distance between the

vertices in the sequence, and Tt is the threshold of tem-

poral range. In our framework, we adopt three thresholds

(i.e., T1, T2, T3) to model short-term, mid-term and long-

term dependencies, respectively.

Hypergraph Propagation. Based on the hypergraphs,

we design a hypergraph neural network to propagate graph

information and update node features, as illustrated in Fig-

ure 3. Given a node vi, we use Adj(vi) = {e1, e2, ..., eki
}

to denote all the hyperedges that include this node. These

hyperedges contain the nodes that have the highest correla-

tions with vi. Then an aggregation operation is defined on

the hyperedges to capture feature correlations. Specifically,

we average all node features in a hyperedge, except for vi,

as the hyperedge feature w.r.t. this node:

m
l
ik =

vj∈ek∑

j 6=i

h
l−1

j , ∀ek ∈ Adj(vi), (3)

where h
l−1

j denotes the node feature of vj in layer l − 1
of the HGNN. We then calculate the importance of each hy-

peredge by measuring the correlation between node features

Algorithm 1 Hypergraph Propagation

Input: Input sequence I = {I1, I2, ..., IT }
Output: Hypergraph feature Op

1: Extract and pool features by Eq. 1: h0 ← I

2: Build the hyperedges by Eq. 2

3: for l← 1, ..., L do

4: Pooling hyperedge features by Eq. 3: ml
ik ← h

l−1

5: Calculate feature correlations and aggregate hyper-

edge message by Eqs. 4- 6: nl
i ←m

l
ik

6: Updating node features by Eq. 7: hl
i ← {h

l−1

i ,nl
i}

7: end for

8: Op ← {h
L
i }.

and hyperedge features:

zik = φ(hl−1

i ,ml
ik), (4)

where φ measures the similarity between features (we em-

ploy cosine similarity in our framework). We then utilize

the Softmax function to normalize the importance weights

and aggregate the hyperedge messages as follows:

γik =
exp(zik)∑
j exp(zij)

, (5)

n
l
i =

∑

k

γikm
l
ik. (6)

After obtaining the hypergraph messages, the node features

are updated in a fully connected layer by concatenating the

previous node features and hyperedge message:

h
l
i = σ(Wl[hl−1

i ,nl
i]), (7)

where W
l is a weight matrix and σ is an activation func-

tion. The above feature updating steps are repeated for L

rounds and we obtain a set of output node features Op =
{hL

i }, ∀vi ∈ Vp. We summarize the propagation process of

the hypergraph in Algorithm 1.

Attentive Hypergraph Feature Aggregation. After ob-

taining the final updated node features of each hypergraph

w.r.t. each spatial granularity, we further need to aggre-

gate node/part-level features into graph/video-level repre-

sentations for each hypergraph. When deriving aggregation

schemes, we should take into account that, within a hyper-

graph, different nodes are of varying importance. For in-

stance, the occluded parts or backgrounds are less impor-

tant than the human body parts. It is therefore necessary to

develop a specific attention mechanism [1, 38] to address

this. As shown in Figure 4, we propose an attention mod-

ule which generates the node-level attention for each hyper-

graph, in order to select the most discriminative part-level

features. For each hypergraph, we calculate the node atten-

tion αp = {α1, ..., αNp
} as follows:

ui = Wuh
L
i , (8)

2902



…

2" ⊗

1"

…

2&

⊗

1&

… ⊗

1/

…

⊗

14

2/

24

F
e
a

tu
r
e
 E

x
tr

a
c
ti

o
n

*"
789

6"

6&

6/

64

:;<$
pull push

:=> :?@A;

*&
789

*/
789

*4
789

*"
BAC

*&
BAC

*/
BAC

*4
BAC

*"
A@D

*&
A@D

*/
A@D

*4
A@D

negative Attentive

Aggregation

Hypergraph

Propagation

Model

Learning

positive

anchor

Figure 4: Illustration of attentive node feature aggregation

and model learning modules.

αi =
exp(ui)∑
j exp(uj)

, (9)

where Wu is the weight matrix. The hypergraph features

are then calculated as a weighted sum of the node features:

hp =
∑

vi∈Vp

αih
L
i . (10)

3.3. Model Learning

To optimize the framework, we adopt the cross entropy

loss and triplet loss to jointly supervise the training proce-

dure. The cross entropy loss is formulated as follows:

Lxent = −
N∑

i=1

log
exp(Wyi

h
i
p + byi

)
∑C

k=1
exp(Wkh

i
p + bk)

, (11)

where yi is the label of feature h
i
p, N is the mini-batch

size, and C is the number of classes in the training set.

Given a triplet consisting of the anchor, positive, and neg-

ative features, i.e., {hanc
p ,hpos

p ,hneg
p }{p=1,2,4,8}, the hard

triplet loss is calculated as follows:

Ltri = −
N∑

anc=1

[m+ max
pos=1...N

‖hanc
p − h

pos
p ‖2

− min
neg=1...N

‖hanc
p − h

neg
p ‖2]+,

(12)

where m denotes the margin.

After training the model based on the two loss terms

above, each hypergraph will output discriminative graph-

level features. The last step is to aggregate graph features

w.r.t. different spatial granularities to form the final video

representation. In practice, we find that directly pooling

graph-level features may lead to significant information loss

as each hypergraph captures the unique characteristic of the

corresponding granularity. Therefore, we should maintain

the diversity of different levels of graph features. Inspired

by the information theory, we attempt to fulfill this goal by

mutual information minimization. Specifically, we adopt an

additional loss that reduces the mutual information between

features from different hypergraphs, thus increasing the dis-

criminability of the final video representation by concate-

nating all the features. Here we denote Hp = {hi
p}

Nc

i=1
as

the graph-level features with p spatial partitions, where Nc

is the number of tracklets in the training set. Following [20],

we define the mutual information loss as:

LMI =

p 6=q∑

p,q∈{1,2,4,8}

I(Hp,Hq), (13)

where I measures the mutual information between different

hypergraph features.

Finally, as shown in Figure 4, the overall loss function is

a combination of the above three terms:

Lall = Lxent + Ltri + LMI . (14)

4. Experimental Results

We evaluate MGH on three benchmark datasets, i.e.,

MARS [65], iLIDS-VID [52], and PRID-2011 [19]. We

first conduct a comprehensive ablation study to verify the

contribution of each component of our model, and then

compare our model with recent state-of-the-art approaches.

4.1. Experimental Setup

Datasets. MARS [65] is one of the largest public

datasets for video-based person re-ID, which consists of

1,261 pedestrians captured by six cameras, and each indi-

vidual appears in at least two cameras. Meanwhile, each

identity has 13.2 tracklets on average. iLIDS-VID [52]

contains 600 image sequences of 300 people from two non-

overlapping camera views in an airport arrival hall. The

frame lengths in each sequence vary from 23 to 192, with

an average length of 73. PRID-2011 [19] was collected in

an uncrowded outdoor environment with a relatively clean

background. This dataset includes 749 people from two

camera views, but only the first 200 are captured by both

cameras. The length of sequence varies from 5 to 675, with

an average of 100. Following previous practice [52], we

only utilize the sequence pairs with more than 21 frames.

Evaluation Protocols. In terms of MARS, we use the

predefined training/test split, i.e., 8,298 sequences of 625

people are used for training, and 12,180 sequences of 636

people are used for testing. As for iLIDS-VID and PRID-

2011, we follow the standard evaluation protocol [52]. Peo-

ple are randomly split into two subsets with equal size as

training and test sets, and the performance is reported as

the average results of ten trials. For all the datasets, we use
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MARS iLIDS PRID
Methods

mAP top-1 top-1 top-1

baseline 78.3 85.7 79.7 88.6

HGNN 84.1 88.7 84.3 93.8

+ Att 84.8 89.2 85.1 94.2

+ LMI 85.8 90.0 85.6 94.8

Table 1: Component analysis of MGH. ‘Att’ denotes node-

level attention, ‘LMI ’ denotes mutual information loss.

Cumulative Matching Characteristics (CMC) and mean Av-

erage Precision (mAP) to measure the performance.

Implementation Details. We employ ResNet50 [18]

pretrained on ImageNet [11] as the backbone. Follow-

ing [21], we insert non-local blocks [54] into the network

and we resize the input images to 256×128. For each batch,

we randomly sample 32 sub-sequences from 8 persons. In

practice, we set the sub-sequence length T = 8, the hyper-

graph layer L = 2, and the number of neighbors K = 3.

The default spatial partitions are (1, 2, 4, 8), and the tem-

poral thresholds are (1, 3, 5). The influences of these hy-

perparameters are analyzed in Section 4.3. We adopt the

Adam [27] optimizer with weight decay 0.0005. The initial

learning rate is set to 0.0003 and is reduced by a factor of 10

every 100 epochs, with the training stage terminating at the

300-th epoch. We concatenate the graph-level features and

use the cosine similarity as the distance metric for match-

ing the final video representations. All the experiments are

implemented in PyTorch [40], with a Tesla V100 GPU.

4.2. Model Component Analysis

We evaluate the contribution of each component and re-

port the results in Table 1. For the baseline in the first

row, the backbone network is trained with cross entropy

and triplet losses. The results are obtained by performing

average pooling on frame-level features across the whole

video sequence. Through multi-granular spatial and tem-

poral dependency learning with an HGNN, we observe that

the top-1 accuracy increases by 3% on MARS, and by 5%

on iLIDS-VID and PRID-2011, as shown in the 2nd row of

Table 1. We then insert the node attention module for graph-

level feature aggregation, the attention modules further im-

prove the top-1 accuracy by 0.5%-1%, respectively. Finally,

by further incorporating the mutual information loss, the

top-1 accuracy and mAP are respectively improved from

85.7% and 78.3% to 90.0% and 85.8% on MARS. As for

iLIDS-VID and PRID-2011, the improvement of top-1 ac-

curacy is more than 5%. In summary, the major improve-

ment of the framework comes from our hypergraph learning

mechanism, as it captures the dependencies of both spatial

and temporal clues. The attention module and the mutual

information loss bring additional improvements by learning

more discriminative graph and video-level features.

Spatial Temporal mAP top-1

1 1 82.3 87.5

1 3 82.8 87.7

1 5 82.9 87.7

1 1,3 83.2 87.9

1 1,3,5 83.3 88.1

1,2 1,3,5 84.6 89.3

1,2,4 1,3,5 85.5 89.8

1,2,4,8 1,3,5 85.8 90.0

1,2,4,8 1,3,5,7 85.7 90.0

Table 2: Performance of MGH on MARS under different

granularities of spatial and temporal clues. ‘Spatial’ de-

notes the number of human body partitions, and ‘Temporal’

denotes the temporal range for dependency calculation.

4.3. Model Sensitivity Analysis

Multi-Granularity. The key motivation of this work

is to make full use of the multi-granular spatial and tem-

poral clues in a video sequence to learn better representa-

tions. Here, we conduct detailed experiments to evaluate

the effectiveness of multi-granular representations, the re-

sults of which are illustrated in Table 2. We test different

combinations of spatial and temporal granularities. Specifi-

cally, when the temporal range is equal to one, only adjacent

nodes are connected. We observe that the performance in-

creases steadily when more detailed spatial/temporal gran-

ularities are captured. We also find that the performance

saturates when using four spatial granularities (i.e., 1, 2, 4,

8) and three temporal granularities (i.e., 1, 3, 5).

Node Propagation Scheme. In MGH, we aggregate the

hyperedge features by calculating the correlations with the

target node, as depicted by Eqs. 4-6. Here, we compare our

correlation aggregator with several alternative aggregation

schemes. It is worth noting that pooling-based aggregators

and LSTM have also been widely utilized for feature aggre-

gation in GNNs [17]. However, as shown in Figure 5(a),

they (“max”, “avg” and “LSTM”) are less effective than the

correlation aggregator since they neglect the dependency of

hyperedge features w.r.t. the target node. Besides, graph

propagation often adopts attention mechanisms [50], which

typically concatenate the inputs and utilize a fully con-

nected layer to generate the attention weights. We observe

that such an attention scheme achieves comparable perfor-

mance with our correlation aggregator, but it requires more

computational overhead. Overall, these results demonstrate

the effectiveness of the correlation aggregator.

Number of Hypergraph Layers L. We evaluate the

influence of different numbers of HGNN layers. From

Figure 5(b), we can see that the proposed framework is

not sensitive to different numbers of layers. Specifically,

a two-layer network achieves slightly better performance

than other settings. This is because a one-layer HGNN has
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Figure 5: Results on MARS illustrating the influence of different hyperparameter. (a) aggregation function; (b) hypergraph

layer L; (c) neighbor number K; (d) sequence length T . Zoom in for best visualization.

MARS iLIDS-VID PRID-2011
Methods Source

mAP top-1 top-5 top-20 top-1 top-5 top-20 top-1 top-5 top-20

CNN+XQDA [65] ECCV16 47.6 65.3 82.0 89.0 53.0 81.4 95.1 77.3 93.5 99.3

SeeForest [70] CVPR17 50.7 70.6 90.0 97.6 55.2 86.5 97.0 79.4 94.4 99.3

ASTPN [58] ICCV17 - 44 70 81 62 86 98 77 95 99

STAN [34] CVPR18 65.8 82.3 - - 80.2 - - 93.2 - -

ETAP-Net [57] CVPR18 67.4 80.8 92.1 96.1 - - - - - -

Snippet [5] CVPR18 76.1 86.3 94.7 98.2 85.4 96.7 99.5 93.0 99.3 100

STA [15] AAAI19 80.8 86.3 95.7 - - - - - - -

ADFD [63] CVPR19 78.2 87.0 95.4 98.7 86.3 97.4 99.7 93.9 99.5 100

VRSTC [21] CVPR19 82.3 88.5 96.5 97.4 83.4 95.5 99.5 - - -

COSAM [45] ICCV19 79.9 84.9 95.5 97.9 79.6 95.3 - - - -

GLTR [31] ICCV19 78.5 87.0 95.8 98.2 86.0 98.0 - 95.5 100 100

AdaptiveGraph [56] arXiv19 81.9 89.5 96.6 97.8 84.5 96.7 99.5 94.6 99.1 100

MGH - 85.8 90.0 96.7 98.5 85.6 97.1 99.5 94.8 99.3 100

Table 3: Comparison with the state-of-the-art video-based person re-id methods. The three best scores are indicated in red,

blue and green, respectively.

insufficient representational capability, whilst multi-layer

HGNNs contains too many parameters that bring difficul-

ties to the training step. Therefore, we employ a two-layer

HGNN in our framework.

Number of Neighbors K. This hyperparameter controls

the number of nodes within a hyperedge. Specifically, when

K = 1, an edge only connects two graph nodes and the hy-

pergraph degrades into a standard graph. As shown in Fig-

ure 5(c), in the beginning, the performance increases as K

becomes larger, since more context information is included

in the hyperedge. However, the performance becomes satu-

rated when K > 3. These results validate the effectiveness

of employing a hypergraph rather than a standard graph.

Sequence Length T . Last but not least, we train and

test the framework with various sequence lengths T , and

the results are illustrated in Figure 5(d). Overall, the pro-

posed framework is robust to variations in T . We also find

that longer sequences generate slightly better performance,

since the model can capture wider ranges of temporal de-

pendencies. Meanwhile, employing longer sequences in-

creases the model complexity. Overall, T = 8 gives the

best trade-off between performance and complexity.

In summary, the proposed MHG is not sensitive to most

hyperparameters in the framework. The granularity of the

spatial and temporal clues plays a key role in the overall

performance, which aligns well with the motivation of the

proposed framework.

4.4. Comparisons with StateoftheArts

In this section, we compare the proposed MGH with the

state-of-the-art methods on three video-based person re-id

benchmarks. The results are reported in Table 3.

On MARS, our approach achieves 90% top-1 accu-

racy, outperforming all previous methods. More remark-

ably, the proposed model achieves 85.8% in mAP with-

out re-ranking, showing significant improvement (i.e., 3.5%

higher) over the current best state-of-the-art method. We

notice that the recently proposed AdaptiveGraph [56] also

employs GNNs to address the video-based person re-ID

task. Our model has two advantages. First, AdaptiveG-

raph requires additional pose information to build the graph,

while our MGH is dynamically constructed based on fea-

ture affinities, which makes the proposed model more flex-

ible. Second, AdaptiveGraph only considers the correlation

between adjacent frames, neglecting the long-term tempo-

ral dependency. In the proposed hypergraph, dependencies

in varying temporal ranges are modeled by different hyper-

edges, yielding more robust representations. It is worth

noting that VRSTC [21] also achieves promising results

on MARS; however, it is a two-stage model, i.e., VRSTC
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Figure 6: Visualization of re-ID results using the baseline model and the proposed MGH model. The first sequence is the

query, whilst the rest are the Rank-1 to Rank-4 (from left to right) retrieved results. The green and red bounding boxes denote

correct and incorrect matches, respectively.
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Figure 7: Visualization of node attention weights. The node

attention wights are visualized below the input sequences.

first locates the occluded regions and completes the regions

with a generative model, and then utilizes the non-occluded

frames for re-ID. In contrast, the proposed MGH does not

need such pre-processing and can be learned end-to-end.

In terms of iLIDS-VID and PRID, since they only con-

tain a single correct match in the gallery set, we only re-

port the cumulative re-ID accuracy. Overall, the proposed

MGH achieves competitive results compared with other

state-of-the-art methods. Specifically, MGH outperforms

several recent models (i.e., SeeForest [70], ASTPN [58],

STAN [34], ETAP-Net [57], Snippet [5] with optical flow

inputs, STA [15] and COSAM [45]) in terms of all the

evaluation metrics on the two datasets. We note that

ADFD [63] obtains strong performance on iLIDS-VID and

PRID-2011. This may be because ADFD employs exter-

nal attribute labels to learn disentangled feature representa-

tions, and such additional information is more effective on

small-scale datasets. In contrast, our model only requires

identity annotation, and can achieve competitive perfor-

mance. GLTR [31] employs dilated temporal convolutions

to capture the multi-granular temporal dependencies, and

achieves impressive results on these two datasets. However,

GLTR does not consider spatial multi-granularity. This is

why GLTR obtains less impressive results on MARS, where

there tend to be misalignment in the sequence.

In summary, the above results have demonstrated the

advantages of the proposed MGH model for video-based

person re-ID. With only identity labels, MGH can achieve

state-of-the-art performance on MARS, one of the largest

existing public benchmarks for this task, in terms of mAP

and top-1 accuracy. Meanwhile, MGH also achieves com-

petitive results on iLIDS-VID and PRID-2011.

4.5. Results Visualization

We visualize some person re-ID results in Figure 6. As

can be observed, it is difficult for the baseline model to dis-

tinguish people sharing similar appearances when there are

misalignments and occlusions, resulting in relatively low

top-1 accuracy. In these cases, the proposed MGH reduces

the visual ambiguity by employing multi-granular spatial

and temporal clues. At the same time, MGH achieves more

robust results under different illumination conditions.

To better understand the attentive node feature aggrega-

tion module, the attention weights of two occlusion exam-

ples are visualized in Figure 7. On the one hand, for the

global spatial partition, the images that contain a larger fore-

ground person tend to be assigned with higher weights. On

the other hand, for the local partitions, the parts belonging

to the target person have obviously higher weights than the

backgrounds. This indicates that the node attention mod-

ule can adaptively concentrate on the discriminative parts,

which validates the effectiveness of the attention module.

5. Conclusion

This paper proposed a multi-granular hypergraph learn-

ing framework to address video-based person re-ID. The

proposed framework explicitly leveraged multi-granular

spatial and temporal clues in the video sequence by learn-

ing a sophisticatedly-designed hypergraph neural network.

In the learning process, we developed an attention mecha-

nism to aggregate node-level features to yield more discrim-

inative graph representations. In addition, we learned more

diversified multi-granular features based on a novel mutual

information loss. Extensive experiments were conducted on

three person re-ID benchmarks, where the proposed frame-

work achieved favorable performance compared with recent

state-of-the-art methods.
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[28] Alexander Kläser, Marcin Marszalek, and Cordelia Schmid.

A spatio-temporal descriptor based on 3d-gradients. In

BMVC, 2008. 2

[29] Sofia Ira Ktena, Sarah Parisot, Enzo Ferrante, Martin Rajchl,

Matthew C. H. Lee, Ben Glocker, and Daniel Rueckert. Dis-

tance metric learning using graph convolutional networks:

Application to functional brain networks. In MICCAI, 2017.

2

[30] Dangwei Li, Xiaotang Chen, Zhang Zhang, and Kaiqi

Huang. Learning deep context-aware features over body and

latent parts for person re-identification. In CVPR, 2017. 1

[31] Jianing Li, Jingdong Wang, Qi Tian, Wen Gao, and Shiliang

Zhang. Global-local temporal representations for video per-

son re-identification. In ICCV, 2019. 2, 7, 8

[32] Jianing Li, Shiliang Zhang, and Tiejun Huang. Multi-

scale 3d convolution network for video based person re-

identification. In AAAI, 2019. 2

[33] Minxian Li, Xiatian Zhu, and Shaogang Gong. Unsupervised

person re-identification by deep learning tracklet association.

In ECCV, 2018. 2

[34] Shuang Li, Slawomir Bak, Peter Carr, and Xiaogang Wang.

Diversity regularized spatiotemporal attention for video-

based person re-identification. In CVPR, 2018. 2, 7, 8

[35] Kan Liu, Bingpeng Ma, Wei Zhang, and Rui Huang. A

spatio-temporal appearance representation for viceo-based

pedestrian re-identification. In ICCV, 2015. 2

[36] Yu Liu, Junjie Yan, and Wanli Ouyang. Quality aware net-

work for set to set recognition. In CVPR, 2017. 2

2907



[37] Yiheng Liu, Zhenxun Yuan, Wengang Zhou, and Houqiang

Li. Spatial and temporal mutual promotion for video-based

person re-identification. In AAAI, 2019. 2

[38] Xiankai Lu, Wenguan Wang, Chao Ma, Jianbing Shen, Ling

Shao, and Fatih Porikli. See more, know more: Unsuper-

vised video object segmentation with co-attention siamese

networks. In CVPR, 2019. 4
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