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Abstract

The successful application of deep learning to many vi-

sual recognition tasks relies heavily on the availability of

a large amount of labeled data which is usually expensive

to obtain. The few-shot learning problem has attracted

increasing attention from researchers for building a ro-

bust model upon only a few labeled samples. Most ex-

isting works tackle this problem under the meta-learning

framework by mimicking the few-shot learning task with an

episodic training strategy. In this paper, we propose a new

transfer-learning framework for semi-supervised few-shot

learning to fully utilize the auxiliary information from la-

beled base-class data and unlabeled novel-class data. The

framework consists of three components: 1) pre-training a

feature extractor on base-class data; 2) using the feature

extractor to initialize the classifier weights for the novel

classes; and 3) further updating the model with a semi-

supervised learning method. Under the proposed frame-

work, we develop a novel method for semi-supervised few-

shot learning called TransMatch by instantiating the three

components with Imprinting and MixMatch. Extensive ex-

periments on two popular benchmark datasets for few-shot

learning, CUB-200-2011 and miniImageNet, demonstrate

that our proposed method can effectively utilize the aux-

iliary information from labeled base-class data and unla-

beled novel-class data to significantly improve the accuracy

of few-shot learning task.

1. Introduction

Deep learning methods have been making impressive

progress in different areas of artificial intelligence in re-
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cent years. Nevertheless, most of the popular deep learn-

ing methods require a large amount of labeled data which is

usually very expensive and time-consuming to collect. The

straightforward adoption of deep learning methods with a

limited amount of labeled data usually leads to overfitting.

Therefore, the question of whether it is able to learn a robust

model from only a limited amount of labeled data arises. It

is well-known that humans have the ability to learn from a

single or very few labeled samples. This motivates recent

research efforts on learning a novel concept from a single

or a few examples, i.e., few-shot learning.

In the past couple of years, an increasing number of few-

shot learning methods have been proposed. One family of

work focuses on training the model under the meta-learning

framework based on an episodic training strategy [25]. In

particular, a sequence of episodes are randomly sampled

where each episode consists of a few samples in the base

classes to mimic the test scenario where only a few la-

beled samples of the novel classes are available. The la-

beled samples in each episode are divided into supports and

queries, where supports are used for building the classi-

fier and queries are used for evaluating. At the same time,

another family of work focuses on how to learn a classi-

fier for the novel classes with only few-shot examples by

transferring the knowledge from a model pre-trained on

large amount of data from the base classes [16, 17]. This

paradigm shares similarity with human behaviors, by trans-

ferring past experience to new tasks. We denote this fam-

ily of methods as transfer-learning based methods. Our

method is inspired by the latter family of work and aims

to learn a good classifier for the novel classes of few-shot

examples with the help of the pre-trained classifier on abun-

dant data from base classes and auxiliary unlabeled data

from novel classes.

We believe the sufficient and proper utilization of extra

information is crucial to the success of applying few-shot
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Figure 1. An overview of meta-learning based semi-supervised few-shot classification framework. Unlabeled images are required during

training to allow the meta-learner learn how to leverage unlabeled images for classification.

learning. Such extra information can exist in various forms,

while in this work, we focus on leveraging extra information

from the labeled base-class data and unlabeled novel-class

data. These two types of information are usually easy to

obtain. Many existing large-scale datasets for visual recog-

nition tasks can be used for pre-training a model which can

be later transferred to a new task. Meanwhile, it is also rel-

atively easy to acquire a large amount of unlabeled data for

a new task. Thus, a new paradigm called semi-supervised

few-shot learning arises recently.

A representative work for semi-supervised few-shot

learning [19] employed the meta-learning framework and

enhanced the prototypical networks [22] to use unlabeled

data. In each episode during meta-training, the unlabeled

data for base classes was included to mimic the test sce-

nario where the unlabeled data for novel classes would be

available. Liu et al. [11] proposed transductive propagation

to incorporate the popular label propagation method to uti-

lize the unlabeled data in episodic training. These works

demonstrated that considering the unlabeled data helped to

improve the accuracy of few-shot classification under the

meta-learning framework.

In this paper, we propose a new framework for semi-

supervised few-shot learning to fully utilize the auxiliary in-

formation from labeled base-class data and unlabeled novel-

class data. The flowchart of our proposed framework is

shown in Fig. 2, which consists of three components. We

first train a model using the large amount of labeled data

from the base classes, encoding the knowledge from base-

class data into the pre-trained model. Then this pre-trained

model is adopted as a feature extractor to generate the fea-

ture embeddings of the labeled few-shot examples from

the novel classes, which can be directly used to imprint

classifier weights for the novel classes or as the initializa-

tion of classifier weights for further fine-tuning, following

the transfer-learning framework [16]. Different from meta-

learning, unlabeled images are no longer needed during

pre-training on base classes, and could be directly utilized

upon this imprinted classifier with state-of-the-art semi-

supervised method such as MixMatch [1]. To the best of

our knowledge, this is the first work of semi-supervised

few-shot learning under the transfer-learning framework in

contrast to the meta-learning framework.

In summary, the contributions of our work are:

1. We propose a new transfer-learning framework for

semi-supervised few-shot learning, which can fully

utilize the auxiliary information from labeled base-

class data and unlabeled novel-class data.

2. We develop a new method called TransMatch under

the proposed framework. TransMatch integrates the

advantages of transfer-learning based few-shot learn-

ing methods and semi-supervised learning methods,

and is different from the previous work on meta-

learning based methods.

3. We conduct extensive experiments on two popular

benchmark datasets for few-shot learning to demon-

strate that our method can effectively leverage unla-

beled data in few-shot learning and achieve new state-

of-the-art results.

2. Related Work

In this section, we review the related work to our

proposed transfer-learning based semi-supervised few-shot

learning framework.

2.1. Few­Shot Learning

Few-shot learning has attracted increasing attention in

recent years due to the high cost of collecting labeled data.

Existing work can be roughly categorized into (i) meta-

learning methods, and (ii) transfer-learning methods.
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Figure 2. Our proposed framework of transfer-learning scheme for semi-supervised few-shot learning. We first pre-train a classifier from

base-class images. Then use it as a feature extractor to initialize the weights for novel-class classifier. Finally, we further fine-tune the

novel-class classifier with unlabeled images by semi-supervised learning method MixMatch.

Meta-learning based method: Meta-learning based few-

shot learning, also known as learning to learn, aims to learn

a paradigm that can be adapted to recognize novel classes

with only few-shot training examples. Meta-learning based

methods usually consist of two stages: 1) meta-training;

and 2) meta-testing. In the meta-training stage, a sequence

of episodes are randomly sampled from the examples of

base classes where each episode contains K support ex-

amples and Q query examples from N classes, denoted as

an N -way K-shot episode. In this way, the meta-training

stage can mimic the few-shot testing stage where only a

few examples per class are available. The meta-learning

based methods can be further divided into two categories:

a) metric-based methods; and b) optimization-based meth-

ods.

a) Metric-based methods have been proposed in many

existing work [9, 15, 22, 23, 25]. These methods mainly

focus on learning a good metric to measure the distance or

similarity among support images and query images. For ex-

ample, prototypical networks [22] calculated the distance

of the prototype representations of each class between sup-

ports and queries. Relation Net [23] implemented a net-

work to measure the relation similarities between the sup-

ports and queries. Nearest Neighbour Neural Network [9]

explored the nearest neighbors in local descriptors of fea-

ture embeddings.

b) Optimization-based methods aim to design an op-

timization algorithm that can adapt the information dur-

ing meta-training stage to the meta-testing stage. Meta-

LSTM [18] formulated the problem as an LSTM-based

meta-learning algorithm to update the optimization algo-

rithm in few-shot learning. MAML [4] learned an opti-

mization method that can follow the fast gradient direction

to rapidly learn the classifier for novel classes. LEO [20]

decoupled the gradient-based adaptation process with high-

dimensional parameters to few-shot scenarios.

Transfer-learning based methods: Transfer-learning

based methods are different from meta-learning based

methods, as they do not use the episodic training strategy.

Instead, such methods can use conventional techniques to

pre-train a model on the large amount of data from the

base classes. The pre-trained model is then adapted to the

few-shot learning task of recognizing novel classes. Qi et

al. [16] proposed to imprint the classifier weights of novel

classes by the mean vectors of the feature embeddings of

few-shot examples. Qiao et al. [17] learned a mapping

function from the activations (i.e., feature embeddings) of

novel class examples to classifier weights. Gidaris et al. [5]

proposed an attention module to dynamically predict the

classifier weights for novel classes. Chen et al. [2] shown

such transfer-learning based methods can achieve competi-

tive performance as meta-learning based methods. Our pro-

posed framework shares a similar idea with [16] by pre-

training a feature extractor and uses it to extract features

for few-shot examples from novel classes which are used to

imprint classifiers weights.

2.2. Semi­Supervised Learning

Semi-supervised learning focuses on developing algo-

rithms to learn from unlabeled and labeled data. Existing

work can be roughly categorized into (i) consistency regu-

larization methods, and (ii) entropy minimization methods.

Consistency regularization methods: Consistency regu-

larization methods mainly focus on adding noise and aug-

mentation to images without changing their label distribu-

tion. Π-Model [7] added a loss term to regularize the model

by stochastic augmentation. Mean Teacher [24] improved

Π-Model by using the exponential moving average of pa-

rameters. Virtual Adversarial Training (VAT) [13] regular-

ized the model by adding local perturbation on unlabeled
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data.

Entropy minimization methods: This family of methods

focuses on giving low entropy for unlabeled data. It is ini-

tially proposed by [6] which minimized conditional entropy

of unlabeled data. Pseudo-Label [8] minimized the entropy

directly by predicting the labels for unlabeled data and used

this in cross-entropy, showing its good performance.

MixMatch [1] united different kinds of consistency regu-

larization and entropy minimization methods and achieved

state-of-the-art performance by a large margin comparing

with all the previous methods. It is a holistic method in

semi-supervised learning and we would introduce briefly in

Section 3.3. Due to its good performance, we adopt Mix-

Match in our framework, and we also compared with using

other mainstream semi-supervised learning methods in the

experiments. Semi-supervised learning methods are usu-

ally compared on small datasets [1, 13, 14] where there is

a small amount of labeled data. But the number of labeled

images in typical semi-supervised learning is still greater

than few-shot learning. The techniques for semi-supervised

method may not be directly used for few-shot setting, which

is also demonstrated in our experiments that naively apply-

ing MixMatch to few-shot learning may lead to poor perfor-

mance especially in 1-shot and 2-shot.

2.3. Semi­Supervised Few­Shot Learning

When there are few-shot examples for novel classes, it

is straightforward to utilize extra unlabeled data to improve

the learning. This leads to the family of semi-supervised

few-shot learning methods (SSFSL). There are very few

works in this direction. Ren et al. [19] extended prototyp-

ical networks to incorporate unlabeled data by producing

prototypes for the unlabeled data. Liu et al. [11] constructed

a graph between labeled and unlabeled data and utilize la-

bel propagation to obtain the labels of unlabeled data. Sun

et al. [10] applied self-training by adding the confident pre-

diction of unlabeled to the labeled training set in each round

of optimization.

However, all existing semi-supervised few-shot learn-

ing methods are meta-learning based methods as in Fig. 1.

As shown in [2], transfer-learning based method can

achieve competitive performance compared with meta-

learning based methods. This motivates our work. We

need to emphasize that meta-learning based methods have

shown their success to utilize unlabeled data by integrating

unlabeled data in episodic training. However, this episodic

training strategy is different from typical semi-supervised

learning and it is not appropriate to combine them together

directly. The techniques of leveraging unlabeled data in

existing SSFSL methods are not state-of-the-art in semi-

supervised areas and the more powerful and holistic meth-

ods like MixMatch would be difficult to integrate in meta-

learning framework. Meanwhile, directly applying semi-

supervised methods to utilize unlabeled data during test

may lead to bad performance due to the extreme small num-

ber of labeled data.

3. The Proposed Framework

In this section, we introduce our proposed transfer-

learning framework for semi-supervised few-shot learning.

The flowchart is illustrated in Fig. 2, which contains three

modules: 1) pre-training a feature extractor on base-class

data; 2) use the feature extractor to extract features from

novel-class data and imprint novel-class classifier weights;

and 3) further fine-tuning the model by semi-supervised

learning method. Before elaborating the details of each

module, let us first introduce our problem definition.

Problem definition: We have a large-scale dataset Dbase

containing many-shot labeled examples from each base

class in Cbase and a small-scale dataset Dnovel of only

few-shot labeled examples and many-shot unlabeled exam-

ples from each novel class in Cnovel, where Cnovel is dis-

joint from Cbase. The task of semi-supervised few-shot

learning is to learn a robust classifier using both the few-

shot labeled examples and many-shot unlabeled examples

in Dnovel with the examples in Dbase as auxiliary data. Usu-

ally in a conventional few-shot learning task, a small sup-

port set of N classes with K images per class is sampled

from Dnovel, leading to the N -way-K-shot problem. In

semi-supervised few-shot learning, additional U unlabeled

images are sampled from each of the N novel classes or

distractor classes.

3.1. Part I: Pre­train Feature Extractor

The first module of our framework, as shown in the

left part of Fig. 2, is a pre-training module, which relies

on the many-shot examples from base classes, Dbase, to

train a base model which encodes as much as possible the

information of Dbase and can be used in the later stage

of few-shot learning as prior information, similar to hu-

man intelligence. This is different from conventional meta-

learning based few-shot learning as shown in Fig. 1, where

an episodic training strategy is employed for base classes as

well to mimic the few-shot scenario in the testing phase.

3.2. Part II: Classifier Weight Imprinting

The weight imprinting method was proposed by [16],

and has achieved impressive performance in the few-shot

learning task as a representative of transfer-learning based

few-shot learning method. Specifically, it directly sets the

classifier weights by the mean feature vectors of the N -

way-K-shot examples, where features are obtained by the

model from the pre-training stage. For convenience, we de-

note the classifier on large scale base classes as f(x) =
f base(fe(x)), where x is an input example, fe(·) is the
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feature extractor and f base(·) is the classifier. We have

fe(x) ∈ Rd and f base(·) ∈ R|Cbase|.

Given the N -way-K-shot examples from novel classes

and let us denote them as Dnovel = {xc
k|k=1...K, c=1...N}

with x
c
k as the k-th example in c-th class. We can use

the feature extractor learned on base classes to extract fea-

tures for the N -way-K-shot examples, denoted as fe(xc
k).

Meanwhile, let us write the classifier for novel classes as

fnovel(x) = W
′
x, where W = [w1, ...,wN ] ∈ Rd×N .

Note that we omit the bias for simplicity. By normalizing

the weight wc and the feature vector x onto a unit ball, the

aforementioned equation can be further simplified as

fnovel(x) = [cos(θ(w1,x), ..., cos(θ(wN ,x))]
′
, (1)

where θ(wi,x) denotes the angle between wi and x, and

the classification for a given example x is based on com-

puting the cosine similarity between every wk and x, and

predict the label of x based on maximum similarity score.

In this sense, there is a duality between wi and x. Based

on this observation, weight imprinting uses the mean fea-

ture vectors of the few-shot examples to imprint wc, i.e., by

setting

wc =
1

K

K
∑

k=1

fe(xc
k). (2)

The classification of an given example x can be also deemed

as computing the mean of the similarities between x and all

K-shot examples.

By imprinting the classifier weights with mean feature

vectors of the few-shot examples, it provides a better initial-

ization of classifier weights to reduce the intra-class vari-

ations of features and benefits fine-tuning the new classi-

fier for novel classes. Experimental results show that it can

achieve good performance even without fine-tuning.

3.3. Part III: Semi­Supervised Fine­tuning

After we get the classifier which fully absorbs the infor-

mation from base classes with a better initialization by im-

printing, we fine-tune this classifier during test when there

is unlabeled data. This fine-tuning process is the same

as semi-supervised training. Any semi-supervised learning

can be applied, and in this work we employed MixMatch [1]

not only because of its excellent performance in the semi-

supervised learning task, but also because it is a holistic

method to leverage unlabeled data in semi-supervised learn-

ing area.

MixMatch combines multiple existing improvements

from state-of-the-art semi-supervised learning methods

which is discussed in Section 2.2. In our setting, we de-

note L = {(xi, pi)}
B
i=1 as a mini-batch of B labeled ex-

amples with pi as the label, and U = {xu}
U
u=1 as a mini-

batch of U unlabeled examples. The imprinted classifier

from Part II can be used to obtain estimated labels for

the examples in U , i.e., fnovel(xu). We will omit the su-

perscript novel for the ease of illustration when there is

no confusion. For robustness, we augment each example

M times to get M versions of each unlabeled data, i.e.,

{xu,1, ...,xu,M}, and use the mean prediction as the label

estimation: p̄u = 1
M

∑M

i=1 f(xu,i). The sharpen operation

is used to enhance to prediction as pu = p̄
1

T

u /
∑N

j=1(p̄u)
1

T

j ,

we set T = 0.5 in the experiments. The same data augmen-

tation is also applied to labeled examples in L. Following

[1], we concatenate L and U and shuffle the examples, i.e.,

W = Shuffle(Concat(L,U)), and then split this set into

two new sets:

X ′
1 = {MixUp (Li,Wi) |i ∈ 1, . . . , |L|} ,

X ′
2 =

{

MixUp
(

Ui,Wi+|L|

)

|i ∈ 1, . . . , |U|
}

,

where MixUp is defined as

MixUp ((x1, p1), (x2, p2))

= ((λ′
x1 + (1− λ′)x2), (λ

′p1 + (1− λ′)p2)) (3)

with λ′ = max(λ, 1 − λ). The parameter λ is randomly

generated from a beta distribution Beta(α, α). The objec-

tive function to minimize is defined as

ℓ = ℓ1 + γℓ2, (4)

where

ℓ1 = −
1

|X ′
1|

∑

(x,p)∈X ′

1

p log(f(x)), (5)

is cross-entropy loss, and

ℓ2 =
1

N |X ′
2|

∑

(x,p)∈X ′

2

‖p− f(x)‖
2
2 . (6)

is consistency regularization loss in [21]. The details of our

algorithm is summarized in Algorithm 1.

Algorithm 1 Algorithm for our proposed TransMatch

Input: An auxiliary dataset Dbase with examples from

Cbase (base classes), N -way-K-shot dataset Dl =
{xnk, p|n=1, · · · , N ; k=1, · · · ,K} with p ∈ Cnovel
(novel classes), and Du = {xu|u = 1, · · · , U}

Output: N -way-K-shot classifier fnovel for Dl

1: Pre-train a base network on all examples in Dbase and

denote it as f base(fe(x));
2: Apply the feature extractor fe(x) to extract features on

Dl, then use these features to imprint the weights of the

novel classifier fnovel;

3: Apply semi-supervised learning method, MixMatch, to

update the novel classifier fnovel with both Dl and Du;
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4. Experiments

In this section, we evaluate our proposed TransMatch

and compare with state-of-the-art few-shot learning meth-

ods on two popular benchmark datasets for few-shot learn-

ing, including miniImageNet and CUB-200-2011.

4.1. Experiments on miniImageNet

Dataset configuration: The miniImageNet dataset was

originally proposed by [25]. It has been widely used for

evaluating few-shot learning methods. It consists of 60,000

color images from 100 classes with 600 examples per class,

which is a simplified version of ILSVRC 2015 by [3]. We

follow the split given by [18] consisting of 64 base classes,

16 validation classes and 20 novel classes. We randomly se-

lect K (resp. U ) examples from each novel class as the few-

shot labeled (unlabeled) examples, and Q images from the

rest as the test examples. In the experiments, we set N = 5,

K = {1, 5}, Q = 15 and study the effect of using different

values of U . We repeat the test experiments 600 times and

report the mean accuracy with the 95% confidence interval.

Compared methods: The miniImageNet dataset has

been widely used for evaluating the performance of few-

shot learning methods, and is a good benchmark to compare

state-of-the-art methods. In particular, we compare with

several conventional few-shot learning methods, as well

as state-of-the-art semi-supervised few-shot learning meth-

ods including the semi-supervised extension to Prototypi-

cal Networks by [19] (Soft k-Means, Soft k-Means+Cluster,

Masked Soft k-Means), and TPN-semi in [11]. We also re-

implement Soft k-Means, Soft k-Means+Cluster, Masked

Soft k-Means with the same backbone (i.e., WRN-28-10)

as our method for fair comparison. As the area of semi-

supervised few-shot learning has not been explored much

yet, we also conduct extensive experiments to evaluate the

performance of utilizing unlabeled data by our TransMatch

under different few-shot settings.

Implementation details: Following the work [17] for

transfer-learning based method on miniImageNet, we use

the wide residual network (i.e., WRN-28-10) [27] as the

backbone for our base model f base. We train it from scratch

using the examples from the base classes. In particular, we

first train a WRN-28-10 classification network on all ex-

amples from the 80 base and validation classes. We then

replace the last layer of this network by a 256-d fully con-

nected layer, followed by a L2 normalization layer and a 80-

d classifier. We set the batch size to 128, and set learning-

rate to 0.01 for the last two layers and 0.001 for all other

layers. We reduce the learning rate by 0.1 every 10 epochs

and train for a total of 28 epochs.

The base classifier f base is used as the feature extractor

to generate feature vectors for the few-shot examples from

novel classes. We use the few-shot labeled examples to fine-

tune the base classifier to novel classes. We also augment

each labeled image for 10 times by random transformation

and use the mean features to imprint the weights for novel

classifier. We use a batch size of 16, and set 64 batches

as an epoch1. We set weight decay to 0.04, learning rate to

0.001, and use SGD optimizer with a momentum of 0.9. For

the fine-tuning stage, we set the parameters of MixMatch as

follows. We set M (the times for augmentation) to 2, T (the

temperature for the label distribution) to 0.5, γ (the weight

for regularization term) to 5, α (the parameter in Beta distri-

bution) to 0.75. Meanwhile we use an exponential moving

average for model parameters when guessing labels. For 5-

way-1-shot scenario, we fine-tune for 10 epochs when there

are 20 or 50 unlabeled images, and 20 epochs when there

are 100 or 200 unlabeled images. For 5-way-5-shot sce-

nario, we fine-tune for 20 epochs when there are 20 and 50

unlabeled images, and 25 epochs when there are 100 and

200 unlabeled images. All the test results are based on 600

random experiments.

Results on miniImageNet: The results are summarized

in Table 1. It is not surprising that our method outperforms

conventional few-shot learning methods without using un-

labeled by a large margin, as shown in the top portion of

Table 1. Our method also outperforms state-of-the-art semi-

supervised few-shot learning methods, which can be ob-

served from the middle portion of Table 1. These results

clearly show the superiority of our TransMatch as its effec-

tive utilization of information from unlabeled data.

Influence of unlabeled examples: In Table 2, we re-

port the results using different numbers of unlabeled im-

ages. Note that Imprinting+FT stands for fine-tuning the

imprinted classifier without unlabeled data. It is obvious

that our TransMatch could achieve better performance with

more unlabeled images. We also observe that the results

begin to saturate after 100 unlabeled images for 1-shot set-

ting. In general, the results show that our TransMatch can

effecively utilize the unlabeled data.

Ablation study: We conduct an ablation study of our

method without Imprinting or MixMatch. Without Im-

printing, our method reduces to semi-supervised learning

method, i.e., MixMatch (Note here the feature extractor is

still already trained from base classes) and without Mix-

Match, our method reduces to Imprinting. The results are

shown in Fig. 3. It is clear that both MixMatch and Imprint-

ing are worse than our TransMatch. The inferior perfor-

mance of MixMatch to our TransMatch clearly shows that

directly applying MixMatch to the few-shot setting cannot

lead to good performance especially in 1-shot and 2-shot

setting. This is due to the lack of labeled data, which makes

it hard to fine-tune the classifier during test when there is

unlabeled data. However, our proposed TransMatch can ob-

tain a good initialization by incorporating weight imprinting

1We duplicate the labeled images dataset to make it larger, so that each

batch may contain the same image multiple times.
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Method Type 1-shot 5-shot

Prototypical Net [22] Meta, Metric 49.42±0.78 68.20±0.66

TADAM [15] Meta, Metric 58.50±0.30 76.70±0.30

MAML [4] Meta, Optimization 48.70±1.84 63.11±0.92

SNAIL [12] Meta, Optimization 55.71±0.99 68.88±0.92

Activation Net [17] Transfer-learning 59.60±0.41 73.74±0.19

Imprinting [16] Transfer-learning 58.68±0.81 76.06±0.59

Soft k-Means [19] Semi, Meta-learning 50.09±0.45 64.59±0.28

Soft k-Means+Cluster [19] Semi, Meta-learning 49.03±0.24 63.08±0.18

Masked Soft k-Means [19] Semi, Meta-learning 50.41±0.31 64.39±0.24

TPN-semi [11] Semi, Meta-learning 52.78±0.27 66.42±0.21

Soft k-Means (Re-implement with WRN-28-10) Semi, Meta-learning 51.88±0.93 67.31±0.70

Soft k-Means+Cluster (Re-implement with WRN-28-10) Semi, Meta-learning 50.47±0.86 64.14±0.65

Masked Soft k-Means (Re-implement with WRN-28-10) Semi, Meta-learning 52.35±0.89 67.67±0.65

TransMatch (100 unlabeled images per class) Semi, Transfer-learning 63.02±1.07 81.19±0.59

TransMatch (200 unlabeled images per class) Semi, Transfer-learning 62.93±1.11 82.24±0.59
Table 1. Accuracy (in %) on miniImageNet with 95% confidence interval. Best results are in bold.

Method # unlabeled 1-shot 5-shot

Imprinting —– 58.68±0.81 76.06±0.59

Imprinting+FT 0 55.60±0.77 74.17±0.60

TransMatch 20 58.43±0.93 76.43±0.61

TransMatch 50 61.21±1.03 79.30±0.59

TransMatch 100 63.02±1.07 81.19±0.59

TransMatch 200 62.93±1.11 82.24±0.59
Table 2. Accuracy (in %) with different number of unlabeled im-

ages on miniImageNet. Best results are in bold.

# shot Method Accuracy Gain

1-shot
w/ Pseudo-Label 57.01 ± 1.13

+6.01
w/ MixMatch 63.02 ± 1.07

2-shot
w/ Pseudo-Label 70.07 ± 0.96

+2.29
w/ MixMatch 72.36 ± 0.88

3-shot
w/ Pseudo-Label 76.01 ± 0.81

+1.40
w/ MixMatch 77.41 ± 0.76

4-shot
w/ Pseudo-Label 78.35 ± 0.73

+1.39
w/ MixMatch 79.74 ± 0.65

5-shot
w/ Pseudo-Label 80.00 ± 0.66

+1.19
w/ MixMatch 81.19 ± 0.59

Table 3. Comparison of our method using different semi-

supervised learning methods (i.e., Pseudo-Label and MixMatch)

in our framework both with 100 unlabeled images for 5-way clas-

sification on miniImageNet.

module.

We also observe a larger gain by our TransMatch over

MixMatch when using a smaller number of shots. The gain

shown in Fig. 3 is {11.02, 4.28, 2.92, 1.73, 1.22} in {1, 2, 3,

4, 5}-shot setting. This is reasonable and worth attention as

fewer shots means fewer labeled examples, which makes

fine-tuning more difficult. Therefore, the importance of

weight imprinting to give the classifier good initial weights

Figure 3. Comparison of Imprinting, MixMatch and our Trans-

Match both with 100 unlabeled images for 5-way classification

with different number of shots on miniImageNet.

becomes more evident.

Comparing different semi-supervised learning methods:

In addition to MixMatch [1], in this section, we also com-

pare with other semi-supervised learning methods (i.e.,

Pseudo-Label [8]) in order to understand the influence the

semi-supervised learning module. The results, shown in Ta-

ble 3, are consistent with our observations when using Mix-

Match as semi-supervised learning module. Since Pseudo-

Label is worse than MixMatch, the overall performance of

our method using Pseudo-Label is also worse than using

MixMatch.

Influence of distractor classes: In typical semi-supervised

learning, unlabeled images come from the same classes for

the labeled images. This may not reflect realistic situations

in real-world application. So we also study the influence
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Distractor Method 1-shot 5-shot

—– Imprinting 58.68 ± 0.81 76.06 ± 0.59

1-class
MixMatch 50.14 ± 1.06 79.32 ± 0.63

TransMatch 62.32 ± 1.04 80.28 ± 0.62

2-class
MixMatch 50.68 ± 1.15 78.07 ± 0.69

TransMatch 60.41 ± 1.02 79.48 ± 0.64

3-class
MixMatch 49.48 ± 1.16 77.48 ± 0.66

TransMatch 59.32 ± 1.10 79.29 ± 0.62
Table 4. Accuracy (in %) of MixMatch and our TransMatch with

100 unlabeled images from {1, 2, 3} distractor classes on miniIm-

ageNet. Note that Imprinting does not use any unlabeled image.

of distractor classes, and report the results of Imprinting,

MixMatch, and our TransMatch when there are unlabeled

images from various distractor classes. In our experiments,

distractor classes are randomly chosen from the remaining

classes which are disjoint with the novel classes during test.

The results are shown in Table 4. We can observe that

all the results for MixMatch degrade due to the distractor

classes, while our TransMatch still outperforms Imprinting

in all cases.

4.2. Experiments on CUB­200­2011

Dataset configuration: The CUB-200-2011 dataset

(CUB) is originally proposed by [26] and contains 200

fine-grained classes of birds with 11,788 images in total

(about 30 images per class for support images and 30

images per class for query images). We strictly follow the

setup in [16] to ensure a fair comparison. In particular,

we use the standard train/test split provided by the dataset,

and treat the first 100 classes as the base classes Cbase
and the remaining 100 classes as the novel classes Cnovel.
Therefore, we have N = 100. We use all the training

examples from the base classes for large scale pre-training

to obtain the base model f base and use the few-shot

examples from the novel classes to train fnovel. In the

experiment, we set K to {1, 2, 5, 10, 20} and use the rest

images {29, 28, 25, 20, 10} as unlabeled images for support

images. All the remaining 30 images are still used for

query images.

Implementation details: We are interested in perfor-

mance of our TransMatch on the 100 novel classes, i.e.,

the transfer-learning setting in [16]. In order to ensure

fair comparison, we follow [16] and use Inception v1 as

our network backbone. We set the dimension of the fully

connected embedding layer to 256, followed by an L2 nor-

malization. We resize the input images to 256 × 256 and

then randomly crop to 224 × 224. During the large scale

pre-training stage, we set the initial learning rate to 0.001

and a 10× multiplier for the embedding layer and classifi-

cation layer. We reduce the learning rate by 0.1 after every

30 epochs, and train the model for a total of 90 epochs. Dur-

Model K= 1 2 5 10 20

Imprinting 26.08 34.13 43.34 48.91 52.94

Imprinting+FT 26.59 34.33 49.39 61.65 70.07

MixMatch 22.93 30.24 56.41 67.13 73.00

TransMatch 28.02 38.05 59.83 68.60 74.61
Table 5. Accuracy (in %) comparison on CUB-200-2011. Best

results are in bold.

Model # unlabeled 5-shot 10-shot

Imprinting [16] —– 43.34 48.91

Imprinting+FT [16] 0 49.39 61.65

TransMatch 5 52.90 63.79

TransMatch 10 54.78 66.21

TransMatch 15 56.86 67.71

TransMatch 20 59.25 68.60
Table 6. Accuracy (in %) comparison using different numbers of

unlabeled images on CUB-200-2011.

ing the fine-tuning stage, we set the number of batches to 64

for each epoch with a batch size of 64. By default, we set

the weight decay to 0.0001, use a learning rate of 0.001, and

train the model for 100 epochs. For the extreme case of 1-

shot and 2-shot settings (100-way), we set the weight decay

to 0.04, the learning rate to 0.0001 and early stopping at 10

epochs in order to avoid overfitting.

Results on CUB-200-2011: We follow [16] to report the

results of their proposed Imprinting, and Imprinting+FT.

Then we evaluate the performance of our proposed Trans-

Match using different numbers of shots and unlabeled im-

ages. We compare TransMatch with Imprinting and Max-

Match in Table 5, and the results show our proposed Trans-

Match achieves the best result which demonstrates its ef-

fectiveness in utilizing auxiliary labeled base-class data and

unlabeled novel-class data. Table 6 shows the results of our

TransMatch using different numbers of unlabeled images,

and we can observe that better performance can be achieved

with more unlabeled data. These results are similar to the

results on miniImageNet dataset.

5. Conclusion

While almost all existing semi-supervised few-shot

learning methods are based on the meta-learning frame-

work, we propose a new transfer-learning framework for

semi-supervised few-shot learning to effectively explore

the information from labeled base-class data and unla-

beled novel-class data. We develop a new method under

the proposed framework by incorporating the state-of-the-

art semi-supervised method MixMatch and few-shot learn-

ing method Imprinting, leading to a new method called

TransMatch. Extensive experiments on two popular few-

shot learning datasets show that our proposed TransMatch

achieves the state-of-the-art results, which demonstrate its

effectiveness in utilizing both the labeled base-class data

and unlabeled novel-class data.
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