
GIFnets: Differentiable GIF Encoding Framework

Innfarn Yoo, Xiyang Luo, Yilin Wang, Feng Yang, and Peyman Milanfar

Google Research - Mountain View, California

[innfarn, xyluo, yilin, fengyang, milanfar]@google.com

Abstract

Graphics Interchange Format (GIF) is a widely used im-

age file format. Due to the limited number of palette col-

ors, GIF encoding often introduces color banding artifacts.

Traditionally, dithering is applied to reduce color banding,

but introducing dotted-pattern artifacts. To reduce artifacts

and provide a better and more efficient GIF encoding, we

introduce a differentiable GIF encoding pipeline, which in-

cludes three novel neural networks: PaletteNet, DitherNet,

and BandingNet. Each of these three networks provides an

important functionality within the GIF encoding pipeline.

PaletteNet predicts a near-optimal color palette given an

input image. DitherNet manipulates the input image to re-

duce color banding artifacts and provides an alternative to

traditional dithering. Finally, BandingNet is designed to

detect color banding, and provides a new perceptual loss

specifically for GIF images. As far as we know, this is

the first fully differentiable GIF encoding pipeline based on

deep neural networks and compatible with existing GIF de-

coders. User study shows that our algorithm is better than

Floyd-Steinberg based GIF encoding.

1. Introduction

GIF is a widely used image file format. At its core, GIF

represents an image by applying color quantization. Each

pixel of an image is indexed by the nearest color in some

color palette. Finding an optimal color palette, which is

equivalent to clustering, is an NP-hard problem. A com-

monly used algorithm for palette extraction is the median-

cut algorithm [15], due to its low cost and relatively high

quality. Better clustering algorithms such as k-means pro-

duce palettes of higher quality, but are much slower, and

have O(n2) time complexity [6, 21]. Nearly all classical

palette extraction methods involve an iterative procedure

over all the image pixels, and are therefore inefficient.

Another issue with GIF encoding is the color banding

artifacts brought by color quantization as shown in Fig-

ure 1b. A popular method for suppressing banding arti-

facts is dithering, a technique which adds small perturba-

(a) Original (b) Palette

(c) Floyd-Steinberg (d) Our Method

Figure 1: Comparison of our method against GIF encod-

ing with no dithering and Floyd-Steinberg dithering. Com-

pared to GIF without dithering (b) and Floyd-Steinberg (c),

our method (d) shows less banding artifacts as well as less

dotted noise artifacts. The examples are generated with 16

palette colors.

tions in an input image to make the color quantized version

of the input image look more visually appealing. Error dif-

fusion is a classical method for dithering, which diffuses

quantization errors to nearby pixels [8, 11, 25]. While effec-

tive, these error diffusion methods also introduce artifacts of

their own, e.g., dotted noise artifacts as shown in Figure 1c.

Fundamentally, these methods are not aware of the higher

level semantics in an image, and are therefore incapable of

optimizing for higher level perceptual metrics.

To this end, we propose a differentiable GIF encoding

framework consisting of three novel neural networks: Palet-

14473

teNet, DitherNet, and BandingNet. Our architecture en-

compasses the entire GIF pipeline, where each component

is replaced by one of the networks above. Our motivation

for designing a fully differentiable architecture is two-fold.

First of all, having a differentiable pipeline allows us to

jointly optimize the entire model with respect to any loss

functions. Instead of designing by hand heuristics for arti-

fact removal, our network can automatically learn strategies

to produce more visually appealing images by optimizing

for perceptual metrics. Secondly, our design implies that

both color quantization and dithering only involve a single

forward pass of our network. This is inherently more ef-

ficient. Therefore, our method has O(n) time complexity,

and is easy to be parallelized compared to the iterative pro-

cedures in the traditional GIF pipeline.

Our contributions are the following:

• To the best of our knowledge, our method is the first

fully differentiable GIF encoding pipeline. Also, our

method is compatible with existing GIF decoders.

• We introduce PaletteNet, a novel method that extracts

color palettes using a neural network. PaletteNet

shows a higher peak signal-to-noise ratio (PSNR) than

the traditional median-cut algorithm.

• We introduce DitherNet, a neural network-based ap-

proach to reducing quantization artifacts. DitherNet is

designed to randomize errors more on areas that suffer

from banding artifacts.

• We introduce BandingNet, a neural network for detect-

ing banding artifacts which can also be used as a per-

ceptual loss.

The rest of the paper is structured as follows: Section 2

reviews the current literature on relevant topics. Section 3

gives a detailed explanation of our method. The experi-

ments are given in Section 4, and conclusions in Section 5.

2. Previous Work

We categorize the related literature into four topics:

dithering, palette selection, perceptual loss, and other re-

lated work.

2.1. Dithering and Error Diffusion

Dithering is a procedure to randomize quantization er-

rors. Floyd-Steinberg error diffusion [11] is a widely used

dithering algorithm. The Floyd-Steinberg algorithm se-

quentially distributes errors to neighboring pixels. Ap-

plying blue-noise characteristics on dithering algorithms

showed improvement in perceptual quality [25, 34]. Kite

et al. [18] provided a model for error diffusion as linear

gain with additive noise, and also suggested quantification

of edge sharpening and noise shaping. Adaptively chang-

ing threshold in error diffusion reduces artifact of quantiza-

tion [9].

Halftoning or digital halftoning are other types of er-

ror diffusion methods, representing images as patternized

gray pixels. In halftoning, Pang et al. [26] used structural

similarity measurement (SSIM) to improve halftoned im-

age quality. Chang et al. [8] reduced the computational cost

of [26] by applying precomputed tables. Li and Mould [22]

alleviated contrast varying problems using contrast-aware

masks. Recently, Fung and Chan [12] suggested a method

to optimize diffusion filters to provide blue-noise character-

istics on multiscale halftoning, and Guo et al. [13] proposed

a tone-replacement method to reduce banding and noise ar-

tifacts.

2.2. Palette Selection

Color quantization involves clustering the pixels of an

image to N clusters. One of the most commonly used al-

gorithms for GIF color quantization is the median-cut al-

gorithm [5]. Dekker proposed using Kohonen neural net-

works for predicting cluster centers [10]. Other clustering

techniques such as k-means [6], hierarchical clustering [7],

particle swarm methods [24] have also been applied to the

problem of color quantization [30].

Another line of work focuses on making clustering al-

gorithms differentiable. Jang et al. [16] proposed efficient

gradient estimators for the Gumbel-Softmax which can be

smoothly annealed to a categorical distribution. Oord et

al. [35] proposed VQ-VAE that generates discrete encod-

ings in the latent space. Agustsson et al. [1] provides an-

other differentiable quantization method through annealing.

Peng et al. [27] proposed a differentiable k-means network

which reformulates and relaxes the k-means objective in a

differentiable manner.

2.3. Perceptual Loss

Compared to quantitative metrics, e.g., signal-to-noise

ratio (SNR), PSNR, and SSIM, perceptual quality metrics

measure human perceptual quality. There have been efforts

to evaluate perceptual quality using neural networks. John-

son et al. [17] suggested using the feature layers of convolu-

tional neural networks as a perceptual quality metric. Talebi

and Milanfar [33] proposed NIMA, a neural network based

perceptual image quality metric. Blau and Michaeli [3] dis-

cussed the relationship between image distortion and per-

ceptual quality, and provided comparisons of multiple per-

ceptual qualities and distortions. The authors extended their

discussion further in [4] and considered compression rate,

distortion, and perceptual quality. Zhang et al. [38] com-

pared traditional image quality metrics such as SSIM or

PSNR and deep network-based perceptual quality metrics,

and discussed the effectiveness of perceptual metrics.

14474

Input Image I

Projection
Proj

Palette

Palette Selection Dithering

Palette Image I’

Median-cut Floyd-Steinberg Error Diffusion Projection
Proj

Output Image Ȋ

(a) Traditional Pipeline

Input Image I

PaletteNet

Projection
Projs/h

DitherNet

Palette

Projection
Projs/h

Error Image E’ Output Image Ȋ

Palette Prediction Dithering

Loss L1(E’, I - I’) Perceptual Loss R(I, Ȋ) BandingNet Loss B(Ȋ)

Palette Image I’

Loss L1(I, Ȋ)Loss L2(I, I’)

(b) Our Pipeline

Figure 2: Traditional GIF pipeline (a) and our GIF encoding pipeline (b). In our pipeline, PaletteNet predicts a near-optimal

color palette and applies either a soft or hard projection to produce the quantized output image. DitherNet suppresses the

banding artifacts by randomizing quantization errors, and BandingNet provides a perceptual loss to judge the severity of

banding artifacts.

Banding is a common compression artifact caused by

quantization. There are some existing works [2, 20, 37]

about banding artifact detection, where the method pro-

posed by Wang et al. [37] achieved strong correlations with

human subjective opinions. Lee et al. [20] segmented the

image into smooth and non-smooth regions, and computed

various directional features, e.g., contrast and Sobel masks,

and non-directional features, e.g., variance and entropy for

each pixel in the non-smooth region to identify it as “band-

ing boundaries” or “true edges”. Baugh et al. [2] related the

number of uniform segments to the visibility of banding.

Their observation was that when the size of most of the uni-

form segments in an image was less than 10 pixels in area,

then there was no perceivable banding in the image. Wang

et al. [37] extracted banding edges from homogeneous seg-

ments, and defined a banding score based on length and

visibility of banding edges. The proposed banding metrics

have a good correlation with subjective assessment.

2.4. Other Related Work

GIF2Video [36] is a recent work that also involves the

GIF format and deep learning. GIF2Video tackles the prob-

lem of artifact removal for both static or animated GIF im-

ages. This is complementary to our work since GIF2Video

is a post-processing method, whereas our method is a pre-

processing method.

Our method also uses several well-known neural net-

work architectures, such as ResNet [14], U-Net [29], and

Inception [31]. ResNet allowed deeper neural network con-

nections using skip connections and showed significant per-

formance improvement on image classification tasks. In-

ception used different convolution kernel sizes and merged

outputs, and achieved better image classification accuracy

than humans. U-Net introduced an auto-encoder with skip

connections, and achieved high quality output images in

auto-encoder.

3. Method

As shown in Figure 2a, GIF encoding involves sev-

eral steps: (1) color palette selection; (2) pixel value

quantization given the color palette; (3) dithering; (4) re-

applying pixel quantization; (5) Lempel-Ziv-Welch lossless

data compression. The last step is lossless compression,

and it does not affect the image quality. Thus we will fo-

cus on replacing the first four steps with neural networks to

improve the image quality. To make a differentiable GIF

encoding pipeline, we introduce two neural networks: 1)

PaletteNet, predicting the color palette from a given input

image and 2) DitherNet for reducing quantization artifacts.

We also introduce soft projection to make the quantization

step differentiable. To suppress banding artifacts, we intro-

duce BandingNet as an additional perceptual loss. Figure 2b

shows the overall architecture of the differentiable GIF en-

14475

coding pipeline.

3.1. PaletteNet: Palette Prediction

The goal of PaletteNet is to predict a near-optimal palette

with a feed-forward neural network given an RGB image

and the number of palette Np. We emphasize here that at

inference time, the output from PaletteNet will be directly

used as the palette, and no additional iterative optimization

is used. Therefore, PaletteNet in effect learns how to cluster

image pixels in a feed-forward fashion.

We first state a few definitions and notations. Let I ∈
R

H×W×3 be the input image, P ∈ R
Np×3 a color palette

with Np number of palettes, Q(I) : RH×W×3 → R
Np×3

be the palette prediction network. We define I ′ to be the

quantized version of I using a given palette P , i.e.,

I ′[α] = P [k], k = argmin
j

|I ′[α]− P [j]|2, (1)

where α is any indexing over the pixel space.

Given the definitions above, PaletteNet is trained in a

self-supervised manner with a standard L2 loss.

Lpalette =
1

H ×W

∑

α

|I[α]− P [k]|2. (2)

Next, we introduce the soft projection operation to make

the quantized image I ′ also differentiable with respect to

the network parameters of Q. Note that since the predicted

palette P is already differentiable with respect to Q, the

non-differentiability of the projected image I ′ is due to the

hard projection operation defined in Equation 1. Therefore,

we define a soft projection I ′s which smooths the argmin
operation in Equation 1,

Projs(I, P, α) = I ′s[α] =
∑

j

wj · P [j], (3)

where wj =
exp(dj/T)∑
l
exp(dl/T) , dj = ‖P [j] − I ′s[α]‖

2, and T

a temperature parameter controlling the amount of smooth-

ing. Note that the soft projection is not required for the

training of PaletteNet itself, but needed if we want to chain

the quantized image I ′ as a differentiable component of

some additional learning system, such as in the case of our

GIF encoding pipeline in Figure 2b.

3.2. DitherNet: Reducing Artifacts

Dithering is an algorithm to randomize quantization er-

rors into neighboring pixels in images to avoid banding ar-

tifacts. After the color quantization, we define the error im-

age as

E(α) = I(α)− Projh(I(α), P), (4)

where I is the original image, Projh is a hard projection

function that returns the nearest color in P , and α is any in-

dexing over the pixel space. The traditional Floyd-Steinberg

algorithm diffuses errors with fixed weights, and updates

neighboring pixels in a sequential fashion.

Different from Floyd-Steinberg, our DitherNet D ac-

cepts an original image I and its quantized image I ′ as

an input, and directly predicts a randomized error image

E′ = D(I, I ′). The predicted error is then added to the

original image to produce the final quantized image.

Î = Projs/h(I + E′, P), (5)

where Projs is the soft projection and used for training to

maintain differentiability. The hard projection (Projh) is

used for inference.

For the network architecture, DitherNet uses a variation

of U-Net [29] as a backbone network for creating error im-

ages. Training DitherNet is inherently a multi-loss prob-

lem. The final output has to remain close to the original,

while achieving good visual quality after quantization. Ide-

ally, DitherNet should be able to reduce the errors along the

banding areas in a visually pleasing way. To this end, we de-

fine the dithering loss, Ldither, as a combination of image

fidelity measures, perceptual losses, as well as a customized

banding loss term to explicitly suppress banding artifacts.

We define the L1 loss as L1(x, y) =
∑

|x(i)−y(i)|, where

| · | is the absolute difference operator and i is the element

index. The dither loss is defined as

Ldither = λL1(I, Î) + γL1(E
′, I ′ − I)

+δB(Î) + θR(I, Î),
(6)

where B is the banding loss given by BandingNet (see Sec-

tion 3.3), R is a perceptual loss given by either NIMA [33]

or VGG [17], and λ, γ, δ, and θ are weights of each loss. In

Equation 6, L1(I, Î) preserves the similarity between input

and final quantized images, L1(E
′, I − I ′) is for preserv-

ing the sum of quantization errors, and B(Î) is the banding

loss. We will discuss the effect of each term in Section 4.2.

3.3. BandingNet: Banding Score

We propose a neural network that predicts the severity of

banding artifacts in an image. We train the network by dis-

tilling from the non-differentiable banding metric in [37].

The output of this network will be used as the loss to guide

our DitherNet.

A straightforward way to train the model is to directly

use the RGB image as input, and banding scores obtained

by [37] as ground truth. We first tried to use a classical

CNN model [19] to train the banding predictor, and defined

the loss as the mean absolute difference (MAD) between

predicted score and ground truth. However, as shown in

Figure 3 (red lines), such naive approach is unstable over

training, and could not achieve low MAD.

As pointed out in [37], banding artifacts tend to appear

on the boundary between two smooth regions. We found

14476

Training Iterations

M
ea

n
Ab

so
lu

te
 D

iff
er

en
ce

 (M
AD

)

0

0.1

0.2

0.3

0.4

100000 200000 300000 400000

Figure 3: Mean Absolute Difference (MAD) between pre-

computed and predicted banding scores. Red lines represent

MAD without banding edge map, and blue lines show MAD

with edge map over training iteration. Solid lines represent

the trend of MAD over training iterations.

that adding a map of likely banding artifact areas as input

would significantly improve the model. Here we propose

a way to extract potential banding edges, and form a new

input map (Algorithm 1).

Algorithm 1 Input Generation for BandingNet

1: function BANDINGINPUTS(RGB)

2: Converting RGB to Y UV
3: Computing gradient Gx and Gy for Y channel only

4: Gradient map G = ||Gx
2 +Gy

2||2
5: Weight W = ((1−ReLU(1−G))∗ones(7×7))2

6: Banding edge map E = W · G
7: return M = [Y, E]
8: end function

As shown in Figure 4, the extracted edge map is able

to highlight potential banding edges, e.g., banding on the

background, and set relatively low weights for true edges

like eyes and hair. By using this new input map, the training

converges faster than using the RGB map, and MAD is also

lowered as well, 0.057 vs. 0.088 within the banding score

range [0, 1].

To use the BandingNet as a perceptual loss, we pro-

pose some additional modifications to the banding net-

work proposed above. First, we augment the training data

by adding pairs of GIF encoded images with and without

Floyd-Steinberg dithering, and artificially lower the band-

ing score loss for examples with Floyd-Steinberg dithering.

This guides the loss along the Floyd-Steinberg direction,

and can reduce adversarial artifacts compared to the un-

adjusted BandingNet. Secondly, we apply our BandingNet

on a multi-scale image pyramid in order to capture the band-

ing artifacts at multiple scales of the image. Compared to a

single-scale loss, the multi-scale BandingNet promotes ran-

(a) RGB (b) Y channel (c) Extracted edge

Figure 4: Illustration of banding edge extraction. The RGB

image (a) is first converted to YUV, where the Y channel (b)

is used to extract the banding edge map (c). Note that only

edges in banding artifact areas are extracted.

domizing errors on a larger spatial range instead of only

near the banding edges. To define the multi-scale loss, we

construct the image pyramid in Equation 7.

G(I, η) = Fup(Fdown(S(I), η), 1/η), (7)

where G is a level of image pyramid, Fup denotes image up-

scaling, Fdown denotes image downscaling, S is a smooth-

ing function, and η is a scaling factor.

Let Z(I) : RH×W×3 → R be the output of BandingNet.

Our final banding loss is defined by

Bη(I) = Z(G(I, η)) + Z(G(I, η2))

+Z(G(I, η3)) + Z(G(I, η4))
(8)

For training DitherNet, we use B1.5(I). The exact train-

ing parameters for our BandingNet loss can be found in the

supplementary materials.

3.4. Overall Training

The overall loss for training our networks is given in

Equation 9.

LTotal = Lpalette + Ldither =

βL2(I, I
′) + λL1(I, Î) + γL1(E

′, I − I ′)

+δB(Î) + θR(I, Î)

(9)

To stabilize training, we propose a three-stage method

for training all of the networks. In the first stage, Band-

ingNet and PaletteNet are first trained separately until con-

vergence. BandingNet will be fixed and used only as a loss

in the next two stages. In the second stage, we fix Palet-

teNet and only train DitherNet using Equation 9. In the

final stage, we use a lower learning rate to fine-tune Palet-

teNet and DitherNet jointly. We found that the second stage

is necessary to encourage DitherNet to form patterns that re-

move banding artifacts, whereas jointly training PaletteNet

and DitherNet from the start will result in PaletteNet dom-

inating the overall system, and a reduced number of colors

in the output image.

14477

(a) Original (b) Palette (c) FS Dither (d) Ours

Figure 5: Samples images of our method compared to Median-cut and Floyd Steinberg. (a) original images, (b) quantized

GIF with only PaletteNet, (c) Median-cut + Floyd-Steinberg, and (d) PaletteNet + DitherNet (our final method).

4. Experiments

We evaluate our methods on the CelebA dataset [23],

where the models are trained and evaluated on an 80/20 ran-

dom split of the dataset. For both training and evaluation,

we first resize the images while preserving the aspect ratio

so that the minimum of the image width and height is 256.

The images are then center cropped to 256× 256.

4.1. PaletteNet

For PaletteNet, we use InceptionV2 [32] as the backbone

network, where the features from the last layer are globally

pooled before passing to a fully connected layer with Np×3
output dimensions. The output is then mapped to [−1, 1] by

the tanh activation function. To train PaletteNet, we use the

L2 loss in Equation 2. The details of training parameters

are discussed in the supplementary material.

We evaluate the average PSNR of the quantized image

compared to the original, for both median-cut and Palet-

teNet. We also explored using PointNet [28], a popular

architecture for processing point cloud input, as a compar-

ison. The traditional method of palette extraction can be

viewed as clustering a 3D point cloud, where each point

corresponds to an RGB pixel in the image. The point

cloud formed by the image pixels clearly retains rich ge-

ometric structures, and thus is highly applicable to Point-

Net. The details of PointNet are discussed in the supple-

mentary material. Results for different values of Np ∈
{16, 32, 64, 128, 256} are shown in Table 1.

From Table 1, we see that PaletteNet with the Incep-

tionV2 network outperforms median-cut across all values of

Np, where the improvement is more pronounced for lower

values of Np. We also note that the PointNet architec-

14478

PSNR Np = 16 Np = 32 Np = 64 Np = 128 Np = 256
Median-cut 28.10 30.78 33.27 35.61 37.80

PointNet 26.05 27.93 30.41 32.67 33.09

InceptionV2 29.24 31.6 33.75 35.81 38.08

Table 1: Average PSNR of quantized images for different

palette extraction methods. Top row: Median-cut palette,

Middle row: palette from PointNet, Bottom row: palette

from InceptionV2.

ture performed worse than the InceptionV2 network and

Median-cut.

4.2. DitherNet

We note here that the DitherNet needs to be trained with

relatively high weights on the various perceptual losses in

order to produce perturbations that improve visual quality.

However, raising these weights too much introduces adver-

sarial artifacts that lowers the perceptual loss, but no longer

produces examples of high visual quality. To reduce this

effect, we augment the input images by changing satura-

tion, hue, and also apply early stopping where we terminate

training at epoch 3. The details of training parameters are

discussed in the supplementary material.

Without Banding Loss With Banding Loss

PSNR 29.19 28.65

SSIM 0.854 0.828

Table 2: PSNR and SSIM with and without banding loss for

color palette with 16 colors.

Table 2 shows that training without banding loss pro-

vides better PSNR and SSIM. However, DitherNet trained

with banding loss provides better perceptual quality as

shown in Figure 6. In our experiment, our method shows

better quality with VGG [17] and NIMA [33] perceptual

losses as shown in Figure 7.

(a) Original (b) Without BL (c) With BL

Figure 6: The original image before training (a), and the

results of training without banding loss (b) and with banding

loss (c).

Quantitative metrics, such as PSNR or SSIM, are not

proper metrics to compare dithering methods, since dither-

ing is mainly used for improving perceptual quality and

(a) Original (b) No Perc Loss

(c) VGG Loss (d) NIMA Loss

Figure 7: The results of training with and without percep-

tual loss (Np = 16).

does not necessarily improve PSNR or SSIM over non-

dithered images. Instead, to evaluate the visual quality of

our algorithm compared to the standard GIF pipeline with

Floyd-Steinberg error diffusion and median-cut palette, a

pairwise comparison user study was conducted using Ama-

zon’s Mechanical Turk. We randomly choose 200 im-

ages from the CelebA evaluation data, and produce quan-

tized images from the standard GIF pipeline and our model.

Raters are then asked to choose from a pair which image is

of higher quality. For each image pair, we collect ratings

from 10 independent users.

Np = 16 Np = 32 Np = 64
87.5 85.0 79.4

Np = 128 Np = 256 Average

45.1 47.1 68.8.

Table 3: Favorability of our method compared to Median-

cut + Floyd-Steinberg.

Table 3 shows the favorability of our method compared

to the standard median-cut with Floyd-Steinberg dithering.

We see that our method outperforms the baseline by a large

margin when the number of palettes is low, and has com-

parable performance when the number of palettes is high.

There are several causes to the discrepancy in favorability

14479

FS

Ours

FS

Ours

(a) 16 Palette (b) 32 Palette (c) 64 Palette (d) 128 Palette (e) 256 Palette

Figure 8: Side-by-side comparisons of our method and Floyd-Steinberg for 16, 32, 64, 128, and 256 palettes.

for different numbers of palette levels. First of all, the num-

ber of images with visible banding artifacts decreases as the

number of palettes increases. On images without banding

artifacts, our method is almost identical to that from the

standard GIF pipeline, since raters are often not sensitive

to the minute differences in PSNR. On images with band-

ing artifacts, a key difference between low and high palette

count is in the visibility of the dotted pattern artifacts. When

the number of palette levels is low, the dotted patterns are

much more visible in the image and often rated unfavorably

compared to the patterns from DitherNet. Another reason

is the performance gap between PaletteNet and median-cut

shrinks as the number of palettes grows (see Table 1).

5. Conclusion

In this paper, we proposed the first fully differentiable

GIF encoding pipeline by introducing DitherNet and Palet-

teNet. To further improve the encoding quality, we in-

troduced BandingNet that measures banding artifact score.

Our PaletteNet can predict high quality palettes from in-

put images. DitherNet is able to distribute errors and lower

banding artifacts using BandingNet as a loss. Experimental

results show that our algorithm achieved better quality than

Floyd-Steinberg algorithm. Our method can be extended in

multiple directions as future work. For example, k-means

based palette prediction and heuristic methods for dither-

ing, i.e., [21], show higher visual quality than ours. We

also would like to extend our current work to image recon-

struction, static to dynamic GIF, and connecting with other

differentiable image file formats.

References

[1] Eirikur Agustsson, Fabian Mentzer, Michael Tschannen,

Lukas Cavigelli, Radu Timofte, Luca Benini, and Luc V

Gool. Soft-to-hard vector quantization for end-to-end learn-

ing compressible representations. In NeurIPS, pages 1141–

1151. 2017.

[2] Gary Baugh, Anil Kokaram, and François Pitié. Advanced

video debanding. In CVMP, pages 1–10, November 2014.

14480

[3] Yochai Blau and Tomer Michaeli. The perception-distortion

tradeoff. In CVPR, pages 6228–6237, June 2018.

[4] Yochai Blau and Tomer Michaeli. Rethinking lossy com-

pression: The rate-distortion-perception tradeoff. In ICML,

June 2019.

[5] Peter Burger and Duncan Gillies. Interactive Computer

Graphics; Functional, Procedural, and Device-Level Meth-

ods. Addison-Wesley Longman Publishing Co., Inc., USA,

1st edition, 1990.

[6] M. Emre Celebi. Improving the performance of k-means for

color quantization. Image and Vision Computing, 29(4):260–

271, March 2011.

[7] M. Emre Celebi, Quan Wen, and Sae Hwang. An effective

real-time color quantization method based on divisive hier-

archical clustering. Journal of Real-Time Image Processing,

10:329–344, June 2015.

[8] Jianghao Chang, Benoundefinedt Alain, and Victor Ostro-

moukhov. Structure-aware error diffusion. ACM Transac-

tions on Graphics, 28(5):1–8, December 2009.

[9] Niranjan Damera-Venkata and Brian L. Evans. Adaptive

threshold modulation for error diffusion halftoning. IEEE

Transactions on Image Processing, 10(1):104–116, January

2001.

[10] Anthony H. Dekker. Kohonen neural networks for optimal

colour quantization. Network: Computation in Neural Sys-

tems, 5(3):351–367, 1994.

[11] Robert W. Floyd and Louis Steinberg. An adaptive algorithm

for spatial greyscale. Proceedings of the Society for Informa-

tion Display, 17(2):75–77, 1976.

[12] Yik-Hing Fung and Yuk-Hee Chan. Optimizing the er-

ror diffusion filter for blue noise halftoning with multiscale

error diffusion. IEEE Transactions on Image Processing,

22(1):413–417, January 2013.

[13] Jing-Ming Guo, Jia-Yu Chang, Yun-Fu Liu, Guo-Hong

Lai, and Jiann-Der Lee. Tone-replacement error diffusion

for multitoning. IEEE Transactions on Image Processing,

24(11):4312–4321, November 2015.

[14] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Deep residual learning for image recognition. In CVPR,

pages 770–778, June 2016.

[15] Paul Heckbert. Color image quantization for frame buffer

display. SIGGRAPH Computer Graphics, 16(3):297–307,

July 1982.

[16] Eric Jang, Shixiang Gu, and Ben Poole. Categorical

reparameterization with gumbel-softmax. arXiv preprint

arXiv:1611.01144, November 2016.

[17] Justin Johnson, Alexandre Alahi, and Li Fei-Fei. Perceptual

losses for real-time style transfer and super-resolution. In

ECCV, pages 694–711, September 2016.

[18] Thomas D. Kite, Brian L. Evans, and Alan C. Bovik. Mod-

eling and quality assessment of halftoning by error diffu-

sion. IEEE Transactions on Image Processing, 9(5):909–

922, May 2000.

[19] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton.

Imagenet classification with deep convolutional neural net-

works. In NeurIPS, pages 1097–1105. 2012.

[20] Ji Won Lee, Bo Ra Lim, Rae-Hong Park, Jae-Seung Kim,

and Wonseok Ahn. Two-stage false contour detection using

directional contrast and its application to adaptive false con-

tour reduction. IEEE Transactions on Consumer Electronics,

52(1):179–188, February 2006.

[21] Kornel Lesiński. Pngquant. pngquant.org, November 2019.

[22] Hua Li and David Mould. Contrast-aware halftoning. Com-

puter Graphics Forum, 29(2):273–280, June 2010.

[23] Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang.

Deep learning face attributes in the wild. In ICCV, pages

3730–3738, December 2015.

[24] Mahamed G. H. Omran, Andries P. Engelbrecht, and Ayed

Salman. Particle Swarm Optimization for Pattern Recogni-

tion and Image Processing, pages 125–151. Springer, Berlin,

Heidelberg, 2006.

[25] Victor Ostromoukhov. A simple and efficient error-diffusion

algorithm. In SIGGRAPH, pages 567–572, August 2001.

[26] Wai-Man Pang, Yingge Qu, Tien-Tsin Wong, Daniel Cohen-

Or, and Pheng-Ann Heng. Structure-aware halftoning. In

SIGGRAPH, pages 1–8, August 2008.

[27] Xi Peng, Joey Tianyi Zhou, and Hongyuan Zhu. k-meansnet:

When k-means meets differentiable programming. arXiv

preprint arXiv:1808.07292, August 2018.

[28] Charles R. Qi, Hao Su, Kaichun Mo, and Leonidas J. Guibas.

Pointnet: Deep learning on point sets for 3d classification

and segmentation. In CVPR, pages 652–660, July 2017.

[29] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net:

Convolutional networks for biomedical image segmentation.

In MICCAI, pages 234–241, November 2015.

[30] Paul Scheunders. A comparison of clustering algorithms ap-

plied to color image quantization. Pattern Recognition Let-

ters, 18(11):1379–1384, November 1997.

[31] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet,

Scott Reed, Dragomir Anguelov, Dumitru Erhan, Vincent

Vanhoucke, and Andrew Rabinovich. Going deeper with

convolutions. In CVPR, pages 1–9, June 2015.

[32] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon

Shlens, and Zbigniew Wojna. Rethinking the inception ar-

chitecture for computer vision. In CVPR, pages 2818–2826,

June 2016.

[33] Hossein Talebi and Peyman Milanfar. Nima: Neural im-

age assessment. IEEE Transactions on Image Processing,

27(8):3998–4011, August 2018.

[34] Robert Ulichney. Dithering with blue noise. Proceedings of

the IEEE, 76(1):56–79, January 1988.

[35] Aaron van den Oord, Oriol Vinyals, and koray kavukcuoglu.

Neural discrete representation learning. In NeurIPS, pages

6306–6315. 2017.

[36] Yang Wang, Haibin Huang, Chuan Wang, Tong He, Jue

Wang, and Minh Hoai. Gif2video: Color dequantization and

temporal interpolation of gif images. In CVPR, pages 1419–

1428, June 2019.

[37] Yilin Wang, Sang-Uok Kum, Chao Chen, and Anil Kokaram.

A perceptual visibility metric for banding artifacts. In ICIP,

pages 2067–2071, September 2016.

[38] Richard Zhang, Phillip Isola, Alexei A. Efros, Eli Shecht-

man, and Oliver Wang. The unreasonable effectiveness of

14481

deep features as a perceptual metric. In CVPR, pages 586–

595, June 2018.

14482

