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Abstract

We propose a novel learnable representation for detail-

preserving shape deformation. The goal of our method is

to warp a source shape to match the general structure of

a target shape, while preserving the surface details of the

source. Our method extends a traditional cage-based de-

formation technique, where the source shape is enclosed by

a coarse control mesh termed cage, and translations pre-

scribed on the cage vertices are interpolated to any point

on the source mesh via special weight functions. The use of

this sparse cage scaffolding enables preserving surface de-

tails regardless of the shape’s intricacy and topology. Our

key contribution is a novel neural network architecture for

predicting deformations by controlling the cage. We incor-

porate a differentiable cage-based deformation module in

our architecture, and train our network end-to-end. Our

method can be trained with common collections of 3D mod-

els in an unsupervised fashion, without any cage-specific

annotations. We demonstrate the utility of our method for

synthesizing shape variations and deformation transfer.

1. Introduction

Deformation of 3D shapes is a ubiquitous task, arising

in many vision and graphics applications. For instance, de-

formation transfer [25] aims to infer a deformation from

a given pair of shapes and apply the same deformation to

a novel target shape. As another example, a small dataset

of shapes from a given category (e.g., chairs) can be aug-

mented by synthesizing variations, where each variation de-

forms a randomly chosen shape to the proportions and mor-

phology of another while preserving local detail [29, 32].

Deformation techniques usually need to simultaneously

optimize at least two competing objectives. The first is

alignment with the target, e.g., matching limb positions

while deforming a human shape to another human in a dif-

ferent pose. The second objective is adhering to quality

metrics, such as distortion minimization and preservation of

local geometric features, such as the human’s face. These

two objectives are contradictory, since a perfect alignment

of a deformed source shape to the target precludes preserv-

ing the original details of the source.
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Figure 1: Applications of our neural cage-based deformation method.

Top: Complex source chairs (brown) deformed (blue) to match target

chairs (green), while accurately preserving detail and style with non-

homogeneous changes that adapt different regions differently. No corre-

spondences are used at any stage. Bottom: A cage-based deformation net-

work trained on many posed humans (SMPL) can transfer various poses of

novel targets (SCAPE, skeleton, X-Bot, in green) to a very dissimilar robot

of which only a single neutral pose is available. A few matching landmarks

between the robot and a neutral SMPL human are required. Dense corre-

spondences between SMPL humans are used only during training.

Due to these conflicting objectives, optimization tech-

niques [17] require parameter tuning to balance the two

competing terms, and are heavily reliant on an inferred or

manually supplied correspondence between the source and

the target. These parameters vary based on the shape cate-

gory, representation, and the level of dissimilarity between

the source and the target.

To address these limitations, recent techniques train a

neural network to predict shape deformations. This is

achieved by predicting new positions for all vertices of a

template shape [26] or by implicitly representing the defor-

mation as a mapping of all points in 3D, which is then used

to map each vertex of a source shape [6, 29]. Examples of

the results of some of these methods can be seen in Fig 4,

which demonstrates the limitations of such approaches: the

predicted deformations corrupt features and exhibit distor-

tion, especially in areas with thin structures, fine details or
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gross discrepancies between source and target. These arti-

facts are due to the inherent limitations of neural networks

to capture, preserve, and generate high frequencies.

In this paper, we circumvent the above issues via a clas-

sic geometry processing technique called cage-based defor-

mation [14,15,18], abbreviated to CBD. In CBD, the source

shape is enclosed in a very coarse scaffold mesh called the

cage (Fig 2). The deformation of the cage is transferred to

the enclosed shape by interpolating the translations of the

cage vertices. Fittingly, the interpolation schemes in these

classic works are carefully designed to preserve details and

minimize distortion.

Our main technical contribution is a novel neural archi-

tecture in which, given a source mesh, learnable parameters

are optimized to predict both the positioning of the cage

around the source shape, as well as the deformation of that

cage, which drives the deformation of the enclosed shape in

order to match a target shape. The source shape is deformed

by deterministically interpolating the new positions of its

surface points from those of the cage vertices, via a novel,

differentiable, cage-based deformation layer. The pipeline

is trained end-to-end on a collection of randomly chosen

pairs of shapes from a training set.

The first key advantage of our method is that cages pro-

vide a much more natural space for predicting deforma-

tions: CBD is feature-preserving by construction, the de-

grees of freedom in deformation only depends on the num-

ber of vertices on the coarse cage. In short, our network

makes a prediction in a low-dimensional space of highly

regular deformations.

The second key advantage is that our method is not tied

to a single source shape, nor to a single mesh topology. As

the many examples in this paper demonstrate, the trained

network can predict and deform cages for similar shapes not

observed during training. The target shape can be crude and

noisy, e.g., a shape acquired with cheap scanning hardware

or reconstructed from an image. Furthermore, dense cor-

respondences between the source and target shapes are not

required in general, though they can help when the training

set has very varied articulations. Thus the method can be

trained on large datasets that are not co-registered and do

not have consistently labeled landmarks.

We show the utility of our method in two main appli-

cations. We generate shape variations by deforming a 3D

model using other shapes as well as images as targets. We

also use our method to pose a human according to a tar-

get humanoid character, and, given a few sparse correspon-

dences, perform deformation transfer and pose an arbitrary

novel humanoid. See Figures 1, 7, 9 and 4 for examples.

2. Related work

We now review prior work on learning deformations, tra-

ditional methods for shape deformation, and applications.

Learning 3D deformations. Many recent works in learn-

ing 3D geometry have focused on generative tasks, such as

synthesis [8, 20] and editing [36] of unstructured geometric

data. These tasks are especially challenging if one desires

high-fidelity content with intricate details. A common ap-

proach to producing intricate shapes is to deform an exist-

ing generic [28] or category-specific [7] template. Early ap-

proaches represented deformations as a single vector of ver-

tex positions of a template [26], which limited their output

to shapes constructable by deforming the specific template,

and also made the architecture sensitive to the template tes-

sellation. An alternative is to predict a freeform deforma-

tion field over 3D voxels [9, 13, 34]; however, this makes

the deformation’s resolution dependent on the voxel resolu-

tion, and thus has limited capability to adapt to a specific

shape categories and source shapes.

Alternatively, some architectures learn to map a single

point at a time, conditioned on some global descriptor of the

target shape [7]. These architectures can also work for novel

sources by conditioning the deformation field on features of

both source and target [6, 29]. Unfortunately, due to net-

work capacity limits, these techniques struggle to represent

intricate details and tend to blur high-frequency features.

Traditional methods for mesh deformation. Research on

detail-preserving deformations in the geometry processing

community spans several decades and has contributed var-

ious formulations and optimization techniques [24]. These

methods usually rely on a sparse set of control points whose

transformations are interpolated to all remaining points of

the shape; the challenge lies in defining this interpolation

in a way that preserves details. This can be achieved by

solving an optimization problem to reduce the distortion of

the deformation such as [23]. However, defining the output

deformation as the solution to an intricate non-convex op-

timization problem significantly limits the ability of a net-

work to learn this deformation space.

Instead, we use cage-based deformations as our repre-

sentation, where the source shape is enclosed by a coarse

cage mesh, and all surface points are written as linear com-

binations of the cage vertices, i.e., generalized barycentric

coordinates. Many designs have been proposed for these

coordinate functions such that shape structure and details

are preserved under interpolations [2, 14, 15, 18, 21, 27, 31].

Shape synthesis and deformation transfer. Automatically

aligning a source shape to a target shape while preserving

details is a common task, used to synthesize variations of

shapes for amplification of stock datasets [11] or for trans-

ferring a given deformation to a new model, targeting ani-

mation synthesis [25]. To infer the deformation, correspon-

dence between the two shapes needs to be accounted for, ei-

ther by explicitly inferring corresponding points [12,16,17],

or by implicitly conditioning the deformation fields on the

latent code of the target shape [6, 9, 29]. Our work builds
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Figure 2: Overview. A source Ss and a target St are encoded by the same

PointNet encoder EPN into latent codes fs and ft, resp. An AtlasNet-

style decoder DAN
c decodes fs to a source cage Cs in the cage module Nc.

Another decoder DAN
d

creates the offset for Cs in the deformation module

Nd from the concatenation of fs and ft, yielding a deformed cage Cs→t.

Given a source cage and shape, our novel MVC layer computes the mean

value coordinates φCs (Ss), which are used to produce a deformed source

shape Ss→t from the cage deformation Cs→t.

upon the latter learning-based framework, but uses cages to

parameterize the space of deformations.

Gao et al. [4] automate the deformation transfer for un-

paired shapes using cycled generative adversarial networks,

thus the trained method cannot be easily adapted for new

shape targets. Some prior techniques focus on transferring

and interpolating attributes between various latent spaces

trained for shape generation [5, 33]. These generative mod-

els are not capable of fully preserving local geometric fea-

tures, especially if the source is not pre-segmented into sim-

pler primitives (as assumed by [5]). In general, such meth-

ods are only expected to perform well if the input shapes

are relatively similar to those observed at training time.

3. Method

We now detail our approach for learning cage-based de-

formations (CBD). We start with a brief overview of the

principles of CBD, and then explain how we train a network

to control these deformations from data. The implementa-

tion is available at https://github.com/yifita/deep cage.

3.1. Cage­based deformations

CBD are a type of freeform space deformations. Instead

of defining a deformation solely on the surface S , space

deformations warp the entire ambient space in which the

shape S is embedded. In particular, a CBD controls this

warping via a coarse triangle mesh, called a cage C, which

typically encloses S . Given the cage, any point in ambi-

ent space p ∈ R
3 is encoded via generalized barycentric

coordinates, as a weighted average of the cage vertices vj :

p =
∑

φC
j (p)vj , where the weight functions

{

φC
j

}

de-

pend on the relative position of p w.r.t. to the cage vertices

{vj}. The deformation of any point in ambient space is ob-

tained by simply offsetting the cage vertices and interpolat-

ing their new positions v
′
j with the pre-computed weights,

i.e.

p
′ =

∑

0≤j<|VC|

φC
j (p)v

′
j . (1)

Previous works on CBD constructed various formulae to at-

tain weight functions
{

φC
j

}

with specific properties, such

as interpolation, linear precision, smoothness and distortion

minimization. We choose mean value coordinates (MVC)

[15] for their feature preservation and interpolation prop-

erties, as well as simplicity and differentiability w.r.t. the

source and deformed cages’ coordinates.

3.2. Learning cage­based deformation

As our goal is an end-to-end pipeline for deforming

shapes, we train the network to predict both the source cage

and the target cage, in order to optimize the quality of the

resulting deformation. Given a source shape Ss and a target

shape St, we design a deep neural network that predicts a

cage deformation that warps Ss to St while preserving the

details of Ss. Our network is composed of two branches,

as illustrated in Fig 2: a cage-prediction model Nc, which

predicts the initial cage Cs around Ss, and a deformation-

prediction model Nd, which predicts an offset from Cs,

yielding the deformed cage Cs→t, i.e.

Cs = Nc (Ss) + C0, Cs→t = Nd (St,Ss) + Cs (2)

Since both branches are differentiable, they can be both

learned jointly in an end-to-end manner.

The branches Nc and Nd only predict the cage and do

not directly rely on the detailed geometric features of the

input shapes. Hence, our network does not require high-

resolution input nor involved tuning for the network archi-

tectures. In fact, both Nc and Nd follow a very streamlined

design: their encoders and decoders are simplified versions

of the ones used in AtlasNet [8]. We remove the batch

normalization and reduce the channel sizes, and instead of

feeding 2D surface patches to the decoders, we feed a tem-

plate cage C0 and the predicted initial cage Cs to the the cage

predictor and deformer respectively, and let them predict the

offsets. By default, C0 is a 42-vertex sphere.

3.3. Loss terms

Our loss incorporates three main terms. The first term

optimizes the source cage to encourage positive mean value

coordinates. The two latter terms optimize the deformation,

the first by measuring alignment to target and the second by

measuring shape preservation. Together, these terms com-

prise our basic loss function:

L = αMVCLMVC + Lalign + αshapeLshape. (3)

We use αMVC = 1, αshape = 0.1 in all experiments.

To optimize the mean value coordinates of the source

cage, we penalize negative weight values, which emerge

when the source cage is highly concave, self-overlapping,

or when some of the shape’s points lie outside the cage:
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Target
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Figure 3: Synthesizing variations of source shapes (brown), by deforming

them to match targets (green).

LMVC =
1

|Cs||Ss|

|Ss|
∑

i=1

|Cs|
∑

j=1

|min (φji, 0)|
2
, (4)

where αMVC is the loss weight, and φji denotes the coordi-

nates of pi ∈ Ss w.r.t. vj ∈ Cs.

Lalign is measured either via chamfer distance in the un-

supervised case sans correspondences, or as the L2 distance

when supervised with correspondences.

The above two losses drive the deformation towards

alignment with the target, but this may come at the price

of preferring alignment over feature preservation. There-

fore, we add terms that encourage shape preservation.

Namely, we draw inspiration from Laplacian regulariz-

ers [7,19,29], but propose to use a point-to-surface distance

as an orientation-invariant, second-order geometric feature.

Specifically, for each point p on the source shape, we fit a

PCA plane to a local neighborhood B (we use the one-ring

of the mesh), and then compute the point-to-plane distance

as d = ‖nT (p− pB) ‖, where n denotes the normal of the

PCA plane and pB = 1
|B|

∑

q∈B(p) q is the centroid of the

local neighborhood around p. We then penalize change in

the distance di for each vertex on the surface:

Lp2f =
1

|Ss|

|Ss|
∑

i=1

‖di − d′i‖
2 (5)

where d′i is the distance post deformation. In contrast to

the uniform Laplacian, which considers the distance to the

centroid and hence yields a non-zero value whenever the

local neighborhood is not evenly distributed, the proposed

point-to-surface distance better describes the local geomet-

ric features.

For man-made shapes, we use two additional losses that

leverage priors of this shape class. First, normal consistency

is important for, e.g., preserving the planarity of elements

like tabletops. To encourage this, we penalize the angular

difference of PCA normals before and after deformation:

Lnormal =
1

|Ss|

|Ss|
∑

i

(1− n
T
i n

′
i), (6)

where n
′ denotes the PCA-normal after the deformation.

As demonstrated later, this normal penalty considerably

improves the perceptual quality of the deformation. Sec-

ond, similarly to Wang et al. [29], we also use the sym-

metry loss Lsymm, measured as the chamfer distance be-

tween the shape and its reflection around the x = 0 plane.

We apply this loss to the deformed shape Ss→t as well as

the cage Cs. Thus, our final shape preservation loss is:

Lshape = Lp2f +Lnormal +Lsymm for man-made shapes and

Lshape=Lp2f for characters.

4. Applications

We now showcase two applications of the trained cage-

based deformation network.

4.1. Stock amplification via deformation

Creating high-quality 3D assets requires significant time,

technical expertise, and artistic talent. Once the asset is

created, the artist commonly deforms the model to create

several variations of it. Inspired by prior techniques on

automatic stock amplification [29], we use our method to

learn a meaningful deformation space over a collection of

shapes within the same category, and then use random pairs

of source and target shapes to synthesize plausible varia-

tions of artist-generated assets.

Training details. We train our model on the chair, car and

table categories from ShapeNet [3] using the same split-

ting into training and testing sets as in Grouiex et al. [6].

We then randomly sample 100 pairs from the test set. Each

shape is normalized to fit in a unit bounding box and is rep-

resented by 1024 points.

Variation synthesis examples. Fig 3 shows variations gen-

erated from various source-target pairs, exhibiting the regu-

larizing power of the cages: even though our training omits

all semantic supervision such as part labels, these variations

are plausible and do not exhibit feature distortions; fine de-

tails, such as chair slats, are preserved.

Comparisons. We compared our target-driven deformation

method to other methods that strive to achieve the same

goal. Results are shown in Fig 4. While in many cases alter-

native techniques do align the deformed shape the target, in

all cases they introduce significant artifacts in the deformed

meshes.

We first compare to a non-learning-based approach: non-

rigid ICP [10], a classic registration technique that alter-

nates between correspondence estimation and optimiza-

tion of a non-rigid deformation to best align corresponding

points. We show results with the optimal registration pa-

rameters we found to achieve detail preservation. Clearly,
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Source Target Ours non-rigid ICP [10] CC [6] 3DN [29] ALIGNet [9]

Figure 4: Comparison of our method with other non-homogeneous deformation methods. Our method achieves superior detail preservation of the source

shape in comparison to optimization-based [10] and learning-based [6, 9, 29] techniques, while still aligning the output to the target.
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Figure 5: Quantitative evaluation of our method vs alternative methods.

Each point represents a method, embedded according to its average align-

ment error (Chamfer Distance) and distortion (∆CotLaplacian). Points

near the bottom-left corners are better.

ICP is sensitive to wrong correspondences that cause con-

vergence to artifact-ridden local minima. We also compare

to learning-based methods that directly predict per-point

transformations and leverage cycle-consistency (CC) [6] or

feature-preserving regularization (3DN) [29] to learn low-

distortion shape deformations. Both methods blur and omit

features, while also creating artifacts by stretching small

parts. We also compare to ALIGNet [9], a method that

predicts a freeform deformation over a voxel grid, yield-

ing a volumetric deformation of the ambient space simi-

larly to our technique. Contrary to our method, the coarse

voxel grid cannot capture the fine deformation of the sur-

face needed to avoid large artifacts. Our training setup is

identical to CC, and we retrained 3DN and ALIGNet with

the same setup using parameters suggested by the authors.

In Fig 6 we compare our results to the simplest of defor-

mation methods – anisotropic scaling, achieved by simply

Source Target Ours
Anisotropic

Scaling

Figure 6: Comparison of our method with

anisotropic scaling. Our method better

matches corresponding semantic parts.

rescaling the source

bounding box to

match that of the

target. While local

structure is well pre-

served, this method

cannot account for

the different pro-

portion changes

required for different

regions, highlighting

the necessary intri-

cacy of the optimal

deformation in this case.

Quantitative comparisons. in Fig 5, we quantitatively

evaluate the various methods using two metrics: distance

to the target shape, and detail preservation, measured via
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Figure 7: We use our method to deform a 3D shape to match a real 2D

image. We first use AtlasNet [8] to reconstruct a 3D proxy target. Despite

the poor quality of the proxy, it still serves as a valid target for our network

to generate a matching output preserving the fine details of the source.

chamfer distance (computed over a dense set of 5000 uni-

formly sampled points) and difference in cotangent Lapla-

cians, respectively. Note that these metrics do not favor any

method, since all optimize for a variant of chamfer distance,

and none of the methods optimize for the difference in the

cotangent Laplacian. Each 2D point in the figure represents

one method, with the point’s coordinates prescribed with re-

spect to the two metrics, the origin being ideal. This figure

confirms our qualitative observations: our method is more

effective at shape preservation than most alternatives while

still capturing the gross structure of the target.

Using images as targets. Often, a 3D target is not read-

ily available. Images are more abundant and much easier to

acquire, and thus pose an appealing alternative. We use a

learning-based single-view reconstruction technique to cre-

ate a proxy target to use with our method to find appropriate

deformation parameters. We use publicly available product

images of real objects and execute AtlasNet’s SVR recon-

struction [8] to generate a coarse 3D proxy as a target. Fig 7

shows that even though the proxy has coarse geometry and

many artifacts, these issues do not affect the deformation,

and the result is still a valid variation of the source.

4.2. Deformation transfer

Given a novel 3D model, it is much more time-efficient

to automatically deform it to mimic an existing example de-

formation, than having an artist deform the novel model

directly. This automatic task is called deformation trans-

fer. The example deformation is given via a model in a rest

pose Ss, and a model in the deformed pose St. The novel

3D model is given in a corresponding rest post Ss′ . The

goal is to deform the novel model to a position St′ so that

the deformation Ss′ → St′ is analogous to Ss → St. This

task can be quite challenging, as the example deformation

St may have very different geometry, or even come from

an ad-hoc scan, and thus dense correspondences between

Ss and St are unavailable, preventing the use of traditional

Source Target 1 Deformed 1 Target 2 Deformed 2 Target 3 Deformed 3

Figure 8: The deformation model, trained to deform a fixed source (left) to

various articulations.

mesh optimization techniques such as [25]. Furthermore, as

the novel character Ss′ may be significantly different from

all models observed during training, it is impossible to a-

priori learn a deformation subspace for Ss′ unless sufficient

pose variations of Ss′ is available, as in Gao et al. [4].

We demonstrate that our learning-based approach can

be used to perform deformation transfer on arbitrary hu-

manoid models. The network infers the deformation from

the source Ss to the target St, without any given correspon-

dences, and then an optimization-based method transfers

this deformation to a novel shape Ss′ to obtain the desired

deformation St′ . Hence, given any arbitrarily-complex

novel character, all our method requires are sparse corre-

spondences supplying the necessary alignment between the

two rest poses, Ss and Ss′ . We now overview the details of

our learned cage-based human deformation model and the

optimization technique used to transfer the deformations.

Learning cage-based human deformation. To train our

human-specific deformation model, we use the dataset [7]

generated using the SMPL model [1] of 230K models of

various humans in various poses. Since our application

assumes that the exemplar deformation is produced from

a single canonical character, we picked one human in the

dataset to serve as Ss. Subsequently, since we only have

one static source shape Ss, we use a static cage Cs man-

ually created with 77 vertices, and hence do not need the

cage prediction network Nc and only use the deformation

network Nd. We train Nd to deform the static Ss using the

static Cs into exemplars St from the dataset (with targets

not necessarily stemming from the same humanoid model

as Ss). We then train with the loss in (3), but with one mod-

ification: in similar fashion to prior work, during training

we use ground truth correspondences and hence replace the

chamfer distance with the L2 distance w.r.t the known cor-

respondences. Note that these correspondences are not used

at inference time.

Lastly, during training we also optimize the static source

cage Cc by treating its vertices as degrees of freedom and

directly optimizing them to reduce the loss so as to attain a

more optimal, but still static cage after training.

Fig 8 shows examples of human-specific cage deforma-

tions predicted for test targets (not observed while training).

Note how our model successfully matches poses even with-

out knowing correspondences at inference time, while pre-

serving fine geometric details such as faces and fingers.
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Template Source Test Targets

Novel Source

Figure 9: Deformation transfer. We first learn the cage deformation space

for a template source shape (top left) with known pose and body shape

variations. Then, we annotate predefined landmarks on new characters

in neutral poses (left column, rows 2-4). At test time, given novel target

poses (top row, green) without known correspondences to the template, we

transfer their poses to the other characters (blue).

Transferring cage deformations. After training, we have

at our disposal the deformation network Nd and the static

Cs,Ss. We assume to be given a novel character Ss′ with 83

landmark correspondences aligning it to Ss, and an example

target pose St. Our goal is to deform Ss′ into a new pose

St′ that is analogous to the deformation of Ss into St.

We first generate a new cage Cs′ for the character Ss′ .

Instead of a network-based prediction, we simply optimize

the static cage Cs, trying to match mean value coordinates

between corresponding points of Ss,Ss′ :

Lconsistency =
∑

j

∑

(p,q)

‖φCs

j (p)− φ
C′

s

j (q)‖2 (7)

where (p, q) are corresponding landmarks. We also regu-

larize with respect to the cotangent Laplacian of the cage:

LClap =
∑

0≤j<|Cs|

(

‖Lcotvj‖ − ‖Lcotv
′
j‖
)2

. (8)

Then, we compute Cs′ by minimizing L = Lconsistency +
0.05LClap, with Cs used as initialization, solved via the

Adam optimizer with step size 5 · 10−4 and up to 104 it-

erations (or until Lconsistency < 10−5).

Finally, given the cage Cs′ for the novel character, we

compute the deformed cage Cs′→t′ , using our trained de-

formation network, by applying the predicted offset to the

optimized cage: Cs′→t′ = Nd (St,Ss′) + Cs′ . The final de-

formed shape St′ is computed by deforming Ss′ using the

cage Cs′→t′ via (1). This procedure is illustrated in Fig 10,

while more examples can be found in the supplemental ma-

terial. Due to the agnostic nature of cage-deformations to

the underlying shape, we are able to seamlessly combine

machine learning and traditional geometry processing to

generalize to never-observed characters. To demonstrate

the expressiveness of our method, we show examples on

extremely dissimilar target characters in Figures 1 and 9.

template 
source

novel 
source

transferred deformation: 
cage and shape

geometric details

Figure 10: In deformation transfer, the manually created cage for a tem-

plate shape (leftmost) is fitted to a novel source shape (second left) by opti-

mizing MVC of a sparse set of aligned landmarks. The learnt deformation

can be directly applied to the fitted source cage (columns 3-4), preserving

rich geometric features (right).

Example 1 Example 2

Source Target Opt. Ours Source Target Opt. Ours

Figure 11: Our approach produces more plausible inter-shape correspon-

dences and deformations than per-pair optimization.

5. Evaluation

In this section, we study the effects and necessity of the

most relevant components of our methods. To measure the

matching error we use chamfer distance computed on 5000

uniformly resampled points, and to measure the feature dis-

tortion we use the distance between cotangent Laplacians.

All models are normalized to a unit bounding box.

Benefit of learning CBD from data. Instead of learning

the CBD from a collection of data, one could minimize

(3) for a single pair of shapes, which is essentially a non-

rigid Iterative-Closest-Point (ICP) parameterised by cage

vertices. As shown in Fig 11, when correct correspondence

estimation becomes challenging, the optimization alterna-

tive produces non-plausible outputs. In contrast, the learnt

approach utilizes domain knowledge embedded in the net-

work’s parameters [22, 35], amounting to better reasoning

about the plausibility of inter-shape correspondences and

deformations. The learned domain knowledge can gener-

alize to new data. As demonstrated in Sec 4.2, even though

our network is trained with ground-truth correspondences,

it is able to automatically associate the source shape to a

new target without correspondences during inference, while

optimization methods require accurate correspondence esti-

mation for every new target.

Effect of the negative MVC penalty, LMVC. in Fig 12 we

show the effect of penalizing negative mean value coordi-

nates. We train our architecture on 300 vase shapes from

COSEG [30], while varying the weight αMVC ∈ {0, 1, 10}.

Increasing this term brings the cages closer to the shapes’

convex hulls, leading to more conservative deformations.

Quantitative results in Table 1a also suggest that increasing

the weight αMVC favors shape preservation over alignment

accuracy. Completely eliminating this term hurts conver-

gence, and increases the alignment error further.
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αMVC = 10
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Deformed 
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Deformed 
Cs Cs→t Ss→t

Figure 12: Effect of LMVC. Higher regularization yields more conservative

deformations.

Ablation CD ∆CotLaplacian

αMVC = 0 1.64 9.04

αMVC = 1 1.44 8.74

αMVC = 10 2.65 8.27

(a) Effect of the MVC loss, LMVC

Lshape =Llap+Lsymm 5.16 4.75

Lshape =Lp2f+Lsymm 4.86 4.70

Lshape =Lnormal+Lsymm 5.45 4.33

(b) Effect of the shape preservation losses, Lshape

Nc=Identity 3.27 5.65

Nc=Source-invariant 3.11 12.05

Nc=Ours 3.06 10.45

(c) Design choices for cage prediction network, Nc

Table 1: We evaluate effect of different losses (LMVC,Lshape) and compo-

nents (Nc) of our pipeline with respect to chamfer distance (CD, scaled by

102) and cotangent Laplacian (scaled by 103).

Effect of the shape preservation losses, Lshape. In Fig 13

we compare deformations produced with the full loss

(Lshape = Lp2f + Lnormal + Lsymm) to ones produced with

only one of the first two loss terms. While we did not use

the Laplacian regularizer Llap as in [29], it seems to have

an effect equivalent to Lp2f. As expected, Lnormal prevents

bending of rigid shapes. We quantitatively evaluate these

regularizers in Table 1b, which suggests that Lp2f is slightly

better as the deformed shape is more aligned with the tar-

get than Llap, even though shape preservation has not been

sacrificed. Lnormal reduces distortion even further.

Design choices for the cage prediction network, Nc. The

cage prediction network Nc morphs the template cage mesh

(a 42-vertex sphere) into the initial cage enveloping the

source shape. In Fig 14 and Table 1c we compare to two al-

ternative design choices for this module: an Identity module

retains the template cage, and a source-invariant module in

which we optimize the template cage’s vertex coordinates

with respect to all targets in the dataset, but then use the

same fixed cage for testing. Learning source-specific cages

produces deformations closest to the target with minimum

detail sacrifice. As expected, fixing the template cage pro-

duces more rigid deformations, yielding lower distortion at

the price of less-aligned results.

6. Conclusion

We show that classical cage-based deformation provides

a low-dimensional, detail-preserving deformation space di-

rectly usable in a deep-learning setting. We implement cage

Source Ss Target St Llap Lp2f Lnormal

Figure 13: The effect of different shape preservation losses, note that all

results include Lsymm.

Source
Cage

Deformed 
Cage

Deformed 
Cs Cs→t Ss→t

Source
Cage

Deformed 
Cage

Deformed 
Cs Cs→t Ss→t

Nc = IdentityNc = Ours

Nc = Ours Nc = Source-invariant

Source Ss TargetSt

Figure 14: The effect of source-cage prediction. We compare our per-

instance prediction of Nc with (1) a static spherical cage (top right) and

(2) a single optimized cage prediction over the entire training set (bottom

right). Our approach achieves better alignment with the target shape.

weight computation and cage-based deformation as differ-

entiable network layers, which could be used in other ar-

chitectures. Our method succeeds in generating feature-

preserving deformations for synthesizing shape variations

and deformation transfer, and better preserves salient geo-

metric features than competing methods.

A limitation of our approach is that we focus on the de-

formation quality produced by the predicted cages: hence,

the cage geometry itself is not designed to be compara-

ble to professionally-created cages for 3D artists. Second,

our losses are not quite sufficient to always ensure rectilin-

ear/planar/parallel structures in man-made shapes are per-

fectly preserved (Fig 13). Third, for certain types of de-

formations other parameterizations might be a more natu-

ral choice, such as skeleton-based deformation for articu-

lations, nonetheless the idea presented in this paper can be

adopted for similarly.

Our method provides an extensible and versatile frame-

work for data-driven generation of high detail 3D geometry.

In the future we would like to incorporate alternative cage

weight computation layers, such as Green Coordinates [18].

Unlike MVC, this technique is not affine-invariant, and thus

would introduce less affine distortion for large articulations

(see the second row fourth column in Fig 9). We also plan

to use our method in other applications such as registration,

part assembly, and generating animations.
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