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Abstract

Attribute recognition is a crucial but challenging task

due to viewpoint changes, illumination variations and ap-

pearance diversities, etc. Most of previous work only con-

sider the attribute-level feature embedding, which might

perform poorly in complicated heterogeneous conditions.

To address this problem, we propose a hierarchical feature

embedding (HFE) framework, which learns a fine-grained

feature embedding by combining attribute and ID informa-

tion. In HFE, we maintain the inter-class and intra-class

feature embedding simultaneously. Not only samples with

the same attribute but also samples with the same ID are

gathered more closely, which could restrict the feature em-

bedding of visually hard samples with regard to attributes

and improve the robustness to variant conditions. We estab-

lish this hierarchical structure by utilizing HFE loss con-

sisted of attribute-level and ID-level constraints. We also in-

troduce an absolute boundary regularization and a dynamic

loss weight as supplementary components to help build up

the feature embedding. Experiments show that our method

achieves the state-of-the-art results on two pedestrian at-

tribute datasets and a facial attribute dataset.

1. Introduction

Attributes, such as gender, hair length, clothing style,

are discriminative semantic descriptors that can be used as

soft-biometrics in visual surveillance. Attribute recogni-

tion concentrates on discerning these attributes of the tar-

get human in a given image. It includes pedestrian at-

tribute recognition (PAR), face attribute recognition (FAR),

etc. Recently, attribute recognition has received extraordi-

nary attention owing to the potential applications in per-

son re-identification (Re-ID) [22, 26, 36], face verification

[21, 6, 46, 34, 45], and human identification [15]. Being

a classification problem by nature, it still faces great chal-

lenges in real-world scenarios for these reasons: (1) Images
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Figure 1. Hierarchical feature embedding on ‘backpack’ attribute.

Images with the same IDs are represented with the same color bor-

ders. (a) represents the Cross Entropy feature space, where most of

samples can be classified correctly while the hard sample with pink

dotted border (whose backpack is totally occluded by the body) is

misclassified. (b) With the help of ID constraint, features with

the same IDs form fine-grained clusters can pull the hard example

back.

might be low-resolution or blurry because of the shot dis-

tance or the movements of pedestrians. (2) Different scenes,

time slots, angles and poses lead to illumination alterations,

viewpoint changes, and appearance variations. (3) Some

parts of an object might be occluded by others, resulting in

invisibility or ambiguity.

Recently, some methods are introduced to solve these

problems and achieve admirable performance. A-AOG

[35] explicitly represents the decomposition and articula-

tion of body parts, and accounts for the correlations between

poses and attributes. LGNet [28] assigns attribute-specific

weights to local features based on the affinity between pre-

extracted proposals and attribute locations. These meth-

ods aim at applying pivotal parts of images or an attention

module to reduce the impact of irrelevant factors to some

extent, still they do not cope with the visual appearance

variations of attributes as well as occlusion directly. Only

attribute-level optimization is focused on in these methods,

however the information from attribute recognition related

fields, such as person Re-ID, could assist to alleviate vari-
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ation and occlusion issues through imposing stronger con-

straints.

From the perspective of data, current attribute datasets

are all labelled on ID or tracking granularity [25, 32] to

reduce workloads. Thus we assume that images captured

from the same identity should have the same attributes, but

not vise versa. For each attribute, labels are usually coarse-

grained owing to the expensive annotation cost. Different

persons may get the same attribute labels but with subtle

differences in appearance. For example, backpacks with

different colors and textures are all tagged as ‘backpack’.

Therefore, fine-grained feature embeddings are needed for

attributes to represent the variety within a class. With iden-

tity information, we could set up a two-level feature embed-

ding, i.e., inter-class and intra-class (Fig. 1). For each at-

tribute, samples with identical attribute form coarse-grained

classes, while in each attribute class, samples from the

same person (with the same attribute definitely) construct

the fine-grained ID clusters. We introduce this hierarchical

feature embedding model by the following motivations: (1)

ID clusters restrict the images with the same ID but vari-

ant viewpoints, illumination and appearance to gather more

closely, which embed the attribute features with scene in-

variance and improve robustness. (2) Hard cases for at-

tributes may be easily handled and pulled back by other easy

samples of the same ID by the ID constraint, which is diffi-

cult to learn only in the attribute level. (3) Like the attribute

tags, the ID tags are also utilized in the attribute semantics

by holding the assumption above, avoiding integrating dif-

ferent semantic features directly in the same feature space

as previous work [25].

Motivated by the above observation, we propose a hier-

archical feature embedding (HFE) framework, maintaining

the inter-class as well as the intra-class feature embedding

by combining attribute and ID information. HFE loss is

introduced for fine-grained feature embedding, which con-

sists of two triplet losses and an absolute boundary regular-

ization with the selected quintuplets. With HFE loss con-

straints, each class could gather more compactly, leading

to a more distinct boundary between classes. We propose

the absolute boundary regularization for additional absolute

constraints because the triplet loss only considers the differ-

ence between two distances but ignores the absolute values,

and the intra-class triplet loss may interact indirectly with

the inter-class boundary. Besides, the quintuplet selection is

relevant to the current feature space. However, in the early

stage of training, feature spaces are not confident enough

for the quintuplet selection, so we design a dynamic loss

weight, making the HFE loss weight increasing gradually

along with the learning process. In summary, the contribu-

tions of this paper are:

• We propose HFE framework to integrate ID informa-

tion on attribute semantics for fine-grained feature em-

bedding. A novel HFE loss is introduced for both inter-

class and intra-class level constraints.

• We construct an absolute boundary regularization by

strengthening the original triplet loss with an absolute

constraint.

• We introduce a dynamic loss weight, which forces the

feature space to transit from origin to the improved

HFE-restricted space by degrees.

• The proposed method is evaluated on two pedestrian

attribute datasets and one face attribute dataset. Exper-

iments show our method achieves the state-of-the-art

results on all three datasets.

2. Related Work

2.1. Attribute Recognition

Recently, deep learning based attribute recognition

methods achieve impressive performance. In PAR, these

methods includes global based [23, 41, 1, 7], local parts

based [28], visual attention based [31], sequential predic-

tion based [55] methods, etc. Among them, DeepMar [23]

is an early global based PAR work. Considering the imbal-

anced data distribution, it proposes cost-sensitive cross en-

tropy (CE) loss for classification. It also proposes a new loss

to handle imbalanced data as well as a new attention mecha-

nism. LGNet [28] assigns attribute-specific weights to local

features based on the affinity between pre-extracted propos-

als and attribute locations. Hydraplus-Net [31] proposes an

attention based model and exploits the global and local con-

tents with multi-level feature fusion of a single pedestrian

image. ALM [47] aims at learning attribute-aware repre-

sentation through attribute localization. Attribute-aware at-

tention model [11] exploits the correlation between global

features and attribute-specific features and utilize it to gen-

erate attention mask in a reciprocal manner. Localizing by

describing [30] learns the bounding boxes related to the lo-

cation of attributes explicitly using REINFORCE algorithm

with a designed reward function in a weakly supervised

manner. [39] designs an attention mechanism for aggregat-

ing multi-scale features as well as a loss function similar to

focal loss [24] in order to tackle the imbalanced data prob-

lem. GRL [55] proposes a RNN based grouping recurrent

learning method that exploits the intra-group mutual exclu-

sion and inter-group correlation. FAR can be also divided

into part-based and holistic approaches [38, 12].

ReID aims at matching a target person in a set of query

pedestrian images. A great amount of deep learning based

ReID works provide promising solutions [48, 8, 4, 2, 9, 37].

A bunch number of existing methods rely on exploiting dis-

criminative features, which is in the same spirit as fine-

grained recognition. Attributes and ReID are highly corre-

lated pedestrian visual appearance representations, but vary
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(c) Quintuplet Selection

(b) Triplet Selection

(a) HFE Framework

Figure 2. (a) Overview of the proposed hierarchical feature embedding (HFE) framework, it consists of a backbone model, attached by M

branches for M attributes. We calculate the CE loss and HFE loss based on the quintuplet selection in each branch. (b) and (c) are triplet

and quintuplet selection respectively, where orange and blue represent the different attribute classes.

in semantics and granularities. Even though they are dif-

ferent tasks, the common characteristic can be beneficial to

both of them, which is exploiting discriminative features.

And therefore they are reasonable to be dealt with jointly.

Some works utilize both information for multi-task learn-

ing [42] or assisting the main task [25, 27]. The methods

can be summarized in two categories: (1) shared backbone

and task-independent branches (2) task-independent mod-

els and combining high level features in some way (e.g.,

concatenated FC). For example, APR [25] learns ReID em-

bedding and pedestrian attributes simultaneously, sharing

the same backbone and owning classification FC layers re-

spectively. UF [42] trains two different models for two

tasks and concatenates branches to one identity vector for

ReID. These methods combine these two kind of features

to some extent. However incorporating them into the coef-

ficient feature representation indiscriminately is less power-

ful since attribute recognition and ReID are essentially di-

vergent. Persons with similar attributes can also be different

identities. Therefore a more rational way of combining both

information is required.

2.2. Metric Learning

The objective of metric learning [54, 17] is to learn a

proper metric feature space so that the distances between

similar samples reduce and that of dissimilar samples en-

large. While traditional metric learning algorithms [19] are

based on linear transformation, nonlinear models, etc, due

to the recent advances in deep learning, Convolutional Neu-

ral Networks have been a powerful tool to learn a task-

specific metric and achieved impressive results in a wide

range of tasks. Many metric learning algorithms have been

proposed in image retrieval [50], ReID [5], face recogni-

tion [40, 44, 29, 53], etc. Representative methods are con-

trastive loss and triplet loss. Contrastive loss [10] restricts

pair inputs and results in distances between similar pairs as

close as possible and that of dissimilar pairs to be larger

than margin. Triplet loss [40] applies triplet as input and

ensures the difference between the distance of (anchor, neg-

ative) feature and (anchor, positive) feature is larger than

margin. Beyond triplet loss, quadruplet loss [5] and quintu-

plet loss [13] are also introduced to improve performance.

Center loss [52] is designed for face recognition strives to

push samples to their respective clusters centers. We pro-

pose HFE loss by applying inter-class and intra-class triplet

losses for fine-grained constraints.

3. Proposed Method

Problem Definition. Given N images {I1, I2, ..., IN}
and each image Ij has M visual attribute tags yj =
{yj1, yj2, ..., yjM} together with ReID label lj . The images

from the same person are labelled with identical attributes,

i.e., ∀li=ljyi = yj . ReID auxiliary attribute recognition

aims at training a model containing the attribute and ID in-

formation to predict the attributes yk for the characteristic

of the person in an unseen image Ik.

Network Architecture. As shown in Fig. 2 (a), the pro-

posed hierarchical feature embedding (HFE) network con-

sists of a backbone model, to which M branches for M

attributes are attached. In the shared backbone, the model

learns a common feature embedding for all attributes. For

each attribute, we construct branches respectively for two

reasons: (1) Different attributes, such as age and gender,

should own their specific feature embeddings. (2) We con-

struct metric loss for each attribute in their own feature

spaces, which can not be applied on a shared feature space.

For example, there are two images I1, I2 from different

IDs, and the attributes are (long hair, carrying backpack)

and (long hair, no backpack). We should pull them closer

for hair length feature while push them away for backpack
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feature. Each attribute branch contains Conv-BN-ReLU-

Pooling-FC sequential layers. We calculate the Cross En-

tropy (CE) loss and metric loss on each branch.

Loss Computation. We apply CE loss for attribute clas-

sification (Eq. 1) as most works do. Besides, an HFE loss

is utilized for auxiliary metric learning with weight w (Eq.

2). HFE loss consists of inter-triplet loss, intra-triplet loss

and Absolute Boundary Regularization, which will be in-

troduced in the next section.

LCE = −
1

N

N∑

i=1

M∑

j=1

yij log(pij) + (1− yij)log(1− pij)

(1)

Loss = LCE + wLHFE (2)

3.1. Hierarchical Feature Embedding

Triplet Loss. Triplet loss has been widely used for met-

ric learning. As shown in Fig. 2 (b), it trains on a series of

triplets {xa
i , x

p
i , x

n
i }, where xa

i and x
p
i are image features

from the same label, and xn
i from a different label. a, p and

n are abbreviations of anchor, positive and negative sample

respectively. The formulation is as follows:

Ltrp =
1

N

N∑

i=1

[d(xa
i , x

p
i )− d(xa

i , x
n
i ) + α]+ (3)

Here, d(.) represents the Euclidean distance, and α is

the margin which forces the gap of d(xa
i , x

n
i ) and d(xa

i , x
p
i )

larger than α. [z]+ means max(z, 0). When the gap is

larger than α, the triplet loss would be zero.

Inter-class Triplet Loss. We can extend triplet loss to

attribute classification scenario. As shown in Eq. 4, xa
ij is

the feature of anchor sample Ii of j-th attribute, associated

with the feature of a positive and negative sample in regard

to xa
ij , i.e, x

p3
ij , x

n1
ij . Here we define the triplet on the at-

tribute level, and α1 is the inter-class margin.

Linter =
1

N

N∑

i=1

M∑

j=1

[d(xa
ij , x

p3

ij )− d(xa
ij , x

n1

ij ) + α1]+

y
p3

ij = yaij , y
n1

ij 6= yaij , l
p3

ij 6= laij , l
n1

ij 6= laij
(4)

We use batch hard mode [40] for triplet selection. In each

batch, we take the closest negative sample to anchor as the

hard negative sample xn1

ij = argminxn
ij
d(xa

ij , x
n
ij), and

the farthest positive as the hard positive sample x
p3

ij =
argmaxx

p

ij
d(xa

ij , x
p
ij), which is called as the hard inter-

class triplet loss.

item attribute ID distance

x
p1

ij the same the same farthest

x
p2

ij the same different nearest

x
p3

ij the same different farthest

xn
ij different different nearest

Table 1. The summary of quintuplet. x
a
ij is the anchor and not

listed above.

Intra-class Triplet Loss. With the attribute inter-class

triplet loss, we could separate the feature embedding be-

tween classes. However, the feature embeddings in each

class are still mixed up. Intuitively, the features of samples

with similar appearance or the same ID should be closer

than others. However, it is not easy to get such a perfect

feature embedding without extra constraint on the intra-

class level. To form ordered and fine-grained intra-class

feature embeddings, we utilize ID information to enforce

the features that belong to the same person gathered more

closely. We construct the intra-class feature embedding for

these two reasons: (1) The intra-class triplet loss restricts

the features from the same person to gather more closely,

making the embedding more robust to scene variance. (2)

The hard cases for attributes but not for ID can be eas-

ily handled by ID clusters in the attribute feature embed-

ding. Here we introduce a hard intra-class triplet loss, sim-

ilar to the hard inter-class triplet loss, while the hard neg-

ative sample is replaced by the closest positive sample to

the anchor with different ID but the same attribute, x
p2

ij =
argminx

p

ij
d(xa

ij , x
p
ij) for y

p
ij = yaij , l

p
ij 6= laij , and the

hard positive sample is turned into the farthest positive sam-

ple with the same ID (with the same attribute definitely),

x
p1

ij = argmaxx
p

ij
d(xa

ij , x
p
ij) for y

p
ij = yaij , l

p
ij = laij . The

intra-class triplet loss is shown in Eq. 5, and α2 is the intra-

class margin.

Lintra =
1

N

N∑

i=1

M∑

j=1

[d(xa
ij , x

p1

ij )− d(xa
ij , x

p2

ij ) + α2]+

y
p1

ij = yaij , y
p2

ij = yaij , l
p1

ij = laij , l
p2

ij 6= laij
(5)

To maintain the structures of inter-class and intra-class

feature embedding simultaneously, we incorporate the inter-

class and intra-class triplet loss. As shown in Fig. 2 (c),

HFE loss takes quintuplet samples {xa
ij , x

p1

ij , x
p2

ij , x
p3

ij , x
n1

ij }
as input and manage to maintain the multiple relative re-

lationships, d(xa
ij , x

p1

ij ) < d(xa
ij , x

p2

ij ) < d(xa
ij , x

p3

ij ) <

d(xa
ij , x

n
ij). The quintuplet is summarized in Table 1. With

the constraints on both inter-class and intra-class level, we

can construct a hierarchical feature embedding to incorpo-

rate attribute information as well as ID information in the

attribute feature space.
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3.2. Absolute Boundary Regularization

Triplet loss only restricts the difference between

d(xa
ij , x

p
ij) and d(xa

ij , x
n
ij) while ignores the absolute value.

The difference is dependent on the selected triplet in batch,

which is hard to ensure d(xa
ij , x

p
ij) < d(xa

ij , x
n
ij) in the

whole training dataset.

In our constraints, to guarantee attributes owing discrim-

inative intra-class feature embeddings, we pull away x
p2

ij

from xa
ij relative to x

p1

ij . Although margin α2 < α1, Lintra

may interact indirectly with inter-class boundary.

Considering these two factors, we force d(xa
ij , x

n
ij) to

be larger than an absolute distance α3, named as Absolute

Boundary Regularization (ABR).

LABR =
1

N

N∑

i=1

M∑

j=1

[α3 − d(xa
ij , x

n
ij)]+ (6)

We compose these three parts in Eq. 7 as HFE loss,

which aims at a hierarchical feature embedding, considering

not only inter-class features but also inner-class, not only

relative distance but also absolute to ensure the boundary

more discriminative.

LHFE = Linter + Lintra + LABR (7)

3.3. Dynamic Loss Weight

In the early stage of training, the feature space is not

good enough for quintuplet selection. Therefore, applying

a large weight for HFE loss at the beginning may amplify

the noise caused by the initial model. To solve this problem,

we set a small weight for HFE loss at the beginning, making

the original CE loss play a major role in optimization and

produce an elementary feature space. Then we enlarge the

weight afterwards to refine the original feature space to be

more fine-grained. So we introduce a dynamic loss weight,

modifying the composite function proposed by [51] to con-

trol the weight increasing from small to large nonlinearly.

In Eq. 8, T means the total training iterations, and iter

means the current iteration. w0 is a given value.

w = [
1

2
cos(

T − iter

T
π) +

1

2
]w0 (8)

In the training process, we increase the HFE loss weight

from zero to the given value, forcing the feature space to

transit from origin to the improved HFE-restricted space by

degrees.

4. Experiment

4.1. Datasets

Market 1501 attribute dataset [25] is an extension of

Market-1501 dataset [56] with person attribute annotations.

It contains 32,668 annotated bounding boxes of 1,501 iden-

tities and 12 different types of attribute annotations for each

identity. Attributes include 10 binary attribute (such as gen-

der, hair length and sleeve length) and 3 multi-class at-

tributes (i.e., age, upper clothing color and lower clothing

color). Images are captured from six cameras and each an-

notated identity is present in at least two cameras.

Duke attribute dataset [25] is an extension of

DukeMTMC-ReID dataset [57] with person attribute anno-

tations. It contains 36,411 bounding boxes of 1,404 identi-

ties and 10 different types of attribute annotations for each

identity. Attributes includes 8 binary attribute (such as gen-

der, length of upper-body clothing and wearing boots) and

2 multi-class color attributes for upper clothing and lower

clothing. Images are captured from eight cameras and each

annotated identity is present in at least two cameras.

CelebA [32] is a large-scale face attribute dataset with

annotations of 40 binary classifications (such as eyeglasses,

bangs and pointly nose). The dataset contains 202,599 im-

ages from 10,177 identities and covers large pose variations

and background clutter.

4.2. Evaluation

For the first two PAR datasets, we evaluate attribute

recognition performance on both class-based and instance-

based level. (1) Class-based: We calculate the classifica-

tion accuracy for each attribute class and report the mean

accuracy of all attributes [25]. (2) Instance-based: We

measure the accuracy, precision, recall and F1 score for all

test samples. For accuracy, precision and recall, we first

compute the scores of predicted attributes against the gound

truth for each test sample image and then get the average

scores over all test cases. The F1 score is computed based

on precision and recall [23]. The gallery images are used

as test set and we transform the multi-class attributes into

binary classes [25].

For face attribute dataset, we evaluate class-based mean

accuracy. [12]

4.3. Implementation Details

The common settings for PAR and FAR: We use Adam

[18] as an optimization algorithm. The weight decay is 5e-

4, batch size is 256. We random sample 64 identities with 4

images for each to form a batch. Horizontal flip is applied

during the training process. We set α1, α2, α3 and w0 with

0.3, 0.1, 5, and 1 respectively.

For PAR, we exploit ResNet 50 as the backbone. The

base learning rate is 2e-4 and decays exponentially after

epoch 50. We train 130 epochs in total.

For FAR, we exploit DeepID2 [43] as the backbone. To

accommodate with backbone, in each attribute branch, we

replace the convolutional layers with linear layers. The base

learning rate is 1e-2 and we use cosine annealing schedule
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Method gender hair L.slv L.low S.clth hat B.pack bag H.bag age C.up C.low avg.

CE 84.86 84.51 93.49 90.64 90.24 96.01 79.58 74.16 86.67 92.62 92.99 92.86 88.22

DeepMAR 85.24 85.48 92.79 91.37 89.37 95.93 84.56 71.57 86.53 94.56 93.78 92.92 88.68

APR 85.64 85.62 92.87 92.80 89.91 97.13 78.12 75.41 90.53 93.18 93.18 92.77 88.93

UF 88.94 78.26 93.53 92.11 84.79 97.06 85.46 67.28 88.4 84.76 87.5 87.21 86.28

JCM 89.7 82.5 93.7 93.3 89.2 97.2 85.2 86.9 86.2 87.4 92.4 93.1 89.73

HP Net 94.74 89.11 93.14 92.47 92.06 96.94 87.33 79.65 89.22 93.28 93.21 92.39 91.13

DIAC 93.32 90.43 93.24 92.82 95.63 96.98 86.18 77.56 88.84 92.88 94.55 92.84 91.27

HFE (Ours) 94.88 90.51 94.03 93.25 94.18 97.88 90.41 85.35 91.45 94.37 94.43 94.00 92.90

Table 2. Class-based evaluation on Market 1501 attribute dataset with the best results in bold and the second best results underlined. ‘L.slv’,

‘L.low’, ‘S.clth’, ‘B.pack’, ‘H.bag’, ‘C.up’, ‘C.low’ denote length of sleeve, length of lower-body clothing, style of clothing, backpack,

handbag, color of upper-body clothing and color of lower-body clothing, respectively.

Method gender L.up boots hat B.pack bag H.bag C.shoes C.up C.low avg.

CE 82.33 86.63 88.36 82.98 73.31 80.65 91.60 90.92 95.40 91.45 86.36

DeepMAR 82.26 87.14 88.49 82.15 75.84 82.54 91.53 91.38 95.18 92.52 86.90

APR 83.47 87.44 88.02 86.98 75.79 82.16 92.61 90.67 94.23 97.43 87.88

UF 88.94 93.6 80.13 82.97 87.02 91.60 89.60 83.65 93.94 91.84 88.33

JCM 87.4 88.3 89.6 83.3 89.0 87.9 92.4 87.1 92.9 92.1 89.00

HP Net 83.91 87.58 86.72 78.91 77.54 83.37 93.40 88.91 96.81 97.19 87.43

DIAC 85.87 89.74 89.63 90.79 82.90 87.88 93.47 90.21 95.92 97.11 90.35

HFE (Ours) 87.02 89.88 90.70 88.69 88.50 91.81 93.64 93.82 95.85 97.80 91.77

Table 3. Class-based evaluation on Duke attribute dataset with the best results in bold and the second best results underlined. ‘L.up’,

‘B.pack’, ‘H.bag’, ‘C.shoes’, ‘C.up’, ‘C.low’ denote length of sleeve, backpack, handbag, color of shoes, color of upper-body clothing and

color of lower-body clothing, respectively.

[33]. We train 300 epochs in total.

4.4. Experiments on Pedestrian Attribute Dataset

We list the results of state-of-the-art methods on these

two pedestrian attribute datasets, i.e., Market 1501 attribute

dataset and Duke attribute dataset. Table 2 and Table 3 show

class-based metrics and Table 4 indicate instance-based

evaluations. Among the compared methods, CE means ap-

plying CE loss for attribute classification with the same

backbone as ours. DeepMAR[23] applies weighted CE loss

function. APR[25], UF [42] and JCM[27] are three meth-

ods combining attibute and ID information. HP Net[31] and

DIAC [39] are attribute-focused methods that achieve com-

petitive performance recently.

With 8 Titan XP GPUs, our method costs 73.6 seconds

per epoch on average for Duke dataset while the CE loss

costs 61.2 seconds. Extra time consumption is only on train-

ing phase, and no additional computation is needed for in-

ferring.

With regard to attribute and ID joint methods, perfor-

mances are improved to some extent, but are still inferior

to CE for some attributes, such as ‘backpack’, ‘boots’ for

APR as well as ‘hair’, ‘color of shoes’ for UF and JCM. It

shows that combining attribute recognition and ReID in a

shared feature space directly is harmful for some attributes.

These attributes may not contribute to ReID, resulting in

fewer attention by combining ReID directly. However, our

method utilizes the ID tags in the semantics of attributes to

build up a better feature embedding for attributes, therefore

surpassing previous joint methods significantly. Compared

with attribute-focused methods, our method achieves better

results on highly identity-related attributes, such as ‘gen-

der’ and ‘age’, as well as variant and subtle attributes, such

as ‘bag’ and ‘boots’, with the extra ID information.

Overall, Our method achieves the best performance

on both datasets in five evaluation metrics, outperforming

the second best results by 1.63%, 2.98%, 1.77%, 2.34%,

2.13% on Market 1501 attribute dataset, and 1.42%, 2.66%,

1.52%, 0.96%, 2.23% on Duke attribute dataset in average

accuracy, accuracy, precision, recall and F1 respectively.

For a more intuitive analysis, we demonstrate the recog-

nition results for two IDs with three images each in Fig. 3.

HFE achieves better performance for most attributes, espe-

cially for accessories such as bag and backpack, which are

sensitive to angle and pose variations. When the attribute

object is clearly visible, all three methods achieve good per-

formance. However, when occlusion happens, HFE still

predicts correctly thanks to the ID constraint, while the

other two methods perform rather poorly.

4.5. Ablation Study

The advantage of HFE is its capability of learning a fine-

grained comprehensive attribute feature representation in-

volving identity information. To better illustrate this, we
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Method

Metric Market 1501 attribute dataset Duke attribute dataset

acc. prec. recall F1 acc. prec. recall F1

CE 69.21 82.55 78.43 80.44 69.00 81.39 77.24 79.26

DeepMAR 69.65 82.60 80.24 81.40 70.67 81.82 82.24 82.03

APR 70.25 83.52 78.96 81.18 70.10 82.74 79.02 80.83

HP Net 74.82 85.26 83.31 84.27 67.63 82.77 75.19 79.79

DIAC 75.03 85.64 83.18 84.39 74.02 84.85 83.44 83.14

HFE 78.01 87.41 85.65 86.52 76.68 86.37 84.40 85.37

Table 4. Instance-based evaluation on Market 1501 attribute dataset and Duke attribute dataset with the best results in bold and the second

best results underlined.

(a) Bag (b) Backpack

CE

APR

HFE

CE

APR

HFE

Figure 3. Visualization of recognition results. Correct predictions are bounded by green box and red box otherwise. (a) and (b) are

prediction results of two IDs on bag and backpack respectively, each compared by three methods.

Metric Loss avg. acc. prec. recall F1

None 88.82 70.03 83.15 79.27 81.12

Linter 90.83 71.83 85.35 80.63 82.93

Lintra 91.27 74.61 85.43 83.56 84.48

Linter + Lintra 92.44 77.08 86.73 84.88 85.99

Linter + Lintra +ABR 92.73 77.57 87.00 85.45 86.22

Linter + Lintra +ABR* 92.90 78.01 87.41 85.65 86.52

Linter + Lpairwise intra 92.30 76.49 86.21 84.53 85.36

Table 5. Ablation study on Market 1501 attribute dataset. * means

replacing the fixed loss weight with dynamic setting.

analyze the effectiveness of each component with quantita-

tive comparisons and qualitative visualization. The ablation

study is done on market 1501 attribute dataset.

Quantitative Evaluation. Table 5 quantifies the bene-

fits of our hierarchical feature embedding, absolute bound-

ary regularization (ABR), and dynamic loss weight respec-

tively. Based on the CE method, the performance improves

distinctly with only Linter. While for Lintra, the improve-

ment is more significant than Linter, indicating the ex-

tra ID clusters assist attribute classification indeed. Com-

bining Linter and Lintra achieves better performance than

each of them separately, demonstrating the complementar-

ity of Linter and Lintra. The combination achieves 3.62%,

7.05% and 4.87% compared with the CE loss method for

avg., acc. and F1 respectively. The improvements of ABR

and the dynamic loss weight are also demonstrated in ta-

ble 5. Finally, with combining all the components, HFE

achieves 4.08%, 7.98% and 5.40% improvements for avg.,

acc. and F1 respectively in total.

In order to verify the necessity of setting up intra-class

discriminative embedding by the triplet loss, we replace

Linter with a simple pairwise loss which only considers

IDs’ intra-class compactness but no separability with differ-

ent IDs. As a result, the triplet loss achieves sightly better

performance, which means the inter-class separability of ID

is helpful for a fined-grained feature embedding and main-

taining detailed attribute information.

Qualitative Evaluation. We proceed with qualitative

evaluation in both inter-class and intra-class level. Fig.

4 demonstrates the learnt feature embedding visualization

of attribute ‘gender’ for different loss function. The CE
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(a) 𝐿"# (b) 𝐿"# +𝐿 %&'()
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Figure 4. Feature embedding visualization of attribute ‘gender’.

Blue points represent ‘female’ and yellow points represent ‘male’.

Figures are in the same scale for fair comparison.

(a) 𝐿"# (b) 𝐿"# + 𝐿%&'()+𝐿%&')*+𝐿+,-

Figure 5. ID clusters are visualized for two methods. Four IDs are

shown. ‘+’ and ‘x’ markers with the same colors come from the

identical ID.

loss produces two attribute clusters but the boundary is still

in mess. Obviously, applying Linter makes the clusters

more compact and the margin between classes more dis-

tinct. Besides, adding the constraint of LABR, the effect

is more prominent. Furthermore, with adding Lintra, the

two classes are restricted by both inter-class and intra-class

constraints, leading to tighter clusters and the most discrim-

inating boundary.

Besides, we evaluate the ID clustering ability and effect.

As Fig. 5 shows, CE does not control the intra-class ar-

rangements so the IDs are disorganized, whereas HFE can

form fine-grained intra-class clusters by the constraint of

Lintra. We can see that from introducing the intra-class

constraint, each class gathers more closely and the margin

between them is much more distinct, so hierarchical feature

embedding does help to classify attributes.

Method acc.

FaceTracer 81.12

PANDA-l 85.00

LNets+ANet 87.30

Walk-and-Learn 88.00

Rudd et al. Moon 90.94

CLMLE 91.13

SSP + SSG 91.80

HSAI 91.81

HFE 92.17

Table 6. Class-based accuracy on CelebA.

4.6. Experiments on Face Attribute Dataset

To evaluate the generalization ability of our framework,

we conduct the experiment on a face attribute dataset

CelebA. Other state-of-the-art methods are FaceTracer [20],

PANDA-l [3], LNets+ANet [32], Walk-and-Learn [49],

Rudd et al. Moon [38], CLMLE [14], SSP + SSG [16]

and HSAI [12] respectively. Table 6 shows HFE achieves

92.1% accuracy and outperforms all other methods. With

the help of face ID information, HFE could also build up a

fine-grained feature embedding for face attributes, indicat-

ing our HFE framework can be easily generalized to similar

scenarios, providing a general framework for fine-grained

recognition.

5. Conclusion

In this paper, we present a novel end-to-end Hierarchical

Feature Embedding (HFE) framework to explore the combi-

nation of attribute and ID information in attribute semantics

for attribute recognition. In HFE, each attribute-class is dis-

criminative by the inter-class constraint. Moreover, with the

supplementary ID information, we maintain the ID clusters

in each attribute class by the intra-class constraint for a fine-

grained feature embedding. We apply ID information in at-

tribute semantics and refrain from combining attribute and

ID information in the same feature space directly. Further-

more, our mechanism introduce a coarse-to-fine process for

discriminative fine-grained feature learning. In addition, we

introduce an Absolute Boundary Regularization for com-

bining relative and absolute distance constraint. We also

design a dynamic loss weight to force the feature space tran-

siting from the origin to the improved HFE-restricted space

by degrees, facilitating the performance of our model and

the stability of training. Extensive ablation studies and ex-

perimental evaluations justify effectiveness of our proposed

method.
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