
Dreaming to Distill: Data-free Knowledge Transfer via DeepInversion

Hongxu Yin1,2:∗ , Pavlo Molchanov1˚, Jose M. Alvarez1, Zhizhong Li1,3:,

Arun Mallya1, Derek Hoiem3, Niraj K. Jha2, and Jan Kautz1

1NVIDIA, 2Princeton University, 3University of Illinois at Urbana-Champaign

{hongxuy, jha}@princeton.edu, {zli115, dhoiem}@illinois.edu,

{pmolchanov, josea, amallya, jkautz}@nvidia.com

Teacher
logits

Pretrained	model	(fixed),	e.g.	ResNet50

Student
logits

LossBack
propagation

Input	(updated)

Feature
maps

B
at
ch
N
or
m

R
eL
U

Feature	distribution
regularization

...

C
on
v

Teacher		logits

1-JS

Jensen-
Shannon	(JS)
divergence

Cross
entropy

Target	class

Noise	 	Image

	Inverted	from	a	pretrained	ImageNet	ResNet-50	classifier
(more	examples	in	Fig.	5	and	Fig.	6)

Pretrained	model	(fixed)

Kullback–Leibler
divergence

Adaptive	DeepInversion

DeepInversion

Loss

Synthesized	Images

Student	model	(fixed)

Student	model
(updated) Back

propagation

Knowledge	Distillation

Figure 1: We introduce DeepInversion, a method that optimizes random noise into high-fidelity class-conditional images given just a

pretrained CNN (teacher), in Sec. 3.2. Further, we introduce Adaptive DeepInversion (Sec. 3.3), which utilizes both the teacher and

application-dependent student network to improve image diversity. Using the synthesized images, we enable data-free pruning (Sec. 4.3),

introduce and address data-free knowledge transfer (Sec. 4.4), and improve upon data-free continual learning (Sec. 4.5).

Abstract

We introduce DeepInversion, a new method for synthesiz-

ing images from the image distribution used to train a deep

neural network. We “invert” a trained network (teacher) to

synthesize class-conditional input images starting from ran-

dom noise, without using any additional information on the

training dataset. Keeping the teacher fixed, our method opti-

mizes the input while regularizing the distribution of interme-

diate feature maps using information stored in the batch nor-

malization layers of the teacher. Further, we improve the di-

versity of synthesized images using Adaptive DeepInversion,

which maximizes the Jensen-Shannon divergence between

the teacher and student network logits. The resulting syn-

thesized images from networks trained on the CIFAR-10 and

ImageNet datasets demonstrate high fidelity and degree of re-

alism, and help enable a new breed of data-free applications

– ones that do not require any real images or labeled data.

We demonstrate the applicability of our proposed method to

three tasks of immense practical importance – (i) data-free

network pruning, (ii) data-free knowledge transfer, and (iii)

data-free continual learning. Code is available at https:

//github.com/NVlabs/DeepInversion.

∗Equal contribution. : Work done during an internship at NVIDIA.

Work supported in part by ONR MURI N00014-16-1-2007.

1. Introduction

The ability to transfer learned knowledge from a trained

neural network to a new one with properties desirable for the

task at hand has many appealing applications. For example,

one might want to use a more resource-efficient architecture

for deployment on edge inference devices [44, 66, 76], or to

adapt the network to the inference hardware [9, 63, 71], or for

continually learning to classify new image classes [29, 34],

etc. Most current solutions for such knowledge transfer

tasks are based on the concept of knowledge distillation [20],

wherein the new network (student) is trained to match its

outputs to that of a previously trained network (teacher).

However, all such methods have a significant constraint –

they assume that either the previously used training dataset is

available [8, 29, 45, 57], or some real images representative

of the prior training dataset distribution are available [25, 26,

34, 56]. Even methods not based on distillation [27, 50, 74]

assume that some additional statistics about prior training is

made available by the pretrained model provider.

The requirement for prior training information can be

very restrictive in practice. For example, suppose a very deep

network such as ResNet-152 [18] was trained on datasets

with millions [10] or even billions of images [36], and we

wish to distill its knowledge to a lower-latency model such

as ResNet-18. In this case, we would need access to these

datasets, which are not only large but difficult to store, trans-

8715

fer, and manage. Further, another emerging concern is that

of data privacy. While entities might want to share their

trained models, sharing the training data might not be desir-

able due to user privacy, security, proprietary concerns, or

competitive disadvantage.

In the absence of prior data or metadata, an interesting

question arises – can we somehow recover training data from

the already trained model and use it for knowledge transfer?

A few methods have attempted to visualize what a trained

deep network expects to see in an image [3, 37, 46, 49]. The

most popular and simple-to-use method is DeepDream [46].

It synthesizes or transforms an input image to yield high

output responses for chosen classes in the output layer of

a given classification model. This method optimizes the

input (random noise or a natural image), possibly with some

regularizers, while keeping the selected output activations

fixed, but leaves intermediate representations constraint-free.

The resulting “dreamed” images lack natural image statistics

and can be quite easily identified as unnatural. These images

are also not very useful for the purposes of transferring

knowledge, as our extensive experiments in Section 4 show.

In this work, we make an important observation about

deep networks that are widely used in practice – they all

implicitly encode very rich information about prior training

data. Almost all high-performing convolutional neural net-

works (CNNs), such as ResNets [18], DenseNets [22], or

their variants, use the batch normalization layer [24]. These

layers store running means and variances of the activations

at multiple layers. In essence, they store the history of pre-

viously seen data, at multiple levels of representation. By

assuming that these intermediate activations follow a Gaus-

sian distribution with mean and variance equal to the running

statistics, we show that we can obtain “dreamed” images that

are realistic and much closer to the distribution of the training

dataset as compared to prior work in this area.

Our approach, visualized in Fig. 1, called DeepInversion,

introduces a regularization term for intermediate layer acti-

vations of dreamed images based on just the two layer-wise

statistics: mean and variance, which are directly available

with trained models. As a result, we do not require any train-

ing data or metadata to perform training image synthesis.

Our method is able to generate images with high fidelity and

realism at a high resolution, as can be seen in the middle

section of Fig. 1, and more samples in Fig. 5 and Fig. 6.

We also introduce an application-specific extension of

DeepInversion, called Adaptive DeepInversion, which can

enhance the diversity of the generated images. More specif-

ically, it exploits disagreements between the pretrained

teacher and the in-training student network to expand the

coverage of the training set by the synthesized images. It

does so by maximizing the Jensen-Shannon divergence be-

tween the responses of the two networks.

In order to show that our dataset synthesis method is use-

ful in practice, we demonstrate its effectiveness on three

different use cases. First, we show that the generated images

support knowledge transfer between two networks using dis-

tillation, even with different architectures, with a minimal

accuracy loss on the simple CIFAR-10 as well as the large

and complex ImageNet dataset. Second, we show that we

can prune the teacher network using the synthesized images

to obtain a smaller student on the ImageNet dataset. Finally,

we apply DeepInversion to continual learning that enables

the addition of new classes to a pretrained CNN without the

need for any original data. Using our DeepInversion tech-

nique, we empower a new class of “data-free” applications

of immense practical importance, which need neither any

natural image nor labeled data.

Our main contributions are as follows:

• We introduce DeepInversion, a new method for synthe-

sizing class-conditional images from a CNN trained for

image classification (Sec. 3.2). Further, we improve syn-

thesis diversity by exploiting student-teacher disagree-

ments via Adaptive DeepInversion (Sec. 3.3).

• We enable data-free and hardware-aware pruning that

achieves performance comparable to the state-of-the-

art (SOTA) methods that rely on the training dataset

(Sec. 4.3).

• We introduce and address the task of data-free knowledge

transfer between a teacher and a randomly initialized

student network (Sec. 4.4).

• We improve prior work on data-free continual (a.k.a.

incremental) learning, and achieve results comparable to

oracle methods given the original data (Sec. 4.5).

2. Related Work

Knowledge distillation. Transfer of knowledge from one

model to another was first introduced by Breiman and

Shang when they learned a single decision tree to approx-

imate the outputs of multiple decision trees [4]. Simi-

lar ideas are explored in neural networks by Bucilua et

al. [6], Ba and Caruana [2], and Hinton et al. [20]. Hin-

ton et al. formulate the problem as “knowledge distilla-

tion,” where a compact student mimics the output distri-

butions of expert teacher models [20]. These methods and

improved variants [1, 53, 57, 67, 73] enable teaching stu-

dents with goals such as quantization [42, 55], compact

neural network architecture design [57], semantic segmen-

tation [31], self-distillation [14], and un-/semi-supervised

learning [34, 54, 70]. All these methods still rely on images

from the original or proxy datasets. More recent research has

explored data-free knowledge distillation. Lopes et al. [33]

synthesize inputs based on pre-stored auxiliary layer-wise

statistics of the teacher network. Chen et al. [7] train a new

generator network for image generation while treating the

teacher network as a fixed discriminator. Despite remarkable

8716

insights, scaling to tasks such as ImageNet classification,

remains difficult for these methods.

Image synthesis. Generative adversarial networks

(GANs) [16, 43, 47, 75] have been at the forefront of gen-

erative image modeling, yielding high-fidelity images, e.g.,

using BigGAN [5]. Though adept at capturing the image

distribution, training a GAN’s generator requires access to

the original data.

An alternative line of work in security focuses on image

synthesis from a single CNN. Fredrikson et al. [13] propose

the model inversion attack to obtain class images from a

network through a gradient descent on the input. Follow-

up works have improved or expanded the approach to new

threat scenarios [19, 64, 68]. These methods have only been

demonstrated on shallow networks, or require extra informa-

tion (e.g., intermediate features).

In vision, researchers visualize neural networks to un-

derstand their properties. Mahendran et al. explore inver-

sion, activation maximization, and caricaturization to synthe-

size “natural pre-images” from a trained network [37, 38].

Nguyen et al. use a trained GAN’s generator as a prior to

invert trained CNNs [48] to images, and its followup Plug

& Play [47] further improves image diversity and quality

via latent code prior. Bhardwaj et al. use the training data

cluster centroids to improve inversion [3]. These methods

still rely on auxiliary dataset information or additional pre-

trained networks. Of particular relevance to this work is

DeepDream [46] by Mordvintsev et al., which has enabled

the “dreaming” of new object features onto natural images

given a single pretrained CNN. Despite notable progress,

synthesizing high-fidelity and high-resolution natural im-

ages from a deep network remains challenging.

3. Method

Our new data-free knowledge distillation framework con-

sists of two steps: (i) model inversion, and (ii) application-

specific knowledge distillation. In this section, we briefly

discuss the background and notation, and then introduce our

DeepInversion and Adaptive DeepInversion methods.

3.1. Background

Knowledge distillation. Distillation [20] is a popular tech-

nique for knowledge transfer between two models. In its

simplest form, first, the teacher, a large model or ensemble

of models, is trained. Second, a smaller model, the student,

is trained to mimic the behavior of the teacher by matching

the temperature-scaled soft target distribution produced by

the teacher on training images (or on other images from the

same domain). Given a trained model pT and a dataset X ,

the parameters of the student model, WS , can be learned by

min
WS

ÿ

xPX

KLppT pxq, pSpxqq, (1)

where KLp¨q refers to the Kullback-Leibler divergence and

pT pxq “ ppx,WT q and pSpxq “ ppx,WSq are the output

distributions produced by the teacher and student model,

respectively, typically obtained using a high temperature on

the softmax inputs [20].

Note that ground truths are not required. Despite its

efficacy, the process still relies on real images from the same

domain. Below, we focus on methods to synthesize a large

set of images x̂ P X̂ from noise that could replace x P X .

DeepDream [46]. Originally formulated by Mordvintsev et

al. to derive artistic effects on natural images, DeepDream is

also suitable for optimizing noise into images. Given a ran-

domly initialized input (x̂ P RHˆWˆC , H,W,C being the

height, width, and number of color channels) and an arbitrary

target label y, the image is synthesized by optimizing

min
x̂

Lpx̂, yq ` Rpx̂q, (2)

where Lp¨q is a classification loss (e.g., cross-entropy), and

Rp¨q is an image regularization term. DeepDream uses an

image prior [11, 37, 49, 61] to steer x̂ away from unrealistic

images with no discernible visual information:

Rpriorpx̂q “ ↵tvRTVpx̂q ` ↵`2R`2px̂q, (3)

where RTV and R`2 penalize the total variance and `2 norm

of x̂, respectively, with scaling factors ↵tv, ↵`2 . As both

prior work [37, 46, 49] and we empirically observe, image

prior regularization provides more stable convergence to

valid images. However, these images still have a distribution

far different from natural (or original training) images and

thus lead to unsatisfactory knowledge distillation results.

3.2. DeepInversion (DI)

We improve DeepDream’s image quality by extending

image regularization Rpx̂q with a new feature distribution

regularization term. The image prior term defined previously

provides little guidance for obtaining a synthetic x̂ P X̂
that contains similar low- and high-level features as x P
X . To effectively enforce feature similarities at all levels,

we propose to minimize the distance between feature map

statistics for x̂ and x. We assume that feature statistics follow

the Gaussian distribution across batches and, therefore, can

be defined by mean µ and variance �2. Then, the feature

distribution regularization term can be formulated as:

Rfeaturepx̂q “
ÿ

l

|| µlpx̂q ´ Epµlpxq|X q ||2`

ÿ

l

|| �2

l px̂q ´ Ep�2

l pxq|X q ||2,
(4)

where µlpx̂q and �2

l px̂q are the batch-wise mean and variance

estimates of feature maps corresponding to the lth convolu-

tional layer. The Ep¨q and ||¨||2 operators denote the expected

value and `2 norm calculations, respectively.

8717

It might seem as though a set of training images would be

required to obtain Epµlpxq|X q and Ep�2

l pxq|X q, but the run-

ning average statistics stored in the widely-used BatchNorm

(BN) layers are more than sufficient. A BN layer normal-

izes the feature maps during training to alleviate covariate

shifts [24]. It implicitly captures the channel-wise means

and variances during training, hence allows for estimation

of the expectations in Eq. 4 by:

E
`

µlpxq|X
˘

» BNlprunning meanq, (5)

E
`

�2

l pxq|X
˘

» BNlprunning varianceq. (6)

As we will show, this feature distribution regularization

substantially improves the quality of the generated images.

We refer to this model inversion method as DeepInversion

´ a generic approach that can be applied to any trained deep

CNN classifier for the inversion of high-fidelity images. Rp¨q
(corr. to Eq. 2) can thus be expressed as

RDIpx̂q “ Rpriorpx̂q ` ↵fRfeaturepx̂q. (7)

3.3. Adaptive DeepInversion (ADI)

In addition to quality, diversity also plays a crucial role

in avoiding repeated and redundant synthetic images. Prior

work on GANs has proposed various techniques, such as min-

max training competition [15] and the truncation trick [5].

These methods rely on the joint training of two networks

over original data and therefore are not applicable to our

problem. We propose Adaptive DeepInversion, an enhanced

image generation scheme based on a novel iterative com-

petition scheme between the image generation process and

the student network. The main idea is to encourage the syn-

thesized images to cause student-teacher disagreement. For

this purpose, we introduce an additional loss Rcompete for

image generation based on the Jensen-Shannon divergence

that penalizes output distribution similarities,

Rcompetepx̂q “ 1 ´ JSppT px̂q, pSpx̂qq, (8)

JSppT px̂q, pSpx̂qq “
1

2

ˆ

KLppT px̂q,Mq ` KLppSpx̂q,Mq

˙

,

where M “ 1

2
¨
`

pT px̂q`pSpx̂q
˘

is the average of the teacher

and student distributions.

During optimization, this new term leads to new images

the student cannot easily classify whereas the teacher can.

As illustrated in Fig. 2, our proposal iteratively expands the

distributional coverage of the image distribution during the

learning process. With competition, regularization Rp¨q from

Eq. 7 is updated with an additional loss scaled by ↵c as

RADIpx̂q “ RDIpx̂q ` ↵cRcompetepx̂q. (9)

teacher teacher

student

original image
distribution

teacher

student

original image
distribution

student
teacher

teacher

new
student

original image
distribution

original image
distribution

Figure 2: Illustration of the Adaptive DeepInversion competition

scheme to improve image diversity. Given a set of generated images

(shown as green stars), an intermediate student can learn to capture

part of the original image distribution. Upon generating new images

(shown as red stars), competition encourages new samples out of

student’s learned knowledge, improving distributional coverage and

facilitating additional knowledge transfer. Best viewed in color.

3.4. DeepInversion vs. Adaptive DeepInversion

DeepInversion is a generic method that can be applied

to any trained CNN classifier. For knowledge distillation, it

enables a one-time synthesis of a large number of images

given the teacher, to initiate knowledge transfer. Adaptive

DeepInversion, on the other hand, needs a student in the loop

to enhance image diversity. Its competitive and interactive

nature favors constantly-evolving students, which gradually

force new image features to emerge, and enables the aug-

mentation of DeepInversion, as shown in our experiments.

4. Experiments

We demonstrate our inversion methods on datasets of

increasing size and complexity. We perform a number of

ablations to evaluate each component in our method on the

simple CIFAR-10 dataset (32 ˆ 32 pixels, 10 classes). Then,

on the complex ImageNet dataset (224 ˆ 224 pixels, 1000

classes), we show the success of our inversion methods on

three different applications under the data-free setting: (a)

pruning, (b) knowledge transfer, and (c) continual (class-

incremental) learning. In all experiments, image pixels are

initialized i.i.d. from Gaussian noise of µ “ 0 and � “ 1.

4.1. Results on CIFAR-10

For validating our design choices, we consider the task of

data-free knowledge distillation, where we teach a student

network randomly initialized from scratch.

Implementation details. We use VGG-11-BN and ResNet-

34 networks pretrained on CIFAR-10 as the teachers. For

all image synthesis in this section, we use Adam for opti-

mization (learning rate 0.05). We generate 32 ˆ 32 images

in batches of 256. Each image batch requires 2k gradient

updates. After a simple grid search optimizing for student

accuracy, we found ↵tv “ 2.5 ¨ 10´5,↵`2 “ 3 ¨ 10´8, and

↵f “ t1.0, 5.0, 10.0, 100.0u work best for DeepInversion,

and ↵c “ 10.0 for Adaptive DeepInversion. See supplemen-

tary materials for more details.

Baselines – Noise & DeepDream [46]. From Table 1, we

observe that optimized noise, Noise (L), does not provide

any support for knowledge distillation ´ a drastic change

8718

Teacher Network VGG-11 VGG-11 ResNet-34

Student Network VGG-11 ResNet-18 ResNet-18

Teacher accuracy 92.34% 92.34% 95.42%

Noise (L) 13.55% 13.45% 13.61%

`Rprior (DeepDream [46]) 36.59% 39.67% 29.98%

`Rfeature (DeepInversion) 84.16% 83.82% 91.43%

`Rcompete (ADI) 90.78% 90.36% 93.26%

DAFL [7] – – 92.22%

Table 1: Data-free knowledge transfer to various students on

CIFAR-10. For ADI, we generate one new batch of images every

50 knowledge distillation iterations and merge the newly generated

images into the existing set of generated images.

(a) Noise (opt) (b) DeepDream [46] (c) DAFL [7]

(d) DeepInversion (DI) (e) Adaptive DI (ADI)

Figure 3: 32 ˆ 32 images generated by inverting a ResNet-34

trained on CIFAR-10 with different methods. All images are cor-

rectly classified by the network, clockwise: cat, dog, horse, car.

in input distribution disrupts the teacher and impacts the

validity of the transferred knowledge. Adding Rprior, like in

DeepDream, slightly improves the student’s accuracy.

Effectiveness of DeepInversion (Rfeature). Upon adding

Rfeature, we immediately find large improvements in accu-

racy of 40%-69% across all the teaching scenarios. DeepIn-

version images (Fig. 3(d)) are vastly superior in realism, as

compared to the baselines (Fig. 3(a,b)).

Effectiveness of Adaptive DeepInversion (Rcompete). Us-

ing competition-based inversion further improves accuracy

by 1%-10%, bringing the student accuracy very close to that

of the teacher trained on real images from the CIFAR-10

dataset (within 2%). The training curves from one of the runs

are shown in Fig. 4. Encouraging teacher-student disagree-

ments brings in additional “harder” images during training

(shown in Fig. 3(e)) that remain correct for the teacher, but

have a low student accuracy, as can be seen from Fig. 4 (left).

Comparison with DAFL [7]. We further compare our

method with DAFL [7], which trains a new generator net-

work to convert noise into images using a fixed teacher. As

can be seen from Fig. 3(c), we notice that these images are

“unrecognizable,” reminiscent of “fooling images” [49]. Our

method enables higher visual fidelity of images and elim-

inates the need for an additional generator network, while

gaining higher student accuracy under the same setup.

Figure 4: Progress of knowledge transfer from trained VGG-11-BN

(92.34% acc.) to freshly initialized VGG-11-BN network (student)

using inverted images. Plotted are accuracies on generated (left)

and real (right) images. Final student accuracies shown in Table 1.

4.2. Results on ImageNet

After successfully demonstrating our method’s abilities

on the small CIFAR-10 dataset, we move on to examine its

effectiveness on the large-scale ImageNet dataset [10]. We

first run DeepInversion on networks trained on ImageNet,

and perform quantitative and qualitative analyses. Then,

we show the effectiveness of synthesized images on three

different tasks of immense importance: data-free pruning,

data-free knowledge transfer, and data-free continual learn-

ing.

Implementation details. For all experiments in this section,

we use the publicly available pretrained ResNet-{18, 50}
from PyTorch as the fixed teacher network, with top-1

accuracy of {69.8%, 76.1%}. For image synthesis, we

use Adam for optimization (learning rate 0.05). We set

↵tv “ 1 ¨ 10´4,↵`2 “ t0, 1 ¨ 10´2u,↵f “ 1 ¨ 10´2 for

DeepInversion, and ↵c “ 0.2 for Adaptive DeepInversion.

We synthesize 224 ˆ 224 images in batches of 1, 216 us-

ing 8 NVIDIA V100 GPUs and automatic-mixed precision

(AMP) [41] acceleration. Each image batch receives 20k

updates over 2h.

4.2.1 Analysis of DeepInversion Images

Fig. 5 shows images generated by DeepInversion from an

ImageNet-pretrained ResNet-50. Remarkably, given just the

model, we observe that DeepInversion is able to generate

images with high fidelity and resolution. It also produces

detailed image features and textures around the target object,

e.g., clouds surrounding the target balloon, water around a

catamaran, forest below the volcano, etc.

Generalizability. In order to verify that the generated im-

ages do not overfit to just the inverted model, we obtain

predictions using four other ImageNet networks. As can

be seen from Table 2, images generated using a ResNet-50

generalize to a range of models and are correctly classified.

Further, DeepInversion outperforms DeepDream by a large

margin. This indicates robustness of our generated images

while being transferred across networks.

Inception score (IS). We also compare the IS [58] of our

generated images with other methods in Table 3. Again,

DeepInversion substantially outperforms DeepDream with

an improvement of 54.2. Without sophisticated training,

8719

Figure 5: Class-conditional 224 ˆ 224 samples obtained by DeepInversion, given only a ResNet-50 classifier trained on ImageNet and no

additional information. Note that the images depict classes in contextually correct backgrounds, in realistic scenarios. Best viewed in color.

Model
DeepDream DeepInversion

top-1 acc. (%) top-1 acc. (%)

ResNet-50 100 100

ResNet-18 28.0 94.4

Inception-V3 27.6 92.7

MobileNet-V2 13.9 90.9

VGG-11 6.7 80.1

Table 2: Classification accuracy of ResNet-50 synthesized images

by other ImageNet-trained CNNs.

DeepInversion even beats multiple GAN baselines that have

limited scalability to high image resolutions.

4.3. Application I: Data-free Pruning

Pruning removes individual weights or entire filters (neu-

rons) from a network such that the metric of interest (e.g.,

accuracy, precision) does not drop significantly. Many tech-

niques have been proposed to successfully compress neural

networks [17, 28, 32, 35, 44, 45, 69, 72]. All these methods

require images from the original dataset to perform pruning.

We build upon the pruning method of Molchanov et al. [44],

which uses the Taylor approximation of the pruning loss

for a global ranking of filter importance over all the layers.

We extend this method by applying the KL divergence loss,

computed between the teacher and student output distribu-

tions. Filter importance is estimated from images inverted

with DeepInversion and/or Adaptive DeepInversion, making

pruning data-free. We follow the pruning and finetuning (30

epochs) setup from [44]. All experiments on pruning are

performed with ResNet-50.

Hardware-aware loss. We further consider actual latency

on the target hardware for a more efficient pruning. To

achieve this goal, the importance ranking of filters needs to

Method Resolution GAN Inception Score

BigGAN [5] 256 X 178.0 / 202.6`

DeepInversion (Ours) 224 60.6

SAGAN [75] 128 X 52.5

SNGAN [43] 128 X 35.3

WGAN-GP [16] 128 X 11.6

DeepDream [46]* 224 6.2

Table 3: Inception Score (IS) obtained by images synthesized by

various methods on ImageNet. SNGAN ImageNet score from [60].

*: our implementation. `: BigGAN-deep.

reflect not only accuracy but also latency, quantified by:

ISpWq “ IS,errpWq ` ⌘ IS,latpWq, (10)

where IS,err and IS,lat, respectively, focus on absolute

changes in network error and inference latency, specifically,

when the filter group s P S is zeroed out from the set of

neural network parameters W. ⌘ balances their importance.

We approximate the latency reduction term, IS,lat, via pre-

computed hardware-aware look-up tables of operation costs

(details in the Appendix).

Data-free pruning evaluation. For better insights, we study

four image sources: (i) partial ImageNet with 0.1M origi-

nal images; (ii) unlabeled images from the proxy dataset,

MS COCO [30] (127k images), and PASCAL VOC [12]

(9.9k images) datasets; (iii) 100k generated images from

the BigGAN-deep [5] model, and (iv) a data-free setup with

the proposed methods: we first generate 165k images via

DeepInversion, and then add to the set an additional 24k/26k

images through two competition rounds of Adaptive Deep-

Inversion, given pruned students at 61.9%/73.0% top-1 acc.

Results of pruning and fine-tuning are summarized in

Table 4. Our approach boosts the top-1 accuracy by more

than 54% given inverted images. Adaptive DeepInversion

performs relatively on par with BigGAN. Despite beating

8720

Image Source

Top-1 acc. (%)

´50% filters ´20% filters

´71% FLOPs ´37% FLOPs

No finetune 1.9 16.6

Partial ImageNet

0.1M images / 0 label 69.8 74.9

Proxy datasets

MS COCO 66.0 73.8

PASCAL VOC 54.4 70.8

GAN

Generator, BigGAN 63.0 73.7

Noise (Ours)

DeepInversion (DI) 55.9 72.0

Adaptive DeepInversion (ADI) 60.7 73.3

Table 4: ImageNet ResNet-50 pruning results for the knowledge

distillation setup, given different types of input images.

Method ImageNet data GFLOPs Lat. (ms) Top-1 acc. (%)

Base model X 4.1 4.90 76.1

Taylor [44] X 2.7 (1.5ˆ) 4.38 (1.1ˆ) 75.5

SSS [23] X 2.8 (1.5ˆ) - 74.2

ThiNet-70 [35] X 2.6 (1.6ˆ) - 72.0

NISP-50-A [72] X 3.0 (1.4ˆ) - 72.8

Ours

Hardware-Aware (HA) X 3.1 (1.3ˆ) 4.24 (1.2ˆ) 76.1

ADI (Data-free) 2.7 (1.5ˆ) 4.36 (1.1ˆ) 73.3

ADI + HA 2.9 (1.4ˆ) 4.22 (1.2ˆ) 74.0

Table 5: ImageNet ResNet-50 pruning comparison with prior work.

VOC, we still observe a gap between synthesized images

(Adaptive DeepInversion and BigGAN) and natural images

(MS COCO and ImageNet).

Comparisons with SOTA. We compare data-free pruning

against SOTA methods in Table 5 for the setting in which

20% of filters are pruned away globally. We evaluate three se-

tups for our approach: (i) individually applying the hardware-

aware technique (HA), (ii) data-free pruning with DeepIn-

version and Adaptive DeepInversion (ADI), and (iii) jointly

applying both (ADI+HA). First, we evaluate the hardware-

aware loss on the original dataset, and achieve a 16% faster

inference with zero accuracy loss compared to the base

model, we also observe improvements in inference speed

and accuracy over the pruning baseline [44]. In a data-free

setup, we achieve a similar post-pruned model performance

compared to prior works (which use the original dataset),

while completely removing the need for any images/labels.

The data-free setup demonstrates a 2.8% loss in accuracy

with respect to the base model. A final combination of both

data-free and hardware-aware techniques (ADI+HA) closes

this gap to only 2.1%, with faster inference.

4.4. Application II: Data-free Knowledge Transfer

In this section, we show that we can distill information

from a teacher network to a student network without us-

ing any real images at all. We apply DeepInversion to a

ResNet50v1.5 [52] trained on ImageNet to synthesize im-

ages. Using these images, we then train another randomly

initialized ResNet50v1.5 from scratch. Below, we describe

two practical considerations: a) image clipping, and b) multi-

resolution synthesis, which we find can greatly help boost

accuracy while reducing run-time. A set of images generated

Figure 6: Class-conditional 224 ˆ 224 images obtained by Deep-

Inversion given a ResNet50v1.5 classifier pretrained on ImageNet.

Classes top to bottom: (left) daisy, volcano, quill, (right) cheese-

burger, brown bear, trolleybus.

by DeepInversion on the pretrained ResNet50v1.5 is shown

in Fig. 6. The images demonstrate high fidelity and diversity.

a) Image clipping. We find that enforcing the synthesized

images to conform to the mean and variance of the data

preprocessing step helps improve accuracy. Note that com-

monly released networks use means and variances computed

on ImageNet. We clip synthesized images to be in the

r´m{s,m{ss range, with m representing the per channel

mean, and s per channel standard deviation.

b) Multi-resolution synthesis. We find that we can speed

up DeepInversion by employing a multi-resolution opti-

mization scheme. We first optimize the input of resolution

112 ˆ 112 for 2k iterations. Then, we up-sample the im-

age via nearest neighbor interpolation to 224 ˆ 224, and

then optimize for an additional 1k iterations. This speeds up

DeepInversion to 84 images per 6 minutes on an NVIDIA

V100 GPU. Hyperparameters are given in the Appendix.

Knowledge transfer. We synthesize 140k images via Deep-

Inversion on ResNet50v1.5 [52] to train a student network

with the same architecture from scratch. Our teacher is a pre-

trained ResNet50v1.5 that achieves 77.26% top-1 accuracy.

We apply knowledge distillation for 90/250 epochs, with

temperature ⌧ “ 3, initial learning rate of 1.024, batch size

of 1024 split across eight V100 GPUs, and other settings the

same as in the original setup [52]. Results are summarized

in Table 6. The proposed method, given only the trained

ResNet50v1.5 model, can teach a new model from scratch

to achieve a 73.8% accuracy, which is only 3.46% below the

accuracy of the teacher.

4.5. Application III: Data-free Continual Learning

Data-free continual learning is another scenario that ben-

efits from the image generated from DeepInversion. The

main idea of continual learning is to add new classification

8721

Image source Real images Data amount Top-1 acc.

Base model X 1.3M 77.26%

Knowledge Transfer, 90 epochs

ImageNet X 215k 76.1%

MS COCO X 127k 72.3%

Generator, BigGAN 215k 64.0%

DeepInversion (DI) 140k 68.0%

Knowledge Transfer, 250 epochs, with mixup

DeepInversion (DI) 140k 73.8%

Table 6: Knowledge transfer from the trained ResNet50v1.5 to the

same network initialized from scratch.

Method
Top-1 acc. (%)

Combined ImageNet CUB Flowers

ImageNet + CUB (1000 Ñ 1200 outputs)

LwF.MC [56] 47.64 53.98 41.30 –

DeepDream [46] 63.00 56.02 69.97 –

DeepInversion (Ours) 67.61 65.54 69.68 –

Oracle (distill) 69.12 68.09 70.16 –

Oracle (classify) 68.17 67.18 69.16 –

ImageNet + Flowers (1000 Ñ 1102 outputs)

LwF.MC [56] 67.23 55.62 – 78.84

DeepDream [46] 79.84 65.69 – 94.00

DeepInversion (Ours) 80.85 68.03 – 93.67

Oracle (distill) 80.71 68.73 – 92.70

Oracle (classify) 79.42 67.59 – 91.25

ImageNet + CUB + Flowers (1000 Ñ 1200 Ñ 1302 outputs)

LwF.MC [56] 41.72 40.51 26.63 58.01

DeepInversion (Ours) 74.61 64.10 66.57 93.17

Oracle (distill) 76.18 67.16 69.57 91.82

Oracle (classify) 74.67 66.25 66.64 91.14

Table 7: Continual learning results that extend the network output

space, adding new classes to ResNet-18. Accuracy over combined

classes Co Y Ck reported on individual datasets. Average over

datasets also shown (datasets treated equally regardless of size,

hence ImageNet samples have less weight than CUB or Flowers

samples).

classes to a pretrained model without comprehensive access

to its original training data. To the best of our knowledge,

only LwF [29] and LwF.MC [56] achieve data-free continual

learning. Other methods require information that can only

be obtained from the original dataset, e.g., a subset of data

(iCaRL [56]), parameter importance estimations (in the form

of Fisher matrix in EWC [27], contribution to loss change in

SI [74], posterior of network weights in VCL [50]), or train-

ing data representation (encoder [62], GAN [21, 59]). Some

methods rely on network modifications, e.g., Packnet [40]

and Piggyback [39]. In comparison, DeepInversion does not

need network modifications or the original (meta-)data, as

BN statistics are inherent to neural networks.

In the class-incremental setting, a network is initially

trained on a dataset with classes Co, e.g., ImageNet [10].

Given new class data pxk, ykq, yk P Ck, e.g., from CUB [65],

the pretrained model is now required to make predictions

in a combined output space Co Y Ck. Similar to prior work,

we take a trained network
`

denoted pop¨q, effectively as

a teacher
˘

, make a copy
`

denoted pkp¨q, effectively as a

student
˘

, and then add new randomly initialized neurons to

pkp¨q’s final layer to output logits for the new classes. We

train pkp¨q to classify simultaneously over all classes, old

and new, while network pop¨q remains fixed.

Continual learning loss. We formulate a new loss with

DeepInversion images as follows. We use same-sized

batches of DeepInversion data px̂, popx̂qq and new class

real data pxk, ykq for each training iteration. For x̂, we

use the original model to compute its soft labels popx̂q,

i.e., class probability among old classes, and then concate-

nate it with additional zeros as new class probabilities. We

use a KL-divergence loss between predictions popx̂q and

pkpx̂q on DeepInversion images for prior memory, and a

cross-entropy (CE) loss between one-hot yk and prediction

pkpxkq on new class images for emerging knowledge. Simi-

lar to prior work [29, 56], we also use a third KL-divergence

term between the new class images’ old class predictions

pkpxk|y P Coq and their original model predictions popxkq.

This forms the loss

LCL “KL
`

popx̂q, pkpx̂q
˘

` Lxent

`

yk, pkpxkq
˘

` KL
`

popxk|y P Coq, pkpxk|y P Coq
˘

.
(11)

Evaluation results. We add new classes from the CUB [65],

Flowers [51], and both CUB and Flowers datasets to a

ResNet-18 [18] classifier trained on ImageNet [10]. Prior to

each step of addition of new classes, we generate 250 Deep-

Inversion images per old category. We compare our results

with prior class-incremental learning work LwF.MC [56]

as opposed to the task-incremental LwF [29] that cannot

distinguish between old and new classes. We further com-

pare results with oracle methods that break the data-free

constraint: we use the same number of real images from old

datasets in place of x̂, with either their ground truth for classi-

fication loss or their soft labels from pop¨q for KL-divergence

distillation loss. The third KL-divergence term in Eq. 11 is

omitted in this case. Details are given in the Appendix.

Results are shown in Table 7. Our method significantly

outperforms LwF.MC in all cases and leads to consistent per-

formance improvements over DeepDream in most scenarios.

Our results are very close to the oracles (and occasionally

outperform them), showing DeepInversion’s efficacy in re-

placing ImageNet images for continual learning. We verify

results on VGG-16 and discuss limitations in the Appendix.

Conclusions

We have proposed DeepInversion for synthesizing train-

ing images with high resolution and fidelity given just a

trained CNN. Further, by using a student-in-the-loop, our

Adaptive DeepInversion method improves image diversity.

Through extensive experiments, we have shown that our

methods are generalizable, effective, and empower a new

class of “data-free” tasks of immense practical significance.

Acknowledgments

We would like to thank Arash Vahdat, Ming-Yu Liu, and

Shalini De Mello for in-depth discussions and comments.

8722

References

[1] S. Ahn, S. X. Hu, A. Damianou, N. D. Lawrence, and Z. Dai.

Variational information distillation for knowledge transfer. In

CVPR, 2019.

[2] J. Ba and R. Caruana. Do deep nets really need to be deep?

In NeurIPS, 2014.

[3] K. Bhardwaj, N. Suda, and R. Marculescu. Dream distillation:

A data-independent model compression framework. In ICML

Workshop, 2019.

[4] L. Breiman and N. Shang. Born again trees. Technical report,

UC Berkeley, 1996.

[5] A. Brock, J. Donahue, and K. Simonyan. Large scale GAN

training for high fidelity natural image synthesis. In ICLR,

2019.

[6] C. Buciluǎ, R. Caruana, and A. Niculescu-Mizil. Model

compression. In SIGKDD, 2006.

[7] H. Chen, Y. Wang, C. Xu, Z. Yang, C. Liu, B. Shi, C. Xu,

C. Xu, and Q. Tian. Data-free learning of student networks.

In ICCV, 2019.

[8] T. Chen, I. Goodfellow, and J. Shlens. Net2net: Accelerating

learning via knowledge transfer. In ICLR, 2016.

[9] X. Dai, P. Zhang, B. Wu, H. Yin, F. Sun, Y. Wang, M. Dukhan,

Y. Hu, Y. Wu, Y. Jia, P. Vajda, M. Uyttendaele, and N. K.

Jha. ChamNet: Towards efficient network design through

platform-aware model adaptation. In CVPR, 2019.

[10] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei.

ImageNet: A large-scale hierarchical image database. In

CVPR, 2009.

[11] A. Dosovitskiy and T. Brox. Inverting visual representations

with convolutional networks. In CVPR, 2016.

[12] M. Everingham, L. Van Gool, C. K. Williams, J. Winn, and

A. Zisserman. The PASCAL visual object classes (VOC)

challenge. IJCV, 2010.

[13] M. Fredrikson, S. Jha, and T. Ristenpart. Model inversion

attacks that exploit confidence information and basic counter-

measures. In CCCS, 2015.

[14] T. Furlanello, Z. C. Lipton, M. Tschannen, L. Itti, and

A. Anandkumar. Born again neural networks. In ICML,

2018.

[15] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-

Farley, S. Ozair, A. Courville, and Y. Bengio. Generative

adversarial nets. In NeurIPS, 2014.

[16] I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, and

A. C. Courville. Improved training of Wasserstein GANs.

In NeurIPS, 2017.

[17] S. Han, H. Mao, and W. J. Dally. Deep compression: Com-

pressing deep neural networks with pruning, trained quantiza-

tion and Huffman coding. In ICLR, 2016.

[18] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning

for image recognition. In CVPR, 2016.

[19] Z. He, T. Zhang, and R. B. Lee. Model inversion attacks

against collaborative inference. In ACSAC, 2019.

[20] G. Hinton, O. Vinyals, and J. Dean. Distilling the knowledge

in a neural network. arXiv preprint arXiv:1503.02531, 2015.

[21] W. Hu, Z. Lin, B. Liu, C. Tao, J. Tao, J. Ma, D. Zhao, and

R. Yan. Overcoming catastrophic forgetting for continual

learning via model adaptation. In ICLR, 2019.

[22] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger.

Densely connected convolutional networks. In CVPR, 2017.

[23] Z. Huang and N. Wang. Data-driven sparse structure selection

for deep neural networks. In ECCV, 2018.

[24] S. Ioffe and C. Szegedy. Batch normalization: Accelerating

deep network training by reducing internal covariate shift.

arXiv preprint arXiv:1502.03167, 2015.

[25] A. Kimura, Z. Ghahramani, K. Takeuchi, T. Iwata, and

N. Ueda. Few-shot learning of neural networks from scratch

by pseudo example optimization. In BMVC, 2018.

[26] A. Kimura, Z. Ghahramani, K. Takeuchi, T. Iwata, and

N. Ueda. Few-shot learning of neural networks from scratch

by pseudo example optimization. In BMVC, 2018.

[27] J. Kirkpatrick, R. Pascanu, N. C. Rabinowitz, J. Veness,

G. Desjardins, A. A. Rusu, K. Milan, J. Quan, T. Ramalho,

A. Grabska-Barwinska, D. Hassabis, C. Clopath, D. Kumaran,

and R. Hadsell. Overcoming catastrophic forgetting in neural

networks. PNAS, 2016.

[28] H. Li, A. Kadav, I. Durdanovic, H. Samet, and H. P. Graf.

Pruning filters for efficient ConvNets. In ICLR, 2017.

[29] Z. Li and D. Hoiem. Learning without forgetting. IEEE

TPAMI, 2017.

[30] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ra-

manan, P. Dollár, and C. L. Zitnick. Microsoft COCO: Com-

mon objects in context. In ECCV, 2014.

[31] Y. Liu, K. Chen, C. Liu, Z. Qin, Z. Luo, and J. Wang. Struc-

tured knowledge distillation for semantic segmentation. In

CVPR, 2019.

[32] Z. Liu, J. Li, Z. Shen, G. Huang, S. Yan, and C. Zhang.

Learning efficient convolutional networks through network

slimming. In CVPR, 2017.

[33] R. G. Lopes, S. Fenu, and T. Starner. Data-free knowl-

edge distillation for deep neural networks. arXiv preprint

arXiv:1710.07535, 2017.

[34] D. Lopez-Paz, L. Bottou, B. Schölkopf, and V. Vapnik. Uni-

fying distillation and privileged information. In ICLR, 2016.

[35] J.-H. Luo, J. Wu, and W. Lin. ThiNet: A filter level pruning

method for deep neural network compression. In ICCV, 2017.

[36] D. Mahajan, R. Girshick, V. Ramanathan, K. He, M. Paluri,

Y. Li, A. Bharambe, and L. van der Maaten. Exploring the

limits of weakly supervised pretraining. In ECCV, 2018.

[37] A. Mahendran and A. Vedaldi. Understanding deep image

representations by inverting them. In CVPR, 2015.

[38] A. Mahendran and A. Vedaldi. Visualizing deep convolutional

neural networks using natural pre-images. IJCV, 2016.

[39] A. Mallya, D. Davis, and S. Lazebnik. Piggyback: Adapting a

single network to multiple tasks by learning to mask weights.

In ECCV, 2018.

[40] A. Mallya and S. Lazebnik. Packnet: Adding multiple tasks

to a single network by iterative pruning. In CVPR, 2018.

[41] P. Micikevicius, S. Narang, J. Alben, G. Diamos, E. Elsen,

D. Garcia, B. Ginsburg, M. Houston, O. Kuchaiev,

G. Venkatesh, and H. Wu. Mixed precision training. In

ICLR, 2018.

[42] A. Mishra and D. Marr. Apprentice: Using knowledge distil-

lation techniques to improve low-precision network accuracy.

In ICLR, 2018.

8723

[43] T. Miyato, T. Kataoka, M. Koyama, and Y. Yoshida. Spectral

normalization for generative adversarial networks. In ICLR,

2018.

[44] P. Molchanov, A. Mallya, S. Tyree, I. Frosio, and J. Kautz.

Importance estimation for neural network pruning. In CVPR,

2019.

[45] P. Molchanov, S. Tyree, T. Karras, T. Aila, and J. Kautz.

Pruning convolutional neural networks for resource efficient

transfer learning. In ICLR, 2017.

[46] A. Mordvintsev, C. Olah, and M. Tyka. In-

ceptionism: Going deeper into neural networks.

https://research.googleblog.com/2015/06/

inceptionism-going-deeper-into-neural.

html, 2015.

[47] A. Nguyen, J. Clune, Y. Bengio, A. Dosovitskiy, and J. Yosin-

ski. Plug & play generative networks: Conditional iterative

generation of images in latent space. In CVPR, 2017.

[48] A. Nguyen, A. Dosovitskiy, J. Yosinski, T. Brox, and J. Clune.

Synthesizing the preferred inputs for neurons in neural net-

works via deep generator networks. In NeurIPS, 2016.

[49] A. Nguyen, J. Yosinski, and J. Clune. Deep neural networks

are easily fooled: High confidence predictions for unrecog-

nizable images. In CVPR, 2015.

[50] C. V. Nguyen, Y. Li, T. D. Bui, and R. E. Turner. Variational

continual learning. In ICLR, 2018.

[51] M.-E. Nilsback and A. Zisserman. Automated flower classifi-

cation over a large number of classes. In ICCVGIP, 2008.

[52] NVIDIA. ResNet50v1.5 training. https://github.

com/NVIDIA/DeepLearningExamples/tree/

master/PyTorch/Classification/ConvNets/

resnet50v1.5, 2019. [Online; accessed 10-Nov-2019].

[53] W. Park, D. Kim, Y. Lu, and M. Cho. Relational knowledge

distillation. In CVPR, 2019.

[54] A. Pilzer, S. Lathuiliere, N. Sebe, and E. Ricci. Refine and

distill: Exploiting cycle-inconsistency and knowledge distilla-

tion for unsupervised monocular depth estimation. In CVPR,

2019.

[55] A. Polino, R. Pascanu, and D. Alistarh. Model compression

via distillation and quantization. In ICLR, 2018.

[56] S.-A. Rebuffi, A. Kolesnikov, G. Sperl, and C. H. Lampert.

iCaRL: Incremental classifier and representation learning. In

CVPR, 2017.

[57] A. Romero, N. Ballas, S. E. Kahou, A. Chassang, C. Gatta,

and Y. Bengio. FitNets: Hints for thin deep nets. In ICLR,

2015.

[58] T. Salimans, I. Goodfellow, W. Zaremba, V. Cheung, A. Rad-

ford, and X. Chen. Improved techniques for training GANs.

In NeurIPS, 2016.

[59] H. Shin, J. K. Lee, J. Kim, and J. Kim. Continual learning

with deep generative replay. In NeurIPS, 2017.

[60] K. Shmelkov, C. Schmid, and K. Alahari. How good is my

GAN? In ECCV, 2018.

[61] K. Simonyan, A. Vedaldi, and A. Zisserman. Deep inside con-

volutional networks: Visualising image classification models

and saliency maps. arXiv preprint arXiv:1312.6034, 2013.

[62] A. Triki Rannen, R. Aljundi, M. B. Blaschko, and T. Tuyte-

laars. Encoder based lifelong learning. In ICCV, 2017.

[63] K. Wang, Z. Liu, Y. Lin, J. Lin, and S. Han. HAQ: Hardware-

aware automated quantization with mixed precision. In CVPR,

2019.

[64] Y. Wang, C. Si, and X. Wu. Regression model fitting under

differential privacy and model inversion attack. In IJCAI,

2015.

[65] P. Welinder, S. Branson, T. Mita, C. Wah, F. Schroff, S. Be-

longie, and P. Perona. Caltech-UCSD Birds 200. Technical

report, Caltech, 2010.

[66] B. Wu, X. Dai, P. Zhang, Y. Wang, F. Sun, Y. Wu, Y. Tian,

P. Vajda, Y. Jia, and K. Keutzer. FBNet: Hardware-aware

efficient ConvNet design via differentiable neural architecture

search. In CVPR, 2019.

[67] Z. Xu, Y.-C. Hsu, and J. Huang. Training shallow and thin

networks for acceleration via knowledge distillation with con-

ditional adversarial networks. In ICLR Workshop, 2018.

[68] Z. Yang, E.-C. Chang, and Z. Liang. Adversarial neural

network inversion via auxiliary knowledge alignment. arXiv

preprint arXiv:1902.08552, 2019.

[69] J. Ye, X. Lu, Z. Lin, and J. Z. Wang. Rethinking the smaller-

norm-less-informative assumption in channel pruning of con-

volution layers. In ICLR, 2018.

[70] J. Yim, D. Joo, J. Bae, and J. Kim. A gift from knowledge

distillation: Fast optimization, network minimization and

transfer learning. In CVPR, 2017.

[71] H. Yin, G. Chen, Y. Li, S. Che, W. Zhang, and N. K.

Jha. Hardware-guided symbiotic training for compact,

accurate, yet execution-efficient LSTM. arXiv preprint

arXiv:1901.10997, 2019.

[72] R. Yu, A. Li, C.-F. Chen, J.-H. Lai, V. I. Morariu, X. Han,

M. Gao, C.-Y. Lin, and L. S. Davis. NISP: Pruning networks

using neuron importance score propagation. In CVPR, 2018.

[73] S. Zagoruyko and N. Komodakis. Paying more attention to

attention: Improving the performance of convolutional neural

networks via attention transfer. In ICLR, 2017.

[74] F. Zenke, B. Poole, and S. Ganguli. Continual learning

through synaptic intelligence. In ICML, 2017.

[75] H. Zhang, I. Goodfellow, D. Metaxas, and A. Odena. Self-

attention generative adversarial networks. In ICML, 2019.

[76] C. Zhu, S. Han, H. Mao, and W. J. Dally. Trained ternary

quantization. In ICLR, 2017.

8724

