
Central Similarity Quantization for Efficient Image and Video Retrieval

Li Yuan1 Tao Wang1 Xiaopeng Zhang3 Francis EH Tay1 Zequn Jie2 Wei Liu2 Jiashi Feng1

1National University of Singapore 2Tencent AI Lab 3Huawei Noah’s Ark Lab

{ylustcnus, twangnh, zequn.nus}@gmail.com, wl2223@columbia.edu, {mpetayeh,elefjia}@nus.edu.sg

Abstract

Existing data-dependent hashing methods usually learn

hash functions from pairwise or triplet data relationships,

which only capture the data similarity locally, and often

suffer from low learning efficiency and low collision rate.

In this work, we propose a new global similarity metric,

termed as central similarity, with which the hash codes of

similar data pairs are encouraged to approach a common

center and those for dissimilar pairs to converge to dif-

ferent centers, to improve hash learning efficiency and re-

trieval accuracy. We principally formulate the computa-

tion of the proposed central similarity metric by introduc-

ing a new concept, i.e., hash center that refers to a set of

data points scattered in the Hamming space with a suffi-

cient mutual distance between each other. We then provide

an efficient method to construct well separated hash centers

by leveraging the Hadamard matrix and Bernoulli distribu-

tions. Finally, we propose the Central Similarity Quanti-

zation (CSQ) that optimizes the central similarity between

data points w.r.t. their hash centers instead of optimizing

the local similarity. CSQ is generic and applicable to both

image and video hashing scenarios. Extensive experiments

on large-scale image and video retrieval tasks demonstrate

that CSQ can generate cohesive hash codes for similar data

pairs and dispersed hash codes for dissimilar pairs, achiev-

ing a noticeable boost in retrieval performance, i.e. 3%-

20% in mAP over the previous state-of-the-arts 1 .

1. Introduction

By transforming high-dimensional data to compact bi-

nary hash codes in the Hamming space via a proper hash

function [37], hashing offers remarkable efficiency for data

storage and retrieval. Recently, “deep learning to hash”

methods [14, 32, 21, 18, 22, 44] have been successfully ap-

plied to large-scale image retrieval [44, 48] and video re-

trieval [8, 28, 21], which can naturally represent a nonlinear

1The code is at: https://github.com/yuanli2333/

Hadamard-Matrix-for-hashing

(a) Doublet(pairwise) (b) Triplet (c) Central similarity

Figure 1. The intuition behind pairwise/triplet similarity based

hashing methods and the proposed center similarity quantization.

Pairwise and triplet learnings only consider a pair/triplet of data

at once, while our central similarity encourages all similar data

points to collapse to the corresponding hash centers (red stars).

hash function for producing hash codes of input data.

Most deep hashing methods [2, 48, 27, 18] learn hash

functions by utilizing pairwise or triplet data similarity,

where the data relationships are captured from a local per-

spective. Such pairwise/triplet based hash learning intrin-

sically leads to the following issues. 1) Low-efficiency in

profiling similarity among the whole training dataset. The

commonly used pairwise similarity [2, 48, 18] or triplet sim-

ilarity metrics [27, 14] have a time complexity at an order

of O(n!) for n data points. Thus, it is impractical to ex-

haustively learn from all the possible data pairs/triplets for

large-scale image or video data. 2) Insufficient coverage of

data distribution. Pairwise/triplet similarity based methods

utilize only partial relationships between data pairs, which

may harm the discriminability of the generated hash codes.

3) Low effectiveness on imbalanced data. In real-world

scenarios, the number of dissimilar pairs is much larger

than that of similar pairs. Hence, pairwise/triplet similarity

based hashing methods cannot learn similarity relationships

adequately to generate sufficiently good hash codes, leading

to restricted performance.

To address the above issues, we propose a new global

similarity metric, termed as central similarity, which we

3083

(a) Doublet (pairwise similarity) (b) Triplet (triplet similarity) (c) HashNet (d) Central similarity (ours)

Figure 2. Visualization of hash codes generated by four deep hash learning methods using different data similarity metrics, trained on

MNIST with ten groups of data points (one class for a group). The first two methods use pairwise and triplet similarity respectively.

HashNet [2] adopts weighted pairwise similarity.

optimize constantly for obtaining better hash functions.

Specifically, the central similarity measures Hamming dis-

tances between hash codes and the hash center which is de-

fined as a set of points in the Hamming space with a suf-

ficient mutual distance. Central similarity learning aims at

encouraging the generated hash codes to approach the cor-

responding hash center. With a time complexity of only

O(nm) for n data points and m centers, central similarity

based hashing is highly efficient and can generate discrim-

inative enough hash codes from the global data distribution

(Fig. 1), which overcomes the limitations of hashing meth-

ods based on the pairwise/triplet similarity. Even in the

presence of severe data imbalance, the hash functions can

still be well learned from global relationships.

To obtain suitable hash centers, we propose two sys-

tematic approaches. One is to directly construct hash cen-

ters with maximal mutual Hamming distance by leveraging

the Hadamard matrix; the other is to generate hash centers

by randomly sampling from Bernoulli distributions. We

prove that both approaches can generate proper hash cen-

ters that are separated from each other with a sufficient

Hamming distance. We also consider jointly learning hash

centers from data with hash functions. However, we em-

pirically find that learned centers by some common meth-

ods [11, 43, 29] cannot provide better hash functions than

the analytically constructed ones. We present comparisons

on the hash centers from different methods in Sec. 4.5.

With the generated hash centers, we develop the central

similarity with Convolutional Neural Networks (CNNs), to

learn a deep hash function in the Hamming space. We name

the proposed hashes learning approach as Central Similarity

Quantization (CSQ). In particular, we adopt convolutional

layers for learning data features and a hash layer for yield-

ing hash codes. After identifying the hash centers, we train

the deep CNN and the hash layer end-to-end to generate

hash codes with the goal of optimizing central similarity.

CSQ is generic and applicable to learning hash codes for

both images and videos.

We conduct illustrative experiments on MNIST [15] at

first to validate the effectiveness of our CSQ. We find that

the hash codes learned by CSQ show favorable intra-class

compactness and inter-class separability compared with

other state-of-the-art hashing methods, as shown in Fig. 2.

Then we perform extensive comparative experiments on

three benchmark datasets for image hashing and two video

datasets for video hashing respectively. With CSQ, notice-

able improvements in retrieval performance are achieved,

i.e., 3%-20% in mAP, also with a 3 to 5.5 × faster training

speed over the latest methods.

Our contributions are three-fold. 1) We rethink data sim-

ilarity modeling and propose a novel concept of hash cen-

ter for capturing data relationships more effectively. We

present two systematic methods to generate proper hash

centers rapidly. 2) We introduce a novel central similarity

based hashing method. It can capture the global data distri-

bution and generate high-quality hash functions efficiently.

To our best knowledge, this is the first work to utilize global

similarity and hash centers for deep hash function learn-

ing. 3) We present a deep learning model to implement our

method for both image and video retrieval and establish new

state-of-the-arts.

2. Related Work

The “deep learning to hash” methods such as

CNNH [44], DNNH [14], DHN [48], DCH [1] and Hash-

Net [2] have been successfully applied to image hash-

ing. They adopt 2D CNNs to learn image features and

then use hash layers to learn hash codes. Recent hashing

methods for images focus on how to design a more effi-

cient pairwise-similarity loss function. DNNH [14] pro-

poses to use a triplet ranking loss for similarity learning.

DHN [48] uses Maximum a Posterior (mAP) estimation to

obtain the pairwise similarity loss function. HashNet [2]

adopts the Weighted Maximum Likelihood (WML) estima-

tion to alleviate the severe the data imbalance by adding

weights in pairwise loss functions. Different from previous

3084

works [41, 25, 23, 26, 38, 31, 32, 19, 34, 16, 17, 45], this

work proposes a new central similarity metric and use it to

model the relationships between similar and dissimilar pairs

for improving the discriminability of generated hash codes.

Compared with image analysis, video analysis aims to

utilize the temporal information [33, 6, 39, 36, 3, 47,

46]. Video hashing methods such as DH [28], SRH [8],

DVH [21] exploit the temporal information in videos com-

pared with image hashing. For instance, [28] utilizes Dis-

aggregation Hashing to exploit the correlations among dif-

ferent feature dimensions. [8] presents an LSTM-based

method to capture the temporal information between video

frames. Recently, [21] fuses the temporal information by

using fully-connected layers and frame pooling. Different

from these hashing methods, our proposed CSQ is a generic

method for both image and video hashing. Through directly

replacing 2D CNNs with 3D CNNs, the proposed CSQ can

well capture the temporal information for video hashing.

Our CSQ is partially related to center loss in face recog-

nition [43] which uses a center loss to learn more discrim-

inative representation for face recognition (classification).

The centers in [43] are derived from the feature represen-

tation of the corresponding categories, which are unsta-

ble with intra-class variations. Different from this center

loss for recognition [43], our proposed hash center is de-

fined over hash codes instead of feature representations, and

can help generate high-quality hash codes in the Hamming

space.

3. Method

We consider learning a hash function in a supervised

manner from a training set of N data points X =
{

{xi}
N
i=1

, L
}

, where each xi ∈ R
D is a data point to

hash and L denotes the semantic label set for data X . Let

f : x 7→ h ∈ {0, 1}
K

denote the nonlinear hash function

from the input space RD to K-bit Hamming space {0, 1}
K

.

Similar to other supervised “deep learning to hash” meth-

ods [2, 48], we pursue a hash function that is able to gener-

ate hash codes h’s for the data points x’s which are close in

the Hamming space and share similar semantic labels.

We define a set of points C = {c1, c2, . . . , cm} ⊂
{0, 1}K with a sufficient distance in the Hamming space

as hash centers, and propose to learn hash functions super-

vised by the central similarity w.r.t. C. The central similarity

would encourage similar data pairs to be close to a com-

mon hash center and dissimilar data pairs to be distributed

around different hash centers respectively. Through such

central similarity learning, the global similarity information

between data pairs can be preserved in f , yielding high-

quality hash codes.

In below, we first give a formal definition of hash center

and explain how to generate proper hash centers systemati-

cally. Then we elaborate on the details of the central simi-

larity quantization.

3.1. Definition of Hash Center

The most intuitive motivation is to learn hash centers

from image or video features, such that the learned centers

preserve “distinctness” between different data points. How-

ever, we find that hash centers learned from data features

with diverse mutual Hamming distance do not perform bet-

ter than hash centers with pre-defined Hamming distance

(in Experiments, Sec 4.5). We thus assume that each center

should be more distant from the other centers than to the

hash codes associated with it. As such, the dissimilar pairs

can be better separated and similar pairs can be aggregated

cohesively. Based on the observation and intuition, we for-

mally define a set of points in the Hamming space as valid

hash centers with the following properties.

Definition 1 (Hash Center). We define hash centers as a set

of points C = {ci}
m

i=1
⊂ {0, 1}

K
in the K-dimensional

Hamming space with an average pairwise distance satisfy-

ing

1

T

m
∑

i 6=j

DH (ci, cj) >
K

2
, (1)

where DH is the Hamming distance, m is the number of

hash centers, and T is the number of combinations of dif-

ferent ci and cj ∈ C.

For better clarity, we show some examples of the desired

hash centers in the 3d and 4d Hamming spaces in Fig. 3.

In Fig. 3(a), the hash center of hash codes [0, 1, 0], [0, 0, 1]
and [1, 0, 0] is c1, and the Hamming distance between c1
and c2 is 3. In Fig. 3(b), we use a 4d hypercube to represent

the 4d Hamming spaces. The two stars c1 and c2 are the

hash centers given in Definition 1. The distance between

c1 and c2 is DH (c1, c2) = 4, and the distance between

the green dots and the center c2 is the same (DH = 1).

However, we do not strictly require all points to have the

same distance from the corresponding center. Instead, we

define the nearest center as the corresponding hash center

for a hash code.

(a) 3d Hamming space (b) 4d Hamming space

Figure 3. The illustration of hash centers in 3d and 4d Hamming

spaces.

3.2. Generation of Hash Centers

We develop two approaches for generating valid hash

centers based on the following observation. In the K-

3085

Algorithm 1: Generation of Hash Centers

Input : The number of hash centers m, the dimension of the

Hamming space (hash codes) K.

Initialization: construct a K ×K Hadamard matrix

HK =
[

hi
a

]

and construct H2K = [HK ,−HK]⊤ =
[

hi
2k

]

.

for iteration i, i=1 to m do

if m 6 K & K = 2n then // n is any Z
+

ci = hi
a;

end

else if K < m 6 2K & K = 2n then

ci = hi
2k

;

else
ci[random half position] = 1;

ci[other half position] = 0;

end

end

Replace all -1 with 0 in these centers;

Output: hash centers: C = {c1, . . . , cm} ⊂ {0, 1}K .

dimensional Hamming space (throughout this paper, K is

set to an even number), if a set of points are mutually or-

thogonal, they will have an equal distance of K/2 to each

other. Namely, they are valid hash centers satisfying Defi-

nition 1.

Our first approach is to generate hash centers by leverag-

ing the following nice properties of a Hadamard matrix. It is

known that a K×K Hadamard matrix HK = [h1
a; . . . ;h

K
a]

satisfies: 1) It is a squared matrix with rows hi
a being mu-

tually orthogonal, i.e., the inner products of any two row

vectors 〈hi
a, h

j
a〉 = 0. The Hamming distance between any

two row vectors is DH(hi
a, h

j
a) =

1

2
(K−〈hi

a, h
j
a〉) = K/2.

Therefore, we can choose hash centers from these row vec-

tors. 2) Its size K is a power of 2 (i.e., K = 2n), which is

consistent with the customary number of bits of hash codes.

3) It is a binary matrix whose entries are either -1 or +1. We

can simply replace all -1 with 0 to obtain hash centers in

{0, 1}
K

.

To sample the hash centers from the Hadamard matrix,

we first build a K × K Hadamard matrix by Sylvester’s

construction [42] as follows:

HK =

[

H2n−1 H2n−1

H2n−1 −H2n−1

]

= H2 ⊗H2n−1 , (2)

where ⊗ represents the Hadamard product, and K = 2n.

The two factors within the initial Hadamard matrix are

H1 =
[

1
]

and H2 =

[

1 1
1 −1

]

. When the number of cen-

ters m 6 K, we directly choose each row to be a hash

center. When K < m 6 2K, we use a combination of

two Hadamard matrices H2K = [HK ,−HK]⊤ to construct

hash centers.

Though applicable in most cases, the number of valid

centers generated by the above approach is constrained by

the fact that the Hadamard matrix is a squared one. If m is

larger than 2K or K is not the power of 2, the first approach

is inapplicable. We thus propose the second generation ap-

proach by randomly sampling the bits of each center vec-

tor. In particular, each bit of a center ci is sampled from a

Bernoulli distribution Bern(0.5) where P (x = 0) = 0.5
if x ∼ Bern(0.5). We can easily prove that the dis-

tance between these centers is K/2 in expectation. Namely,

E[DH(ci, cj)] = K/2 if ci, cj ∼ Bern(0.5). We sum-

marize these two approaches in Alg. 1. The generation al-

gorithm is very efficient and only needs a trivial computa-

tion/time cost to generate hash centers.

Once a set of hash centers is obtained, the next step is

to associate the training data samples X with their indi-

vidual corresponding centers to compute the central simi-

larity. Recall L is the semantic label for X , and usually

L = {l1, . . . , lq}. For single-label data, each data sam-

ple belongs to one category, while each multi-label data

sample belongs to more than one category. We term the

hash centers that are generated from Alg. 1 and associated

with semantic labels as semantic hash centers. We now ex-

plain how to obtain the semantic hash centers for single-

and multi-label data separately.

Semantic hash centers for single-label data For single-

label data, we assign one hash center for each category. That

is, we generate q hash centers {c1, . . . , cq} by Alg. 1 corre-

sponding to labels {l1, . . . , lq}. Thus, data pairs with the

same label share a common center and are encouraged to

be close to each other. Because each data sample is as-

signed to one hash center, we obtain the semantic hash cen-

ters C′ = {c′1, c
′
2, . . . , c

′
N}, where c′i is the hash center of

xi.
Semantic hash centers for multi-label data For multi-

label data, DCH [1], HashNet [2] and DHN [48] directly

make data pairs similar if they share at least one category.

However, they ignore the transitive similarity when data

pairs share more than one category. In this paper, we gener-

ate transitive centers for data pairs sharing multiple labels.

First, we generate q hash centers {c1, . . . , cq} by Alg. 1 cor-

responding to semantic labels {l1, . . . , lq}. Then for data

including two or more categories, we calculate the centroid

of these centers, each of which corresponds to a single cat-

egory. For example, suppose one data sample x ∈ X has

three categories li, lj and lk. The centers of the three cat-

egories are ci, cj and ck, as shown in Fig. 4. We calculate

the centroid c of the three centers as the hash center of x.

To ensure the elements to be binary, we calculate each bit

by voting at the same bit of the three centers and taking the

value that dominates, as shown in the right panel of Fig. 4.

If the number of 0 is equal to the number of 1 at some bits

(i.e., the voting result is a draw), we sample from Bern(0.5)
for these bits. Finally, for each xi ∈ X , we take the centroid

as its semantic hash center, and then obtain semantic hash

centers C′ = {c′1, c
′
2, . . . , c

′
N}, where c′i is the hash center

of xi.

3086

Figure 4. Semantic hash center for multi-label data.

3.3. Central Similarity Quantization

Given the generated centers C = {c1, . . . , cq} for train-

ing data X with q categories, we obtain the semantic hash

centers C′ = {c′1, c
′
2, . . . , c

′
N} for single- or multi-label

data, where c′i denotes the hash center of the data sample xi.

We derive the central similarity learning objective by max-

imizing the logarithm posterior of the hash codes w.r.t. the

semantic hash centers. Formally, the logarithm Maximum a

Posterior (MAP) estimation of hash codes H = [h1, ..., hN]
for all the training data can be obtained by maximizing the

following likelihood probability:

logP (H|C′) ∝ logP (C′|H)P (H) =

N
∑

i

logP (c′i|hi)P (hi),

where P (H) is the prior distribution over hash codes

and P (C′|H) is the likelihood function. P (c′i|hi) is the

conditional probability of center c′i given hash code hi.

We model P (C′|H) as a Gibbs distribution: P (c′i|hi) =
1

α
exp(−βDH(c′i, hi)), where α and β are constants, and

DH measures the Hamming distance between a hash code

and its hash center. Since hash centers are binary vec-

tors, we use Binary Cross Entropy (BCE) to measure the

Hamming distance between the hash code and its center,

DH(c′i, hi) = BCE(c′i, hi). So the conditional probability

is calculated as logP (c′i|hi) ∝ − 1

K

∑

k∈K(c′i,k log hi,k +
(1− c′i,k) log(1−hi,k)). We can see that the larger the con-

ditional probability P (c′i|hi) is, the smaller the Hamming

distance will be between hash code h and its hash center

c, implying that the hash code is close to its corresponding

center; otherwise the hash code is far away from its corre-

sponding center. By substituting logP (c′i|hi) into the MAP

estimation, we obtain the optimization objective of the cen-

tral similarity loss LC :

LC =
1

K

N
∑

i

∑

k∈K

[

c′i,k log hi,k + (1− c′i,k) log(1− hi,k)
]

.

(3)

Since each hash center is binary, existing optimization

cannot guarantee that the generated hash codes completely

converge to hash centers [40] due to the inherent optimiza-

tion difficulty. So we introduce a quantization loss LQ to

refine the generated hash codes hi. Similar to DHN [48],

we use the bi-modal Laplacian prior for quantization, which

is defined as LQ =
∑N

i 6=j(|||2hi − 1| − 1||1), where

1 ∈ R
K is an all-one vector. As LQ is a non-smooth func-

tion which makes it difficult to calculate its derivative, we

adopt the smooth function log cosh [10] to replace it. So

|x| ≈ log coshx. Then the quantization loss LQ becomes

LQ =

N
∑

i

K
∑

k=1

(log cosh(|2hi,k − 1| − 1). (4)

Finally, we have central similarity optimization problem:

min
Θ

LT = LC + λ1LQ (5)

where Θ is the set of all parameters for deep hash function

learning, and λ1 is the hyper-parameter obtained through

grid search in our work2.

Based on the loss function LT , we adopt the standard

framework [9, 2] in deep-hashing methods to conduct CSQ.

Specifically, multiple convolutional layers are adopted to

learn data features and a hash layer with three fc layers and

ReLU as the activation function is used to generate hash

codes. The detailed framework of CSQ is given in the sup-

plementary material.

4. Experiments

We conduct experiments for both image and video re-

trieval to evaluate our CSQ against several state-of-the-arts.

Five benchmark (image and video) datasets are used in our

experiments and their statistics are summarized in Tab. 1.

Table 1. Experimental settings for all datasets. DI (Data Imbal-

ance) is ratio between the number of dissimilar and similar pairs.

Dataset Data Type #Train #Test #Retrieval DI

ImageNet image 10,000 5,000 128,495 100:1

MS COCO image 10,000 5,000 112,217 1:1

NUS WIDE image 10,000 2,040 149,685 5:1

UCF101 video 9.5k 3.8k 9.5k 101:1

HMDB51 video 3.5k 1.5k 3.5k 51:1

4.1. Experiments on Image Hashing

Datasets We use three image benchmark datasets, includ-

ing ImageNet [30], NUS WIDE [5] and MS COCO [20].

On ImageNet, we use the same data and settings as [2, 48].

As ImageNet is a single-label dataset, we directly generate

one hash center for each category. MS COCO is a multi-

label image dataset with 80 categories. NUS WIDE is also

a multi-label image dataset, and we choose images from the

21 most frequent categories for evaluation [48, 14]. For MS

COCO and NUS WIDE datasets, we first generate 80 and

21 hash centers for all categories respectively, and then cal-

culate the centroid of the multi-centers as the semantic hash

centers for each image with multiple labels, following the

approach in Sec. 3.2. The visualization of generated hash

centers is given in the supplementary material.
2We provide formulation for jointly estimating central similarity and

pairwise similarity to learn deep hash functions in supplementary material.

3087

Table 2. Comparison in mAP of Hamming Ranking for different bits on image retrieval.

Method
ImageNet (mAP@1000) MS COCO (mAP@5000) NUS-WIDE (mAP@5000)

16 bits 32 bits 64 bits 16 bits 32 bits 64 bits 16 bits 32 bits 64 bits

ITQ-CCA [7] 0.266 0.436 0.576 0.566 0.562 0.502 0.435 0.435 0.435

BRE [13] 0.063 0.253 0.358 0.592 0.622 0.634 0.485 0.525 0.544

KSH [24] 0.160 0.298 0.394 0.521 0.534 0.536 0.394 0.407 0.399

SDH [32] 0.299 0.455 0.585 0.554 0.564 0.580 0.575 0.590 0.613

CNNH [44] 0.315 0.473 0.596 0.599 0.617 0.620 0.655 0.659 0.647

DNNH [14] 0.353 0.522 0.610 0.644 0.651 0.647 0.703 0.738 0.754

DHN [48] 0.367 0.522 0.627 0.719 0.731 0.745 0.712 0.759 0.771

HashNet [2] 0.622 0.701 0.739 0.745 0.773 0.788 0.757 0.775 0.790

DCH [1] 0.652 0.737 0.758 0.759 0.801 0.825 0.773 0.795 0.818

CSQ (Ours) 0.851 0.865 0.873 0.796 0.838 0.861 0.810 0.825 0.839

Table 3. Comparison in mAP of Hamming Ranking by adopting

different backbones (AlexNet or ResNet50) to learn features.

Method
ImageNet (AlexNet) ImageNet (ResNet50)

16 bits 32 bits 64 bits 16 bits 32 bits 64 bits

CNNH [44] 0.282 0.453 0.548 0.315 0.473 0.596

DNNH [14] 0.303 0.457 0.572 0.353 0.522 0.610

DHN [48] 0.318 0.473 0.569 0.367 0.522 0.627

HashNet [2] 0.506 0.631 0.684 0.622 0.701 0.739

DCH [1] 0.529 0.637 0.664 0.652 0.737 0.758

CSQ (Ours) 0.601 0.653 0.695 0.851 0.865 0.873

Table 4. Training time (in mins) comparison on three datasets with

different hash bits.(One GPU: TITAN X; Backbone: AlexNet).

Method
ImageNet COCO NUS WIDE

32 bits 64 bits 32 bits 64 bits 32 bits 64 bits

DHN [48] 3.87e2 4.13e2 3.92e2 4.05e2 3.56e2 3.63e2

HashNet [2] 6.51e2 6.84e2 6.42e2 6.88e2 7.29e2 7.34e2

CSQ (Ours) 0.92e2 1.01e2 1.13e2 1.15e2 1.30e2 1.39e2

Baselines and evaluation metrics We compare retrieval

performance of our proposed CSQ with nine classical

or state-of-the-art hashing/quantization methods, including

four supervised shallow methods ITQ-CCA [7], BRE [13],

KSH [24], SDH [32] and five supervised deep methods

CNNH [44], DNNH [14], DHN [48], HashNet [2] and

DCH [1]. For the four shallow hashing methods, we adopt

the results from the latest works [48, 2, 1] to make them

directly comparable. We evaluate image retrieval perfor-

mance based on four standard evaluation metrics: Mean Av-

erage Precision (mAP), Precision-Recall curves (PR), and

Precision curves w.r.t. different numbers of returned sam-

ples (P@N), Precision curves within Hamming distance 2

(P@H=2). We adopt mAP@1000 for ImageNet as each

category has 1,300 images, and adopt mAP@5000 for MS

COCO and NUS WIDE.

Results Results in terms of Mean Average Precision

(mAP) for image retrieval are given in Tab. 2 and 3. In

Tab. 2, we take ResNet50 as the backbone for CNNH,

DNNH, DHN, HashNet, DCH and our CSQ. In Tab. 3, we

take AlexNet and ResNet50 as backbone respectively for

five deep methods and our CSQ. From Tab. 2, we can ob-

serve that our CSQ achieves the best performance on the

image retrieval task. Compared with the state-of-the-art

deep hashing methods HashNet and DCH, our CSQ brings

an increase of at least 11.5%, 3.6%, 3.1% in mAP for dif-

ferent bits on ImageNet, MS COCO and NUS WIDE, re-

spectively. And some retrieval performance boost up to

20%. Specifically, the mAP boost on ImageNet is much

larger than that on the other two datasets, i.e., about 7%-

9%. Note that ImageNet has the most severe data imbalance

among the three image retrieval datasets (Tab. 1). From

Tab. 3, we can observe that our method achieves superior

performance by adopting both AlexNet and ResNet50 as

backbone architectures. Fig. 5 shows the retrieval perfor-

mance in Precision-Recall curves (P-R curve), Precision

curves w.r.t. different numbers of returned samples (P@N)

and Precision curves with Hamming distance 2(P@H=2) re-

spectively on ImageNet. We can find CSQ outperforms all

compared methods by large margins on ImageNet w.r.t. the

three performance metrics. Additionally, we compare the

training time in Tab. 4 and the proposed CSQ achieves a 3

to 5.5 × faster training speed over DHN and HashNet.

4.2. Experiments on Video Hashing

Datasets Two video retrieval datasets, UCF101 [35] and

HMDB51 [12], are used with their default settings. On

UCF101, we use 9.5k videos for training and retrieval, and

3.8k queries in every split. For HMDB51, we have 3.5k

videos for training and retrieval, and 1.5k videos for testing

(queries) in each split.

Baselines We compare the retrieval performance of the

proposed CSQ against three supervised deep video hashing

methods: DH [28], DLSTM [49] and SRH [8] based on the

same evaluation metrics as image retrieval experiments.

3088

(a) P-R curve @64bits (b) P@N @64bits (c) P@H=2

Figure 5. Experimental results of CSQ and compared methods on ImageNet w.r.t. three evaluation metrics.

(a) P-R curve @64bits (b) P@N @64bits (c) P@H=2

Figure 6. Experimental results of CSQ and compared methods on UCF101 w.r.t. three evaluation metrics.

Results In Tab. 5, our CSQ also achieves significant per-

formance boost on video retrieval. It achieves impressive

mAP increases of over 12.0% and 4.8% for different bits

on UCF101 and HMDB51, respectively. The larger im-

provements by our method on UCF101 are mainly due to

its severe data imbalance. Fig. 6 shows the retrieval per-

formance in Precision-Recall curves (P-R curve), Precision

curves w.r.t. different numbers of returned samples (P@N)

and Precision curves with Hamming distance 2(P@H=2) re-

spectively on UCF101. From the figure, we can observe that

CSQ also outperforms all compared methods by large mar-

gins on UCF101 w.r.t. the three performance metrics. In a

nutshell, the proposed CSQ performs consistently well un-

der different evaluation metrics.

Table 5. Comparison in mAP of Hamming Ranking for different

bits on video retrieval.

Method
UCF-101 (mAP@100) HMDB51 (mAP@70)

16 bits 32 bits 64 bits 16 bits 32 bits 64 bits

DH [28] 0.300 0.290 0.470 0.360 0.360 0.310

SRH [8] 0.716 0.692 0.754 0.491 0.503 0.509

DVH [21] 0.701 0.705 0.712 0.441 0.456 0.518

CSQ (Ours) 0.838 0.875 0.874 0.527 0.565 0.579

Differences from image hashing For video hashing,

we need to obtain temporal information by replacing 2D

CNN with 3D CNN. In our experiments, CSQ adopts a

lightweight 3D CNN, Multi-Fiber 3D CNN [4], as the con-

volutional layers to learn the features of videos. And the

hash layers keep unchanged.

4.3. Visualization

Visualization of retrieved results We show the retrieval

results on ImageNet, MS COCO, UCF101 and HMDB51

in Fig. 7. It can be seen that CSQ can return much more

relevant results. On MS COCO, CSQ uses the centroid of

multiple centers as the hashing target for multi-label data,

so the returned images of CSQ share more common labels

with the query compared with HashNet.

Figure 7. Examples of top 10 retrieved images and videos for two

image datasets and two video datasets. For COCO images, below

each image the number of common labels with the query is given.

Visualization of hash code distance We visualize the

Hamming distance between 20 hash centers and generated

hash codes of ImageNet and UCF101 by heat maps in

Fig. 8. The columns represent the 20 hash centers of test

data in ImageNet (with 1k test images sampled) or UCF101

(with 0.6k test videos sampled). The rows are the generated

hash codes assigned to these 20 centers. We calculate the

3089

(a) ImageNet (b) UCF101
Figure 8. The heat maps of average Hamming distance between 20

hash centers (the columns) with hash codes (64bit, rows) generated

by the proposed CSQ from test data in ImageNet and UCF101.

average Hamming distance between hash centers and hash

codes assigned to different centers. The diagonal values in

the heat maps are the average Hamming distances of the

hash codes with the corresponding hash center. We find that

the diagonal values are small, meaning the generated hash

codes “collapse” to the corresponding hash centers in the

Hamming space. Most off-diagonal values are very large,

meaning that dissimilar data pairs spread sufficiently.

4.4. Ablation Study

We investigate the effects of the proposed central similar-

ity, traditional pairwise similarity, and quantization process

for hash function learning, by evaluating different combina-

tions of central similarity loss LC , pairwise similarity loss

LP , and quantization loss LQ. The results are summarized

in Tab. 6. Our CSQ includes LC and LQ, corresponding

to the 1st row in Tab. 6. When we add LP to CSQ (2nd

row), mAP only increases for some bits. This shows that

pairwise similarity has limited effects on further improving

over central similarity learning. We add LP while removing

LC (3rd row), and find that the mAP decreases significantly

for various bits. When only using LC , the mAP just de-

creases slightly. These results show the positive effects of

central similarity learning.

Table 6. The mAP results of CSQ and its three variants on one

image dataset and one video dataset.

ImageNet (mAP@1000) UCF101 (mAP@100)

LC LP LQ 16 bits 32 bits 64 bits 16 bits 32 bits 64 bits

X X 0.851 0.865 0.873 0.838 0.875 0.874

X X X 0.847 0.870 0.871 0.840 0.868 0.881

X X 0.551 0.629 0.655 0.716 0.739 0.784

X 0.841 0.864 0.870 0.824 0.854 0.867

4.5. Hash Center Learning

In our work, we pre-compute hash centers by using the

Hadamard matrix or sampling from a Bernoulli distribution,

which is independent of image or video data. We ignore the

“distinctness” between any two dissimilar data points. For

example, the “distinctness” between dog and cat should be

smaller than that between dog and car. A more intuitive

method should be to learn centers from image or video fea-

tures rather than pre-defined hash centers, which can pre-

serve the similarity information between data points in hash

centers. Here we adopt three existing methods to learn cen-

ters from features and then compare the learned centers with

our pre-computed hash centers, to prove the validity of our

proposed hash center generation methods. The three meth-

ods to be compared are 1) center learning in face recogni-

tion (Face Center) [43], 2) center learning in fine-grained

classification (Magnet Center) [29], and 3) center learning

in Representative-based Metric Learning (RepMet Cen-

ter) [11]. We give the details of the three types of learned

centers in supplementary material, including loss functions,

hyper-parameters and quantization loss to binarize centers

for hashing. We apply these learned centers to hashing as

the method in Sec 3.3 and the retrieval results are given in

Tab. 7. We observe the learned centers obtain worse per-

formance than that with our methods. Also, compared with

these center learning methods, our pre-computing methods

only needs trivial computation/time cost but achieves supe-

rior performance. One potential reason is that the fixed hash

centers are binary codes while the learned centers are not

binary, so we need to do an extra quantization operation on

the learned centers, which hurts the similarity information

between learned centers and causes worse performances. .

Table 7. Comparison between three learned centers with our hash

centers on image and video retrieval.

Method
ImageNet (mAP@1000) UCF-101 (mAP@100)

16bits 32bits 64bits 16bits 32bits 64bits

Face Center 0.718 0.723 0.744 0.693 0.745 0.817

Magnet Center 0.695 0.746 0.758 0.638 0.762 0.797

RepMet Center 0.804 0.815 0.827 0.781 0.829 0.835

Our Center 0.851 0.865 0.873 0.838 0.875 0.874

5. Conclusion and Future Work

In this paper, we propose a novel concept “Hash Center”

to formulate the central similarity for deep hash learning.

The proposed Central Similarity Quantization (CSQ) can

learn hash codes by optimizing the Hamming distance be-

tween hash codes with corresponding hash centers. It is ex-

perimentally validated that CSQ can generate high-quality

hash codes and yield state-of-the-art performance for both

image and video retrieval. In this work, we generate hash

centers independently of data rather than learning from data

features, which has been proven effective. In the future, we

will continue to explore how to learn better hash centers.

Acknowledgement This work was supported by AI.SG

R-263-000-D97-490, NUS ECRA R-263-000-C87-133 and

MOE Tier-II R-263-000-D17-112.

3090

References

[1] Y. Cao, M. Long, B. Liu, and J. Wang. Deep cauchy hashing

for hamming space retrieval. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition,

pages 1229–1237, 2018.

[2] Z. Cao, M. Long, J. Wang, and S. Y. Philip. Hashnet: Deep

learning to hash by continuation. In ICCV, pages 5609–5618,

2017.

[3] Y.-W. Chao, S. Vijayanarasimhan, B. Seybold, D. A. Ross,

J. Deng, and R. Sukthankar. Rethinking the faster r-cnn ar-

chitecture for temporal action localization. In Proceedings

of the IEEE Conference on Computer Vision and Pattern

Recognition, pages 1130–1139, 2018.

[4] Y. Chen, Y. Kalantidis, J. Li, S. Yan, and J. Feng.

Multi-fiber networks for video recognition. arXiv preprint

arXiv:1807.11195, 2018.

[5] T.-S. Chua, J. Tang, R. Hong, H. Li, Z. Luo, and Y. Zheng.

Nus-wide: a real-world web image database from national

university of singapore. In Proceedings of the ACM inter-

national conference on image and video retrieval, page 48.

ACM, 2009.

[6] J. Donahue, L. Anne Hendricks, S. Guadarrama,

M. Rohrbach, S. Venugopalan, K. Saenko, and T. Dar-

rell. Long-term recurrent convolutional networks for visual

recognition and description. In Proceedings of the IEEE

conference on computer vision and pattern recognition,

pages 2625–2634, 2015.

[7] Y. Gong, S. Lazebnik, A. Gordo, and F. Perronnin. Itera-

tive quantization: A procrustean approach to learning binary

codes for large-scale image retrieval. IEEE Transactions

on Pattern Analysis and Machine Intelligence, 35(12):2916–

2929, 2013.

[8] Y. Gu, C. Ma, and J. Yang. Supervised recurrent hashing for

large scale video retrieval. In Proceedings of the 2016 ACM

on Multimedia Conference, pages 272–276. ACM, 2016.

[9] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learn-

ing for image recognition. In Proceedings of the IEEE con-

ference on computer vision and pattern recognition, pages

770–778, 2016.

[10] A. Hyvärinen, J. Hurri, and P. O. Hoyer. Natural image

statistics: a probabilistic approach to early computational

vision. Springer.

[11] L. Karlinsky, J. Shtok, S. Harary, E. Schwartz, A. Aides,

R. Feris, R. Giryes, and A. M. Bronstein. Repmet:

Representative-based metric learning for classification and

few-shot object detection. In Proceedings of the IEEE Con-

ference on Computer Vision and Pattern Recognition, pages

5197–5206, 2019.

[12] H. Kuehne, H. Jhuang, R. Stiefelhagen, and T. Serre.

Hmdb51: A large video database for human motion recogni-

tion. In High Performance Computing in Science and Engi-

neering ‘12, pages 571–582. Springer, 2013.

[13] B. Kulis and T. Darrell. Learning to hash with binary re-

constructive embeddings. In Advances in neural information

processing systems, pages 1042–1050, 2009.

[14] H. Lai, Y. Pan, Y. Liu, and S. Yan. Simultaneous feature

learning and hash coding with deep neural networks. In Pro-

ceedings of the IEEE conference on computer vision and pat-

tern recognition, pages 3270–3278, 2015.

[15] Y. LeCun. The mnist database of handwritten digits.

http://yann. lecun. com/exdb/mnist/, 1998.

[16] C. Li, C. Deng, N. Li, W. Liu, X. Gao, and D. Tao. Self-

supervised adversarial hashing networks for cross-modal re-

trieval. In Proceedings of the IEEE conference on computer

vision and pattern recognition, pages 4242–4251, 2018.

[17] C. Li, S. Gao, C. Deng, D. Xie, and W. Liu. Cross-modal

learning with adversarial samples. In Advances in Neural

Information Processing Systems, pages 10791–10801, 2019.

[18] W.-J. Li, S. Wang, and W.-C. Kang. Feature learning based

deep supervised hashing with pairwise labels. arXiv preprint

arXiv:1511.03855, 2015.

[19] Y. Li, W. Liu, and J. Huang. Sub-selective quantization for

learning binary codes in large-scale image search. IEEE

transactions on pattern analysis and machine intelligence,

40(6):1526–1532, 2017.

[20] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ra-

manan, P. Dollár, and C. L. Zitnick. Microsoft coco: Com-

mon objects in context. In European conference on computer

vision, pages 740–755. Springer, 2014.

[21] V. E. Liong, J. Lu, Y.-P. Tan, and J. Zhou. Deep video hash-

ing. IEEE Transactions on Multimedia, 19(6):1209–1219,

2017.

[22] H. Liu, R. Wang, S. Shan, and X. Chen. Deep super-

vised hashing for fast image retrieval. In Proceedings of the

IEEE conference on computer vision and pattern recogni-

tion, pages 2064–2072, 2016.

[23] W. Liu, C. Mu, S. Kumar, and S.-F. Chang. Discrete graph

hashing. In Advances in neural information processing sys-

tems, pages 3419–3427, 2014.

[24] W. Liu, J. Wang, R. Ji, Y.-G. Jiang, and S.-F. Chang. Su-

pervised hashing with kernels. In 2012 IEEE Conference

on Computer Vision and Pattern Recognition, pages 2074–

2081. IEEE, 2012.

[25] W. Liu, J. Wang, S. Kumar, and S.-F. Chang. Hashing with

graphs. 2011.

[26] W. Liu and T. Zhang. Multimedia hashing and networking.

IEEE MultiMedia, 23(3):75–79, 2016.

[27] M. Norouzi, D. J. Fleet, and R. R. Salakhutdinov. Hamming

distance metric learning. In Advances in neural information

processing systems, pages 1061–1069, 2012.

[28] J. Qin, L. Liu, M. Yu, Y. Wang, and L. Shao. Fast action

retrieval from videos via feature disaggregation. Computer

Vision and Image Understanding, 156:104–116, 2017.

[29] O. Rippel, M. Paluri, P. Dollar, and L. Bourdev. Metric

learning with adaptive density discrimination. arXiv preprint

arXiv:1511.05939, 2015.

[30] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh,

S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein,

et al. Imagenet large scale visual recognition challenge.

International Journal of Computer Vision, 115(3):211–252,

2015.

[31] F. Shen, W. Liu, S. Zhang, Y. Yang, and H. Tao Shen. Learn-

ing binary codes for maximum inner product search. In Pro-

ceedings of the IEEE International Conference on Computer

Vision, pages 4148–4156, 2015.

3091

[32] F. Shen, C. Shen, W. Liu, and H. Tao Shen. Supervised dis-

crete hashing. In Proceedings of the IEEE conference on

computer vision and pattern recognition, pages 37–45, 2015.

[33] K. Simonyan and A. Zisserman. Two-stream convolutional

networks for action recognition in videos. In Advances

in neural information processing systems, pages 568–576,

2014.

[34] D. Song, W. Liu, R. Ji, D. A. Meyer, and J. R. Smith. Top

rank supervised binary coding for visual search. In Proceed-

ings of the IEEE International Conference on Computer Vi-

sion, pages 1922–1930, 2015.

[35] K. Soomro, A. R. Zamir, and M. Shah. Ucf101: A dataset

of 101 human actions classes from videos in the wild. arXiv

preprint arXiv:1212.0402, 2012.

[36] G. Varol, I. Laptev, and C. Schmid. Long-term temporal

convolutions for action recognition. IEEE transactions on

pattern analysis and machine intelligence, 40(6):1510–1517,

2017.

[37] J. Wang, W. Liu, S. Kumar, and S.-F. Chang. Learning to

hash for indexing big data—a survey. Proceedings of the

IEEE, 104(1):34–57, 2016.

[38] J. Wang, W. Liu, A. X. Sun, and Y.-G. Jiang. Learning hash

codes with listwise supervision. In Proceedings of the IEEE

International Conference on Computer Vision, pages 3032–

3039, 2013.

[39] L. Wang, Y. Xiong, Z. Wang, Y. Qiao, D. Lin, X. Tang, and

L. Van Gool. Temporal segment networks: Towards good

practices for deep action recognition. In European confer-

ence on computer vision, pages 20–36. Springer, 2016.

[40] T. Weise, M. Zapf, R. Chiong, and A. J. Nebro. Why is

optimization difficult? In Nature-Inspired Algorithms for

Optimisation, pages 1–50. Springer, 2009.

[41] Y. Weiss, A. Torralba, and R. Fergus. Spectral hashing. In

Advances in neural information processing systems, pages

1753–1760, 2009.

[42] E. W. Weisstein. Hadamard matrix. 2002.

[43] Y. Wen, K. Zhang, Z. Li, and Y. Qiao. A discrimina-

tive feature learning approach for deep face recognition. In

European Conference on Computer Vision, pages 499–515.

Springer, 2016.

[44] R. Xia, Y. Pan, H. Lai, C. Liu, and S. Yan. Supervised hash-

ing for image retrieval via image representation learning. In

AAAI, volume 1, page 2, 2014.

[45] E. Yang, T. Liu, C. Deng, W. Liu, and D. Tao. Distillhash:

Unsupervised deep hashing by distilling data pairs. In Pro-

ceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, pages 2946–2955, 2019.

[46] L. Yuan, E. H. F. Tay, P. Li, and J. Feng. Unsupervised

video summarization with cycle-consistent adversarial lstm

networks. IEEE Transactions on Multimedia, 2019.

[47] L. Yuan, F. E. Tay, P. Li, L. Zhou, and J. Feng. Cycle-sum:

cycle-consistent adversarial lstm networks for unsupervised

video summarization. In Proceedings of the AAAI Confer-

ence on Artificial Intelligence, volume 33, pages 9143–9150,

2019.

[48] H. Zhu, M. Long, J. Wang, and Y. Cao. Deep hashing net-

work for efficient similarity retrieval. In AAAI, pages 2415–

2421, 2016.

[49] N. Zhuang, J. Ye, and K. A. Hua. Dlstm approach to video

modeling with hashing for large-scale video retrieval. In Pat-

tern Recognition (ICPR), 2016 23rd International Confer-

ence on, pages 3222–3227. IEEE, 2016.

3092

