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Abstract

In dense foggy scenes, existing optical flow methods are

erroneous. This is due to the degradation caused by dense

fog particles that break the optical flow basic assumptions

such as brightness and gradient constancy. To address

the problem, we introduce a semi-supervised deep learn-

ing technique that employs real fog images without opti-

cal flow ground-truths in the training process. Our network

integrates the domain transformation and optical flow net-

works in one framework. Initially, given a pair of synthetic

fog images, its corresponding clean images and optical flow

ground-truths, in one training batch we train our network in

a supervised manner. Subsequently, given a pair of real fog

images and a pair of clean images that are not correspond-

ing to each other (unpaired), in the next training batch, we

train our network in an unsupervised manner. We then al-

ternate the training of synthetic and real data iteratively. We

use real data without ground-truths, since to have ground-

truths in such conditions is intractable, and also to avoid

the overfitting problem of synthetic data training, where the

knowledge learned on synthetic data cannot be generalized

to real data testing. Together with the network architecture

design, we propose a new training strategy that combines

supervised synthetic-data training and unsupervised real-

data training. Experimental results show that our method

is effective and outperforms the state-of-the-art methods in

estimating optical flow in dense foggy scenes.

1. Introduction

Fog is a common and inevitable weather phenomenon. It

degrades visibility by weakening the background scene in-

formation, and washing out the colors of the scene. This

degradation breaks the Brightness Constancy Constraint

(BCC) and Gradient Constancy Constraint (GCC) used in

existing optical flow methods. To our knowledge, none

of the existing methods can handle dense foggy scenes ro-

bustly. This is because most of them (e.g. [42, 6, 14, 38, 30,
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(a) Input Image (b) PWCNet [38]

(c) Our Result (d) Ground-Truth

Figure 1: (a) Input dense foggy image (first frame). (b) Optical

flow result from the existing baseline method PWCNet [38]. We

can observe that the result is erroneous and the method cannot

handle dense fog. As shown in (c), compared to it, our method

performs more robustly.

43]) are designed under the assumption of clear visibility.

One of the possible solutions is to render synthetic fog

images based on the commonly used physics model (i.e.,

the Koschmieder model [18]), and then to train a network

on the synthetic fog images and their corresponding optical

flow ground-truths in a supervised manner. While in our

investigation, it works to some extent, when applied to real

dense fog images in the testing stage, it does not perform

adequately. The main cause is the domain gap between the

synthetic and real fog images. The synthetic images are

too crude to represent the complexity of real fog images.

This problem can be fixed by using real fog images, instead

of synthetic fog images for training. However, to obtain

the correct optical flow ground-truths for real fog images is

extremely challenging [3].

Another possible solution is to defog the real fog images

using an existing defogging method (e.g., [39, 7, 12, 1, 45,

21]), and then to estimate the flow using an existing opti-

cal flow method. This two-stage solution, however, is not

effective either. First, existing defogging methods are not

designed for optical flow, hence their outputs might not be

optimum for flow computation. Second, defogging, partic-

ularly for dense fog, is still an open problem. Hence, the
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outputs of existing defogging methods are still inadequate

to make the estimation of optical flow accurate and robust.

Our goal in this paper is to estimate the optical flow from

dense fog images robustly. To achieve the goal, we intro-

duce a novel deep learning method that integrates domain

transformation (e.g. [15, 47]) and optical flow estimation

in a single framework. Initially, given a pair of synthetic

fog images, its corresponding clean images and optical flow

ground-truths, in one training batch, we train our network in

a supervised manner. Subsequently, given a pair of real fog

images and a pair of clean images that are not corresponding

to each other (unpaired data), in the next training batch, we

train our network in an unsupervised manner. The training

of synthetic and real data are carried out alternately. We use

the synthetic data with ground-truths to guide the network

to learn the transformation correctly, so that we can miti-

gate the fake-content generation problem that is commonly

observed in unpaired training [47, 25, 36]. We use the real

data without ground-truths to avoid the overfitting problem

of the synthetic data training, where the knowledge learned

from synthetic data in the training cannot be generalized to

real data in the testing.

In essence, our method is a semi-supervised method.

Our domain transformation enables our network to learn di-

rectly from real data without ground-truths. When the train-

ing input is a pair of clean images, our domain transforma-

tion renders the corresponding foggy images, and our op-

tical flow module estimates the flow map. Moreover, from

the rendered foggy images, our optical flow module also

estimates the flow map. Hence, these two different flow

maps must be identical. If they are not, then we can back-

propagate the error. The same mechanism applies when the

training input is a pair of foggy images. Another advan-

tage of our architecture is that the transformation and optical

flow modules can benefit each other: Our domain transfor-

mation helps our optical flow module reconstruct the fog-

invariant cost volume, and our optical flow module enables

our domain transformation module to distinguish some ob-

jects from the background through the flow information. As

a summary, here are our contributions:

• We introduce an architecture that integrates domain

transformation and optical flow modules in one frame-

work. The two modules work in mutual cooperation

benefiting each other at the feature pyramid levels.

• We propose a training strategy combining synthetic

data with ground-truths, clean and fog real data with-

out ground-truths in one integrated learning process.

• We provide a domain adaptive method, which can pre-

dict optical flow from both clean and fog images. We

also show the effectiveness of using photometric and

hazeline [2] constraints to make our network learn bet-

ter about optical flow and fog.

2. Related Work

Many methods have been proposed to tackle optical flow

estimation ([8] for a comprehensive survey). More recently,

deep learning is widely used in optical flow methods. Doso-

vitskiy et. al. [6] design FlowNetS and FlowNetC based on

the U-Net architecture [34]. Their method is a pioneer work

in showing the possibility of using a deep-learning method

to solve the optical flow problem. Ilg et al. [14] design

FlowNet2 by stacking multiple FlowNetS and FlowNetC

networks. FlowNet2 is trained in a stack-wise manner, and

thus is not end-to-end. Sun et al. [38] propose PWCNet.

Its performance is comparable to FlowNet2, yet it is signif-

icantly smaller in terms of network parameters. All these

methods are fully supervised and trained using synthetic

data. In contrast, our method uses semi-supervised learn-

ing, employing labeled synthetic and unlabeled real data.

Jason et al. [16] propose an unsupervised learning

method for flow estimation, for the first time. Ren et al. [33]

publish a method with a more complex structure. These

two methods simply use the brightness constancy and mo-

tion smoothness losses. Some other methods combined

depth, ego-motion and optical flow together, such as Yin

and Shi [44] and Ranjan et al. [31]. These methods, how-

ever, use three independent networks to estimate depth,

ego-motion and optical flow, and require camera calibra-

tion. Generally, the performance of the current unsuper-

vised methods cannot be as accurate and sharp as that of the

fully supervised methods. To take the advantages of both

fully supervised and unsupervised learning, Lai et al. [19]

proposed a semi-supervised method, which uses the dis-

criminative loss from the warping difference between two

frames. Recently, there is progress in unsupervised opti-

cal flow (e.g. [46, 41, 31]), under the assumption that the

input images are clean. Liu at al. [26] propose a self-

supervised method for learning optical flow from unlabeled

data. They use photometric loss to obtain reliable flow es-

timations, which are later used as ground-truths for train-

ing. To our knowledge, none of these methods are designed

to handle dense foggy scenes. While some previous non-

learning-based works (e.g. [28]) can handle illumination

variations in the images, these methods also cannot handle

dense foggy scenes. This is because fog is more than just in-

tensity/illumination changes in the images, and robustness

to illumination variations does not necessarily ensure ro-

bustness to fog.

Some works address the problem of semantic segmenta-

tion under fog (e.g. [35, 5]). However, they employ a grad-

ual learning scheme, where the network is first trained on

labeled synthetic fog data. Then, the network is used to

generate flow results on light real fog data. The network

is then trained again on labeled synthetic fog data and light

fog real data, for which the results predicted before are used

as ground-truths. The entire process is repeated for dense
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fog real data. While this learning scheme is simple to im-

plement, it has a few problems. First, it makes the entire

learning scheme manual. In contrast, our method is com-

pletely end-to-end trainable and requires no manual inter-

vention. Second, the results predicted for real data in the

previous stage are used as ground-truths for training in the

next stage, which could be erroneous. This can lead the net-

work to learning inaccurate flow estimations. In contrast,

our method uses accurate flow ground truths from synthetic

data, to learn on rendered real fog data. This ensures that

the flow network always learns from correct flow ground-

truths.

One possible solution of estimating optical flow in

foggy scenes is a two-stage solution: defog first and op-

tical flow estimation afterwards. Many methods in defog-

ging/dehazing have been proposed. (see [23] for a compre-

hensive review). A few methods are based on deep learning,

e.g. [4, 32, 20, 21]. All these methods are based on a single

image, and thus can cause inconsistent defogging outputs,

which in turn causes the violation of the BCC and GCC.

Moreover, defogging, particularly for dense fog is still an

open problem. Hence, the outputs of existing defogging

methods can still be inadequate to generate robust optical

flow estimation.

3. Proposed Method

3.1. Network Architecture

Optical Flow Network Our optical flow module consists

of two encoders Ef , Ec and a decoder Dof , which are

shown in Fig. 2, where subscripts f , c, and of stand for

fog, clean, and optical flow, respectively. The two encoders

(Ef and Ec,) extract features from the fog and clean input

images respectively. They have the same architecture, but

independent weights. As recent works [30, 38] show that

pyramid features improve the estimation of optical flow, we

design our encoders in the same way. Our decoder corre-

lates the pyramid features from two input images to form a

cost volume, which is used to predict optical flow. Since our

decoder receives features from the two encoders working on

different domains (fog and clean), it encourages the two en-

coders to generate domain adaptive features. This domain

adaptation ensures that robust optical flow is generated from

the two domain inputs.

Domain Transformation Network Our domain transfor-

mation module is formed by the encoders, Ef and Ec, and

two decoders, Df and Dc. The fog encoder, Ef , takes the

fog images as the input, and outputs feature pyramids. The

clean decoder, Dc, processes the features, and constructs

the clean version of the input images. The other encoder,

Ec, does the same, however instead of fog images, it takes

clean images as the input. The fog decoder, Df , processes

the features produced by Ec, and transforms them to fog

images. To ensure the proper quality of our transformed

clean and fog images, we employ the discriminative loss

[11]. While domain transformation is not our main goal,

the quality of the transformed images can affect the opti-

cal flow result. Note that, we employ feature pyramids in

computing the features, so that the same features can also

be used by our optical flow network.

3.2. SemiSupervised Training Strategy

To train our network, ideally we should use real fog data

with the corresponding optical flow ground-truths. Unfor-

tunately, to obtain the ground-truths of real fog images is

extremely intractable. The best possible technology we can

employ currently is LIDAR sensors. However, LIDAR cap-

tures only sparse depths and stationary objects. Moreover,

it has limited depth range and its accuracy is affected by

fog dense particles [3]. An alternative solution is to use

synthetic fog images, whose corresponding optical flow is

easy to obtain. However, it is known that there are signifi-

cant gaps between synthetic and real fog images. Synthetic

fog images are too simplistic and cannot represent real fog

and its complexity in many conditions. Because of these

problems, we utilize real clean (no fog) images to help our

network learn about fog, clean background scenes, and op-

tical flow. While there are domain gaps between clean real

images and fog real images, we bridge the gaps through our

domain transformation network.

Our training strategy includes datasets both with and

without ground-truths, involving real fog images, synthetic

fog images, and real clean images. The reason we use the

synthetic fog images is because, they can help guide the

network to transform the features from different image do-

mains more correctly by mitigating the generation of fake

contents during the transformation. The whole process of

our training strategy can be separated into three stages:

Synthetic-fog training stage, real-clean training stage, and

real-fog training stage.

3.3. SyntheticData Training Stage

Given synthetic fog images, their corresponding syn-

thetic clean background images, and their corresponding

optical flow ground-truths, we can train our network in a

fully supervised manner. First, to train the optical flow mod-

ule: {Ef , Ec, Dof}, we use EPE (End-Point Error) losses

between the predicted optical flow and the corresponding

ground-truths for both synthetic fog and clean input images:

L
EPE

f
s
(Ef , Dof ) = E(xf

s1,x
f
s2)

[
‖ôf

f
− of

f
gt‖2

]
, (1)

LEPEc
s
(Ec, Dof ) = E(xc

s1,x
c
s2)

[
‖ôf

c
− of c

gt‖2
]
, (2)
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Figure 2: Overall architecture of our network.

with:

ôf
f

= Dof [(Ef [x
f
s1], Ef [x

f
s2])], (3)

ôf
c

= Dof [(Ec[x
c
s1], Ec[x

c
s2])], (4)

where (xf
s1, x

f
s2) and (xc

s1, x
c
s2) are the synthetic fog and

synthetic clean image pairs. of
f
gt and of c

gt are the optical

flow ground-truths of the synthetic fog and synthetic clean

images respectively.

To train the domain transformation module: {Ef , Dc}
and {Ec, Df}, we define L1 losses:

L
L1fs

(Ef , Dc) = E
x
f
s

[
‖x̂c

s − xc
gt‖1

]
, (5)

LL1cs
(Ec, Df ) = Exc

s

[
‖x̂f

s − x
f
gt‖1

]
, (6)

where, x̂c
s = Dc[(Ef [x

f
s ]])], and x̂f

s = Df [(Ec[x
c
s]])] are

the rendered clean and fog images, respectively. xc
gt, x

f
gt

are the synthetic clean and synthetic fog ground-truth im-

ages, respectively. In addition, we also apply the discrim-

inative loss [11] to ensure that the transformations from

clean-to-fog images and from fog-to-clean images are con-

sistent with the appearance of synthetic fog and synthetic

clean images.

3.4. Real Clean Data Training Stage

In this stage, we use the real clean images without opti-

cal flow ground-truths and without real fog image ground-

truths to train the network. As shown in the second row of

Fig. 2, first, we compute the optical flow directly from the

input real clean images, xc
r1, x

c
r2:

ôf
c
= Dof [(Ec[x

c
r1], Ec[x

c
r2]). (7)

Concurrently, we transform the input clean images, xc
r1, x

c
r2

to fog images, x̂
f
r1, x̂

f
r2:

x̂
f
r1 = Df [Ec[x

c
r1]], (8)

x̂
f
r2 = Df [Ec[x

c
r2]]. (9)

From the rendered fog images, x̂
f
r1, x̂

f
r2, subsequently we

transform them further to obtain the rendered clean images,
ˆ̂xc
r1,

ˆ̂xc
r2:

ˆ̂xc
r1 = Dc[Ef [x̂

f
r1]], (10)

ˆ̂xc
r2 = Dc[Ef [x̂

f
r2]]. (11)

At the same time, we also compute the optical flow from the

rendered fog images, x̂
f
r1, x̂

f
r2:

̂̂
off = Dof [x̂

f
r1, x̂

f
r2]. (12)

The whole process above, from the input real clean im-

ages, xc
r1, x

c
r2 to the rendered clean, ˆ̂xc

r1,
ˆ̂xc
r2, and to the

estimated optical flow, ôf
c

and
̂̂
off is a feedforward pro-

cess. Initially, we rely on the network’s weights learned

from synthetic data for this feedforward process. To refine

the weights, we train the network further using our current

real data. The training is based on a few losses: Transforma-

tion consistency, EPE, discriminative, and hazeline losses.

Transformation Consistency Loss To train the domain

transformation modules: Ef , Ec, Df , Dc, we define our

consistency loss between the clean input images, xc
r1, x

c
r2,
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and the rendered clean images, ˆ̂xc
r1,

ˆ̂xc
r2, as:

LCONc
r
(Ef , Ec, Df , Dc)

= Exc
r

[
‖xc

r1 −
ˆ̂xc
r1‖1 + ‖xc

r2 −
ˆ̂xc
r2‖1

]
. (13)

This loss is a pixel-wise computation, since the real clean

and rendered clean images must share the same optical flow

up to the pixel level. In this backpropagation process, we

keep Dof frozen.

EPE Loss Since we do not have the optical flow ground-

truths of the real clean input images, to train our modules

Ef and Dof , we define the EPE loss by comparing the pre-

dicted optical flow from the real clean input images and the

predicted optical flow from the rendered fog images:

LEPEc
r
(Ef , Dof ) = E(xc

r1,x
c
r2)

[
‖ôf

c
,
̂̂
off‖2

]
, (14)

where ôf
c
,
̂̂
off are the predicted optical flow fields from

the input clean images, and from the rendered fog images,

respectively. During the backpropagation of this EPE loss,

only Ef and Dof are updated, and the rest remain frozen.

Discriminative Loss To train the transformation modules,

Ec, Df , we use the discriminative loss [11] to ensure that

the rendered fog images look as real as possible (since we

do not have the corresponding real-fog ground-truths). For

this purpose, we define our discriminative loss as:

LGANc
r
(Ec, Df ) = Exc

r

[
(log(1−Disf [Df [(Ec[x

c
r]]])

]
,

(15)

where Dis[.] is our discriminative module, which assesses

the outputs of Df . We keep other modules frozen, while

updating the weights of Ec, Df .

Hazeline Loss Since we do not have the ground-truths of

the corresponding real fog images, applying the discrimi-

native loss alone will be insufficient to train the modules

Ec, Df properly. Improper training can cause the gener-

ation of fake contents [47, 25, 36]. The guidance of the

synthetic training data (Sec. 3.3) can mitigate the problem;

since synthetic fog images are rendered using a physics

model, and thus Ec, Df learn the underlying physics model

from the synthetic fog images. To strengthen the transfor-

mation even further, we add a loss based on the following

physics model [12, 39, 1] (also used in the rendering of our

synthetic fog images):

xf (x) = xc(x)α(x) + (1− α(x))A, (16)

where xf is the fog image, xc is the clean (no fog) image

ground-truth. A is the atmospheric light. α is the attenua-

tion factor, and x is the pixel location.

Berman et al. [1] observe that in the RGB space, xf , xc,

and A are colinear, due to the linear combination described

in the model (Eq. (16)). Unlike Berman et al.’s method,

instead of using the RGB space, we use the 2D chromaticity

space [39]; since, there is no robust way to estimate the

intensity of the atmospheric light [37]. The chromaticity of

the clean input image is defined as:

γc
r,ch =

xc
r,ch

xc
r,R + xc

r,G + xc
r,B

, (17)

where the index ch = {R,G,B} is the RGB color channel.

Accordingly, the chromaticity of the rendered fog image by

Ec, Df is defined as:

σc
r,ch =

x̂
f
r,ch

x̂
f
r,R + x̂

f
r,G + x̂

f
r,B

. (18)

Lastly, the atmospheric light chromaticity of the rendered

fog image is defined as:

αc
r,ch =

A[x̂f
r,ch]

A[x̂f
r,R] +A[x̂f

r,G] +A[x̂f
r,B ]

, (19)

where A[.] is the function that obtains the chromaticity or

color of the atmospheric light. This function is basically a

color constancy function, hence any color constancy algo-

rithm can be used [10]. In our implementation, to obtain the

atmospheric light chromaticity from fog images, we simply

use the brightest patch assumption [40].

Therefore, we define our hazeline loss, which is based

on the collinearity in the chromaticity space as:

LHLc
r
(Ec, Df ) = Exc

r

[
1−

(σc
r − αc

r) · (γ
c
r − αc

r)

‖(σc
r − αc

r)‖‖(γ
c
r − αc

r)‖

]
.

(20)

Like the discriminative loss, while updating the weights of

Ec, Df , we keep other modules frozen.

3.5. Real Fog Data Training Stage

In this stage, we use the real fog images without optical

flow ground-truths and without clean-image ground-truths

to train the network. As shown in Fig. 2, module Ef takes

the fog images, x
f
r1, x

f
r2, as the input and generate features,

which are used by Dof to predict the optical flow:

ôf
f
= Dof [(Ef [x

f
r1], Ef [x

f
r2]). (21)

Dof can handle fog images, since it was trained in the pre-

vious stage (Sec. 3.4) using the rendered fog images. At the

same time, we transform the input fog images, x
f
r1, x

f
r2 to

clean images, x̂c
r1, x̂

c
r1, respectively:

x̂c
r1 = Dc[Ef [x

f
r1]], (22)

x̂c
r2 = Dc[Ef [x

f
r2]]. (23)
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The transformation modules Dc, Ef had been initially

trained in the previous stage as well. From the rendered

clean images, x̂c
r1, x̂

c
r2, we transform them further to obtain

the rendered fog images, ˆ̂xf
r1,

ˆ̂xf
r2, respectively:

ˆ̂xf
r1 = Df [Ec[x̂

c
r1]], (24)

ˆ̂xf
r2 = Df [Ec[x̂

c
r2]]. (25)

We also compute the optical flow from the rendered clean

images, x̂c
r1, x̂

c
r2:

̂̂
of c = Dof [x̂

c
r1, x̂

c
r2]. (26)

Like in the previous stage, to train the network, we use all

the losses we defined in Sec. 3.4, except for the EPE loss. In

this training stage, we still compare the EPE loss between

ôf
f

and
̂̂
of c, which we call the optical flow consistency

loss [36]. However, the goal is no longer for estimating

flow accurately, but for the two encoders to extract proper

domain adaptive features. Thus, during the backpropaga-

tion of this loss, only two encoders Ec and Ef are updated,

and the rest are kept frozen.

3.6. Photometric Consistency Map

In the second training stage, we use the rendered clean

images, rendered fog images, and estimated optical flow to-

gether to train our network. However, the estimated optical

flow might still be inaccurate, which can affect the learn-

ing process of the whole network. To address this problem,

we generate a binary mask based on the photometric con-

sistency of the estimated optical flows. The consistency is

computed from the two input clean images and their esti-

mated optical flow. The consistency is then binarized into

a mask, and then we apply the mask to the EPE loss. This

enables us to filter out the inaccurate estimations of optical

flow during the backpropagation.

4. Implementation

Our network in total has two encoders, three decoders

and two discriminators. Each of the two encoders contains

6 convolution layers. From an input image, each encoder

extracts pyramid features at 6 different levels. As a result,

the optical flow decoder has a pyramid structure. Its in-

puts are the five pairs of pyramidal features from a pair of

input images. These features are the five deep-layers fea-

tures extracted by the encoder. The features of each layer

are warped based on the previous level of optical flow, and

then we compute the cost volume, which is used to estimate

optical flow. As for the two decoder for the domain trans-

formation, the input images, first layer features and second

layer features are convoluted into the same shape as the

third layer features by a convolution layer. Next, these four

features with the same shape are concatenated together, and

put into ResNet [13]. This ResNet contains six blocks, and

its output has the same shape as input. Finally, the deconvo-

lution layers process on the output from ResNet to generate

the domain transformation result. The network architecture

of each discriminator is similar to that of the PatchGAN dis-

criminator [15], containing five convolution layers.

For training images, we use randomly cropped images

of 256x512 resolution. We set the batch size to 3. We use

Adam [17] for the optimizers of all the modules, and its pa-

rameters, β1 and β2, are set 0.5 and 0.999 respectively. The

learning rate is set to 0.0002. All the modules are trained

from scratch. We collected real clean and real fog images.

All contain urban scenes. We use the VKITTI dataset [9]

for rendering synthetic fog images for the fully supervised

training, as it has both depth maps and optical flow ground-

truths. We specifically select the overcast images (with no

sunlight) so that the rendered fog images look more real-

istic. With the available depth maps, we can generate fog

images from VKITTI, with random atmospheric light and

attenuation coefficient. The fog in synthetic data is gener-

ated by following the physics model [18] for fog, expressed

in Eq. (16).

5. Experimental Result

For evaluation, we compare our method with the fol-

lowing methods: original FlowNet2 [14], original PWC-

Net [38], which are the two state-of-the-art fully supervised

methods; and optical flow network in competitive collabo-

ration (CC) [31] and SelfFlow [26], which are two state-of-

the-art unsupervised methods; FlowNet2-fog and PWCNet-

fog, where we retrain the original FlowNet2 and PWC-

Net using our synthetic fog images and their optical flow

ground-truths; FlowNet2-defog, PWCNet-defog and CC-

defog which are two-stage solutions where we combine a

defogging method with the original FlowNet2, PWCNet

and CC. The defogging method is Berman et al.’s [2], which

is one of the state-of-the-art defogging methods.

We use 2,224 real clean and 2,346 real fog image pairs

for training. For evaluation, following [22], we manually

annotate 100 real fog image pairs. The annotated optical

flow ground-truths are done for some rigid objects using the

manual flow annotation method introduced in [24]. We fur-

ther use 1,770 and 200 randomly sampled image pairs from

the vKITTI dataset for training and validation, respectively.

We use other 100 image pairs for testing. We render fog

in all the images from the vKITTI dataset using the physics

model [18], with random atmospheric light and attenuation

coefficient (or fog density).

Quantitative Evaluation Since we target real dense fog im-

ages in our method and design, we do the evaluation on real

images. EPE and “bad pixel” are commonly used metrics
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Figure 3: Qualitative comparison of our methods with the state-of-the-art methods and their variants on real fog images.

Table 1: Quantitative results on our real dense foggy dataset.

Method EPE
Bad Pixel

δ = 3 δ = 5

CC [31] 7.56 76.61% 45.79%

CC-defog [31] 11.67 72.22% 42.31%

PWCNet [38] 6.36 54.90% 38.47%

PWCNet-defog [38] 6.16 53.98% 38.50%

PWCNet-fog [38] 6.10 56.39% 39.42%

FlowNet2 [14] 4.74 42.06% 26.75%

FlowNet2-defog [14] 4.72 43.12% 26.60%

FlowNet2-fog [14] 5.19 49.66% 31.89%

SelfFlow [26] 6.53 70.92% 56.01%

Ours 4.32 41.26% 25.24%

Ours (no hazeline) 4.82 43.41% 31.60%

to measure the quality of optical flow. The definition of

“bad pixel” follows to that of the KITTI dataset [27]. Since

the flow ground-truths in our evaluation are manually anno-

tated, they might be inaccurate. To account for this, follow-

ing the KITTI dataset [27], we compute “bad pixel” with

its threshold parameter δ = {3, 5}, to allow for an inac-

curacy of 3-5 pixels. Table 1 shows the evaluation result

on our manually annotated real fog images. Our method

has the best performance in terms of both EPE value and

“bad pixel” numbers. Table 2 shows the results on synthetic

fog images from the vKITTI dataset. Since for synthetic

fog images, we have accurate dense flow ground-truths, we

Table 2: Quantitative results on synthetic foggy vKITTI dataset.

Method EPE
Bad Pixel

δ = 1 δ = 3

CC [31] 7.53 70.54% 51.46%

CC-defog [31] 7.91 65.51% 38.90%

PWCNet 3.23 52.84% 19.01%

PWCNet-defog [38] 3.11 43.93% 18.28%

PWCNet-fog [38] 1.67 34.08% 9.04%

FlowNet2 [14] 5.92 52.42% 30.78%

FlowNet2-defog [14] 5.43 50.05% 28.80%

FlowNet2-fog [14] 9.64 73.02% 48.79%

Ours 1.60 28.31% 8.45%

compute “bad pixel” with δ = {1, 3}. While this is not our

target, the evaluation shows that our method has compara-

ble performance as the naive solutions.

Qualitative Evaluation Fig. 3 shows the qualitative results

on real fog images. The first column shows the first im-

age of the input image pair. All ground-truths in the second

column are labeled manually by selecting rigid objects. The

third column shows our results, and the other columns show

the results of the baseline methods. As can be seen, our

method in general performs better than the baseline meth-

ods, confirming our quantitative evaluation on the same

data. Fig. 4 shows the qualitative defogging results on real

foggy images. We compare our method with the state of the

art of non-learning method Berman et al. [2] and learning-

based method EPDN [29]. Although defogging is not our
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Figure 4: Qualitative defogging results on real foggy images. Although defogging is not our main target, we can observe that our method

generates less artifacts than the state of the art methods do.

Input Image Our Result PWCNet [38]

Figure 5: Qualitative methods on real nighttime images. As the

results show, our method is not limited to fog, but can also work

robustly for a different domain, such as nighttime.

Figure 6: In each row, images from left-to-right show the input

clean image, and the corresponding rendered fog images with and

without the hazeline loss. The hazeline loss constrains our ren-

dered fog images to avoid having fake colors.

Input Clean Image Estiamted Flow Consistency map

Figure 7: The photometric consistency masks correctly indicate

the wrong flow estimations.

main target, we can observe that our method generates less

artifacts.

While our method is designed for flow estimation under

dense fog, we show that our method can also be applied

to other domains, such as nighttime. For this, we use our

entire training procedure as is, except for the hazeline loss

described in Eq. (20). The results are shown in Fig. 5.

6. Ablation Study

Fig. 6 shows the efficacy of our hazeline loss. It can con-

strain the color shifting between the clean images and the

rendered fog images. We can observe that better fog im-

ages are generated by using the constraint. Table 1 shows

the performance with and without the hazeline loss. With-

out the hazeline loss, our performance drops by 0.5 for EPE

and 2-6% on “bad pixel” rate.

Fig. 7 shows the binary photometric consistency masks.

In the first row, our estimated optical flow has error on

the minibus back window, and the mask can clearly show

that area is inconsistent (black indicates inconsistent pre-

dictions, and white indicates consistent predictions). In

the second row, the scene is static and the camera is mov-

ing. The optical flow is only generated by ego-motion.

The estimated optical flow observably has errors on the left

top corner. Our consistency mask also indicates the same.

The consistency mask and setting proper hyper-parameters

(Sec. 4) are important for training stabilization. In our ex-

periments, we find that the training loss can fail to converge

if the consistency mask is not used. We also check the ef-

ficacy of the domain transformation module. We observe

that without this module (i.e. using only Ef and Dof in our

network in Fig. 2), the performance of our method drops by

1.99 for EPE on real fog images.

7. Conclusion

In this paper, we have proposed a semi-supervised learn-

ing method to estimate optical flow from dense fog im-

ages. We design a multi-task network that combines domain

transformation and optical flow estimation. Our network

learns from both synthetic and real data. The synthetic data

is used to train our network in a supervised manner, and the

real data is used in an unsupervised manner. Our experi-

mental results show the effectiveness of our method, which

outperforms the state-of-the-art methods.
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[28] József Molnár, Dmitry Chetverikov, and Sándor Fazekas.

Illumination-robust variational optical flow using cross-

correlation. Computer Vision and Image Understanding,

114(10):1104–1114, 2010. 2

[29] Yanyun Qu, Yizi Chen, Jingying Huang, and Yuan Xie. En-

hanced pix2pix dehazing network. In The IEEE Conference

on Computer Vision and Pattern Recognition (CVPR), June

2019. 7, 8

13267



[30] Anurag Ranjan and Michael J. Black. Optical flow

estimation using a spatial pyramid network. CoRR,

abs/1611.00850, 2016. 1, 3

[31] Anurag Ranjan, Varun Jampani, Lukas Balles, Kihwan Kim,

Deqing Sun, Jonas Wulff, and Michael J Black. Competitive

collaboration: Joint unsupervised learning of depth, camera

motion, optical flow and motion segmentation. In Proceed-

ings of the IEEE Conference on Computer Vision and Pattern

Recognition, pages 12240–12249, 2019. 2, 6, 7

[32] Wenqi Ren, Si Liu, Hua Zhang, Jinshan Pan, Xiaochun Cao,

and Ming-Hsuan Yang. Single image dehazing via multi-

scale convolutional neural networks. In European conference

on computer vision, pages 154–169. Springer, 2016. 3

[33] Zhe Ren, Junchi Yan, Bingbing Ni, Bin Liu, Xiaokang Yang,

and Hongyuan Zha. Unsupervised deep learning for optical

flow estimation. In Thirty-First AAAI Conference on Artifi-

cial Intelligence, 2017. 2

[34] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-

net: Convolutional networks for biomedical image segmen-

tation. In International Conference on Medical image com-

puting and computer-assisted intervention, pages 234–241.

Springer, 2015. 2

[35] Christos Sakaridis, Dengxin Dai, Simon Hecker, and Luc

Van Gool. Model adaptation with synthetic and real data

for semantic dense foggy scene understanding. In European

Conference on Computer Vision (ECCV), pages 707–724,

2018. 2

[36] Aashish Sharma, Robby T Tan, and Loong-Fah Cheong.

Depth estimation in nighttime using stereo-consistent cyclic

translations. arXiv preprint arXiv:1909.13701, 2019. 2, 5, 6

[37] Matan Sulami, Itamar Glatzer, Raanan Fattal, and Mike Wer-

man. Automatic recovery of the atmospheric light in hazy

images. In 2014 IEEE International Conference on Compu-

tational Photography (ICCP), pages 1–11. IEEE, 2014. 5

[38] Deqing Sun, Xiaodong Yang, Ming-Yu Liu, and Jan Kautz.

PWC-Net: CNNs for optical flow using pyramid, warping,

and cost volume. In CVPR, 2018. 1, 2, 3, 6, 7, 8

[39] Robby T Tan. Visibility in bad weather from a single image.

In 2008 IEEE Conference on Computer Vision and Pattern

Recognition, pages 1–8. IEEE, 2008. 1, 5

[40] Shoji Tominaga, Satoru Ebisui, and Brian A Wandell.

Scene illuminant classification: brighter is better. JOSA a,

18(1):55–64, 2001. 5

[41] Yang Wang, Peng Wang, Zhenheng Yang, Chenxu Luo, Yi

Yang, and Wei Xu. Unos: Unified unsupervised optical-flow

and stereo-depth estimation by watching videos. In Proceed-

ings of the IEEE Conference on Computer Vision and Pattern

Recognition, pages 8071–8081, 2019. 2

[42] Philippe Weinzaepfel, Jerome Revaud, Zaid Harchaoui, and

Cordelia Schmid. DeepFlow: Large displacement optical

flow with deep matching. In IEEE Intenational Conference

on Computer Vision (ICCV), Sydney, Australia, Dec. 2013.

1
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