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Abstract

Effective defense of deep neural networks against adver-

sarial attacks remains a challenging problem, especially

under powerful white-box attacks. In this paper, we de-

velop a new method called ensemble generative cleaning

with feedback loops (EGC-FL) for effective defense of deep

neural networks. The proposed EGC-FL method is based

on two central ideas. First, we introduce a transformed

deadzone layer into the defense network, which consists of

an orthonormal transform and a deadzone-based activation

function, to destroy the sophisticated noise pattern of adver-

sarial attacks. Second, by constructing a generative clean-

ing network with a feedback loop, we are able to generate

an ensemble of diverse estimations of the original clean im-

age. We then learn a network to fuse this set of diverse

estimations together to restore the original image. Our ex-

tensive experimental results demonstrate that our approach

improves the state-of-art by large margins in both white-box

and black-box attacks. It significantly improves the classi-

fication accuracy for white-box PGD attacks upon the sec-

ond best method by more than 29% on the SVHN dataset

and more than 39% on the challenging CIFAR-10 dataset.

1. Introduction

Researchers have recognized that deep neural networks

are sensitive to adversarial attacks [32]. Very small changes

of the input image can fool the state-of-art classifier with

very high success probabilities. The attackers often gen-

erate noise patterns by exploiting the specific network ar-

chitecture of the target deep neural network so that small

noise at the input layer can accumulate along the network

inference layers, finally exceed the decision threshold at the

output layer, and result in false decision. On the other hand,

we know a well-trained deep neural networks are robust to

random noise [1], such as Gaussian noise. Therefore, the

key issue in network defense is to destroy the sophisticated

pattern or accumulative process of the attack noise while

Figure 1. Illustration of the proposed ensemble generative cleaning

with feedback loops for defending adversarial attacks.

preserving the original image content or network classifica-

tion performance.

During the past few years, a number of methods have

been proposed to construct adversarial samples to attack

the deep neural networks, including fast gradient sign

(FGS) method [10], Jacobian-based saliency map attack (J-

BSMA) [26], and projected gradient descent (PGD) attack

[18, 20]. Different classifiers can be failed by the same ad-

versarial attack method [32]. The fragility of deep neural

networks and the availability of these powerful attacking

methods present an urgent need for developing effective de-

fense methods. Meanwhile, deep neural network defense

methods have also been developed, including adversarial

training [18, 32], defensive distillation [27, 4, 24], Mag-

net [21], and featuring squeezing [13, 41]. It has been rec-

ognized that these methods suffer from significant perfor-

mance degradation under strong attacks, especially white-

box attacks with large magnitude and iterations [29].

In this work, we explore a new approach, called ensem-

ble generative cleaning with feedback loop (EGC-FL), to

defend deep neural network against powerful adversarial

attacks. Our approach is motivated by the following ob-

servation: (1) the adversarial attack has sophisticated noise

patterns which should be disturbed or destroyed during the

defense process. (2) The attack noise, especially those pow-

erful white-box attacks, such as the PGD and BPDA attacks

[2], are often generated with an iterative process. To clean

them, we also need an iterative process with multiple rounds
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of cleaning to achieve effective defense.

Motivated by these observations, our proposed EGC-FL

approach first introduces a transformed deadzone (TDZ)

layer into the defense network, which consists of an or-

thonormal transform and a deadzone-based activation func-

tion, to destroy the sophisticated noise pattern of adversarial

attacks. Second, it introduces a new network structure with

feedback loops, as illustrated in Figure 1, into the generative

cleaning network. This feedback loop network allows us to

remove the residual attack noise and recover the original im-

age content in an iterative fashion. Specifically, over multi-

ple feedback iterations, the EGC-FL network generates an

ensemble of cleaned estimations of the original image. Ac-

cordingly, we also learn an accumulative image fusion net-

work which is able to fuse the new estimation with existing

result in an iterative fashion. According to our experiments,

this feedback and iterative process converges very fast, of-

ten within 2 to 4 iterations. Our extensive experimental re-

sults on benchmark datasets demonstrate that our EGC-FL

approach improves the state-of-art by large margins in both

white-box and black-box attacks. It significantly improves

the classification accuracy for white-box attacks upon the

second best method by more than 29% on the SVHN dataset

and more than 39% on the challenging CIFAR-10 dataset

with PGD attacks.

The major contributions of this work can be summa-

rized as follows. (1) We have introduced a transform dead-

zone layer into the defense network to effectively destroy

the noise pattern of adversarial attacks. (2) We have de-

veloped a new network structure with feedback loops to re-

move adversarial attack noise and recover original image

content in an iterative manner. (3) We have successfully

learned an accumulative image fusion network which is able

to fuse the incoming sequence of cleaned estimations and

recover the original image in an iterative manner. (4) Our

new method has significantly improved the performance of

the state-of-the-art methods in the literature under a wide

variety of attacks.

The rest of this paper is organized as follows. Section

2 reviews related work. The proposed EGC-FL method is

presented in Section 3. Experimental results, performance

comparisons with existing methods, and ablation studies are

provided in Section 4. Section 5 concludes the paper.

2. Related work

In this section, we review related work on adversarial

attack and network defense methods which are two tightly

coupled research topics. The goal of attack algorithm de-

sign is to fail all existing network defense methods, while

the goal of defense algorithms is to defend the deep neural

networks against all existing adversarial attack methods.

(A) Attack methods. Attack methods can be divided

into two threat models: white-box attacks and black-box at-

tacks. The white-box attacker has full access to the classi-

fier network parameters, network architecture, and weights.

The black-box attacker has no knowledge of or access to

the target network. For white-box attack, a simple and fast

approach called Fast Gradient Sign (FGS) method has been

developed by Goodfellow et al. [10] using error back prop-

agation to directly modify the original image. Kurakin et al.

[18] apply FGS iteratively and propose BIM. Carlini et al.

[4] designed an optimization-based attack method, called

Carlini-Wagner (C&W) attack, which is able to fool the tar-

get network with the smallest perturbation. Xiao et al. [37]

trained a generative adversarial network (GAN) [9] to gen-

erate perturbations. Kannan et al. [17] found that the Pro-

jected Gradient Descent (PGD) is the strongest among all

attack methods. It can be viewed as a multi-step variant of

FGSk [20]. Athalye et al. [2] introduced a method, called

Backward Pass Differentiable Approximation (BPDA), to

attack networks where gradients are not available. It it-

eratively computes the adversarial gradient on the defense

results. It is able to successfully attack all existing state-

of-the-arts defense methods. For black-box attacks, the at-

tacker has no knowledge about the target classifier. Paper-

not et al. [25] introduced the first approach for black-box

attack using a substitute model. Dong et al. [8] proposed a

momentum-based iterative algorithms to improve the trans-

ferability of adversarial examples. Xie et al. [40] boosted

the transferability of adversarial examples by creating di-

verse input patterns.

(B) Defense methods. Several approaches have recently

been proposed for defending both white-box attacks and

black-box attacks. Adversarial training trains the target

model using adversarial examples [32, 10]. Madry et al.

[20] suggested that training with adversarial examples gen-

erated by PGD improves the robustness. [21] proposed

a method, called MagNet, which detects the perturbations

and then reshape them according to the difference between

clean and adversarial examples. Recently, there are sev-

eral defense methods based on GANs have been developed.

Samangouei et al. [29] projected the adversarial examples

into a trained generative adversarial network (GAN) to ap-

proximate the input using generated clean image. Recently,

some defense methods have been developed based on in-

put transformations. Guo et al. [11] proposed several in-

put transformations to defend the adversarial examples, in-

cluding image cropping and re-scaling, bit-depth reduction,

and JPEG compression. Xie et al. [38] proposed to de-

fend against adversarial attacks by adding a randomization

layer, which randomly re-scales the image and then ran-

domly zero-pads the image. Jia et al. [15] proposed an

image compression framework to defend adversarial exam-

ples, called ComDefend. Xie et al. [39] introduced a feature

denoising method for defending PGD white-box attacks.
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Figure 2. Framework of the proposed ensemble generative cleaning network for defending adversarial attacks.

3. The Proposed Method

In this section, we present our method of ensemble gen-

erative cleaning with feedback loops for defending adver-

sarial attacks.

3.1. Overview

As illustrated in Figure 1, our proposed method of en-

semble generative cleaning with feedback loops (EGC-FL)

for defending adversarial attacks is based on two main

ideas: (1) we introduce a transformed deadzone layer into

the cleaning network to destroy the sophisticated noise pat-

terns of adversarial attacks. (2) We introduce a generative

cleaning network with a feedback loop to generate a se-

quence of diverse estimations of the original image, which

will be fused in an accumulative fashion to restore the orig-

inal image.

Figure 2 shows a more detailed framework of the pro-

posed EGC-FL method. The attacked image X∗ is first pre-

processed by a convolutional layer P and then passed to the

transformed deadzone layer Φ, which aims to destroy the

sophisticated noise patterns of the adversarial attacks. To

remove the residual attack noise in X̃ and recover the orig-

inal image content X , the generative cleaning network G

generates a series of estimations of the original image using

a feedback loop. The feedback network consists of three

converter networks, U, V, and W, which are fully convo-

lutional layers. These three converter networks are used to

normalize the output features from different networks be-

fore they are concatenated or fused together. At the k-th

feedback loop, let X̄k be the output of the generative clean-

ing network G. We concatenate the output X̄k and the orig-

inal X̃ after being normalized by converter networks U and

V, respectively. The concatenated feature map is then nor-

malized by converter W before feeding back to the genera-

tive cleaning network G to produce the output X̄k+1. This

feedback loop is summarized by the following formula:

X̄k+1 = G{W[V(X̃) ⊎U(X̄k)]}, (1)

where ⊎ represents the cascade operation. This ensemble

Figure 3. Activation function for the TDZ layer.

generative cleaning network with feedback will generate a

series of cleaned versions {X̄k|k = 1, 2, · · · }, representing

a diverse set of estimations of the original image X . To

recover the original image X , we introduce an accumulative

image fusion network Γ, which operates as follows

X̂k+1 = Γ(X̂k, X̄k). (2)

Specifically, the input to the fusion network Γ are two im-

ages: X̄k which is the current output from the generative

cleaning network G, and X̂k which is the current fused im-

age produced by Γ. The generative cleaning network G is

separated from the accumulative fusion network Γ so that

the generative network can generate multiple estimations

of the original image. The fusion network can then fuse

them together. In other words, the output of Γ is fed back

to itself as the input for the next round of fusion. All net-

works, including the convolution pre-processing, the gener-

ative cleaning network, converter networks, and the accu-

mulative fusion network are learned from our training data,

which will be explained in more detail in the following sec-

tions.

3.2. Transformed Deadzone Layer

The goal of the transformed deadzone layer in our de-

fense network is to destroy the noise pattern and perform

the first round of removal of the adversarial attack noise.

Let X be the original image and x(i, j) be its pixel at loca-

tion (i, j). The attacked image is given by X∗ = X + αǫ

where αǫ is adversarial attack with magnitude ǫ and αǫ(i, j)
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is the attack noise at pixel location (i, j), which is a ran-

dom variable with maximum magnitude of ǫ. We have

x∗(i, j) = x(i, j)+αǫ(i, j). In the spatial domain, it is very

challenging to separate the attack noise from the original

image content since the attacked image X∗ and the original

image X are visually very similar to each other perceptu-

ally.

To address this issue, we propose to first transform

the image using a de-correlation or energy compaction or-

thonormal transform matrix T. One choice of this trans-

form is the blockwise discrete cosine transform (DCT) [34].

After this transform, the energy of the original image will

be aggregated onto a small fraction of transform coefficients

with the remaining coefficients being very close to zeros.

We then pass this transformed image through a deadzone

activation function η(x) shown in Figure 3. Here, η(x) = 0
if x ∈ [−δ, δ]. Otherwise η(x) = x. Since the transform is

linear, the transformed image after the deadzone activation

is given by

η(T ·X∗) = η(T ·X + T · αǫ), (3)

η(x∗

t (i, j)) = η(xt(i, j)) + η(αt(i, j)) (4)

≈ η(xt(i, j)). (5)

Statistically, the attack noise is white noise. After trans-

form, αt(i, j) remains white noise. Notice that a vast ma-

jority of transform coefficients xt(i, j) in the transformed

image T ·X will be very small. In this case, the deadzone ac-

tivation function η(x) will largely remove the transformed

attack noise αt(i, j). Meanwhile, since the major image

content or energy has be aggregated onto a smaller num-

ber large-valued coefficients, which remain unchanged by

the deadzone function. In this way, the energy-compaction

transform is able to help protecting the original image con-

tent from being damaged by the deadzone activation func-

tion during removal of attack noise. Certainly, it will still

cause some damage to the original image content since

the small transform coefficients xt(i, j) are forced to ze-

ros. Figure 4 shows the energy of the attack noise before

and after the TDZ, namely, ||αǫ||2 = ||X − X∗||2 and

||Γ(X) − Γ(X∗)||2, for 860 test images organized in 215

batches. Here Γ(·) represents the transformed deadzone op-

eration. We can see that the energy of attack noise has been

significantly reduced. Certainly, some parts of the original

image content, especially those high-frequency details, are

also removed, which need to be recovered by the subsequent

generative cleaning network.

3.3. Learning the Ensemble Generative Cleaning
Network

In our defense method design, the generative cleaning

network G, the feedback loop U,V,W and accumula-

tive fusion network Γ are jointly trained. The goal of our

Figure 4. The energy of attack noise before and after the trans-

formed TDZ for 860 test images from 215 batches.

method is three-fold: (1) first, the generative cleaning net-

work G needs to make sure that the original image content

is largely recovered. (2) Second, the feedback loop needs

to successfully remove the residual attack noise. (3) Third,

the accumulative fusion network Γ needs to iteratively re-

cover the original image content. To achieve the above three

goals, we formulate the following generative loss function

for training the networks

L = λ1LP + λ2LA + λ3LC , (6)

where LP is perceptual loss, LA is the adversarial loss and

LC is the cross-entropy loss. λi is a weighting parameter. In

our experiments, we set it to be 1/3. To define the perceptual

loss, the L2-norm between the recovered image X̂k and the

original image X is used [16]. In this work, we observe

that the small adversarial perturbation often leads to very

substantial noise in the feature map of the network [39].

Motivated by this, we use a pre-trained VGG-19 network,

denoted by Fβ to generate visual features for the recovered

image X̂k and the original image X , and use their feature

difference as the perceptual loss LP . Specifically,

LP = ||Fβ(X)− Fβ(X̂k)||
2
2. (7)

The adversarial loss LA aims to train generative cleaning

network G and the feedback loop U,V,W so that the re-

covered images will be correctly classified by the target net-

work. It is formulated as

LA = ||G{W[V(X̃) ⊎U(X̄k)]} −X||22. (8)

[U+FF0C] We train our accumulative fusion network Γ,

along with the generative cleaning network G, to optimize

the following loss function:

LC = EX∈ΩΦ[Γ(X̂k, X̄k), Iclean]. (9)

Here, Φ[·, ·] represents the cross-entropy between the out-

put generated by the generative network and the target label
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Table 1. Performance of our method (classification accuracy after defense) against white-box attacks on CIFAR-10 dataset (ǫ = 8/256).

Some methods did not provide results on specific attack methods, which were left blank (marked with (NA) ).

Defense Methods Clean FGS PGD BIM C&W

No Defense 94.38% 31.89% 0.00% 0.00% 0.99%

Label Smoothing [36] 92.00% 54.00% (NA) 8.00% 2.00%

Feature Squeezing [41] 84.00% 20.00% (NA) 0.00% 78.00%

PixelDefend [30] 85.00% 70.00% (NA) 70.00% 80.00%

Adv. Network [35] 91.08% 72.81% 44.28% (NA) (NA)

Parametric Noise Injection (PNI) [14] 85.17% 56.51% 49.07% (NA) (NA)

Sparse Transformation Layer (STL) [31] 90.11% 87.15% (NA) 88.03% 89.04%

Our Method 91.65% 88.51% 88.61% 88.75% 90.03%

Gain +1.36% +39.54% +0.72% +0.99%

Iclean for clean images. With the above loss functions, our

ensemble generative cleaning network learns to iteratively

recover adversarial images.

The accumulative fusion network Γ acts as a multi-

image restoration network for original image reconstruc-

tion. Cascaded with the generative cleaning network G,

it will guide the training of G and feedback loop network

using back propagation of gradients from its own network,

aiming to minimize the above loss function. In our design,

during the adversarial learning process, the target classifier

C is called to determine if the recovered image X̂k is clean

or not, as illustrated in Figure 2. The output of Γ is fed back

to itself as the input to enhance the next round of fusion.

4. Experimental Results

In this section, we implement and evaluate our EGC-FL

defense method and compare its performance with state-

of-the-art defense methods under a wide variety of attacks,

with both white-box and black-box attack modes.

4.1. Experimental Settings

Our experiments are implemented on the Pytorch plat-

form [28]. Our proposed method is implemented on the

AdverTorch [7] in both white and black-box attack modes,

including the BPDA attack [2]. We choose the CIFAR-10

and SVHN (Street View House Number) datasets for per-

formance evaluations and comparisons since most recent

papers reported results on these two datasets. The CIFAR-

10 dataset consists of 60,000 images in 10 classes of size

32× 32. The Street View House Numbers (SVHN) dataset

[23] has about 200K images of street numbers. For each of

these two datasets, a classifier is independently trained on

its training set, and the test set is used for evaluations.

4.2. Results on the CIFAR­10 Dataset

We compare the performance of our defense method

with state-of-the-art methods developed in the literature un-

der five different white-box attacks: (1) FGS attack [10],

Table 2. BPDA attack results on CIFAR-10 dataset. Results with

∗ are achieved with additional adversarial training.

Defense Methods Accuracy

Thermometer Encodings (TE) [3] 0.00%
∗

Stochastic Activation Pruning (SAP) [6] 0.00%

Local Intrinsic Dimensionality (LID) [19] 5.00%

PixelDefend [30] 9.00%
∗

Cascade Adv. Training (L∞=0.015) [22] 15.00%
PGD Adv. Training [20] 47.00%

∗

Sparse Transformation Layer (STL) [31] 42.00%
∗

Our Method 85.77%∗

Gain +38.77%

Table 3. Performance of our method against black-box attacks on

CIFAR-10 (ǫ = 8/256).

Defense Methods No Attack FGS PGD

No Defense 94.38% 63.21% 38.71%

Adv. PGD [33] 83.50% 57.73% 55.72%

Adv. Network [35] 91.32% 77.23% 74.04%

Our Method 91.65% 79.09% 82.78%

Gain +1.86% +8.74%

(2) PGD attack [20], (3) BIM attack [18], (4) C&W attack

[5], and (5) BPDA attack [2]. Following [17] and [35],

the white-box attackers generate adversarial perturbations

within a range of ǫ = 8/255. In addition, we set the step

size of attackers to be ǫ = 1/255 with 10 attack iterations

as the baseline setting.

We generate the perturbed images for training using

PGD attacks and tested for all attack methods. During train-

ing, we set the iteration number K = 3. The perturbed

images are used as the input, passing through our EGC-FL

network for 3 iterations. But, during test, K is flexible. In

our white-box attack experiments, we unfold the feedback

loops so that the attacker has full access to the end-to-end

defense network, including the number of iterations.
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Table 4. Performance of our method against white-box attacks on

SVHN (ǫ = 12/256).

Defense Methods No Attack FGS PGD

No Defense 96.21% 50.36% 0.15%

M-PGD [20] 96.21% (NA) 44.40%

ALP [17] 96.20% (NA) 46.90%

Adv. PGD [33] 87.45% 55.94% 42.96%

Adv. Network [35] 96.21% 91.51% 37.97%

Our Method 94.00% 94.10% 76.67%

Gain +2.59% +29.77%

(1) Defending against white-box attacks. Table 1

shows image classification accuracy with 6 defense meth-

ods: (1) Label Smoothing [36], (2) Feature Squeezing [41],

(3) PixelDefend [30], (4) Adversarial Network [35], (5) the

PNI (Parametric Noise Injection) method [14], and (6) the

STL (Sparse Transformation Layer) method [31]. The sec-

ond column shows the classification accuracy when the in-

put images are all clean. We can see that some methods,

such as the PixelDefend [30], Feature Squeezing [41], and

PNI [14], degrade the classification accuracy of clean im-

ages. This implies that their defense methods have caused

significant damages to the original images, or they cannot

accurately tell if the input image is clean or being attacked.

Since our method has a strong reconstruction capacity, the

ensemble of reconstructed images still preserve the useful

information. The rest four columns list the final image clas-

sification accuracy with different defense methods. For all

of these four attacks, our methods significantly outperforms

existing methods. For example, for the powerful PGD at-

tack, our method outperforms the Adv. Network and the

PNI method by more than 39%.

(2) Defending against the BPDA attack. The Back-

ward Pass Differentiable Approximation (BPDA) [2] at-

tack is very challenging to defend since it can iteratively

strengthen the adversarial examples using gradient approx-

imation according to the defense mechanism. BPDA also

targets defenses in which the gradient does not optimize the

loss. This is the case for our method since the transformed

deadzone layer is non-differentiable. Table 2 summarizes

the defense results of our algorithm in comparison with

other seven methods: (1) Thermometer Encodings (TE) [3],

(2) Stochastic Activation Pruning (SAP) [6], (3) Local In-

trinsic Dimensionality (LID) [19], (4) PixelDefend [30], (5)

Cascade Adversarial Training [22], (6) PGD Adversarial

Training [20], and (7) Sparse Transformation Layer (STL)

[31]. We choose these methods for comparison since the

original BPDA paper [2] has reported results of these meth-

ods. We can see that our EGC-FL network is much more ro-

bust than other defense methods on the CIFAR-10 dataset,

outperforming the second best by more than 38%.

(3) Defending against black-box attacks. We generate

the black-box adversarial examples using FGS and PGD at-

tacks with a substitute model [25]. The substitute model

is trained in the same way as the target classifier with a

ResNet-34 network [12] structure. Table 3 shows the per-

formance of our defense mechanism under back-box attacks

on the CIFAR-10 dataset. The adversarial examples are

constructed with ǫ = 8/256 under the substitute model. We

observe that the target classifier is much less sensitive to ad-

versarial examples generated by FGS and PGD black-box

attacks than the white-box ones. But the powerful PGD at-

tack is still able to decrease the overall classification accu-

racy to a very low level, 38.71%. We compare our method

with the Adversarial PGD [20] and Adversarial Network

[35] methods. We include these two because they are the

only ones that provide performance results on CIFAR-10

with black-box attacks. From the Table 3, we can see our

method improves the accuracy by 8.74% over the state-of-

the-art Adversarial Network method for the PGD attack.

4.3. Results on the SVHN Dataset.

We evaluate our EGC-FL method on the SVHN dataset

with comparison with four state-of-the-art defense methods:

(1) M-PGD (Mixed-minibatch PGD ) [20], (2) ALP (Ad-

versarial Logit Pairing) [17], (3) Adversarial PGD [33], and

(4) Adversarial Network [35]. For the SVHN dataset, as in

the existing methods [17, 35], we used the Resnet-18 [12]

for the target classifier. The average classification accuracy

is 96.21%. We use the same parameters as in [17] for the

PGD attack with a total magnitude of ǫ = 0.05 (12/255).
Within each single step, the perturbation magnitude is set to

be ǫ = 0.01 (3/255) and 10 iterative steps are used.

(1) Defending against white-box attacks. Table 4 sum-

marizes the experimental results and performance compar-

isons with those four existing defense methods. We can see

that on this dataset the PGD attack is able to decrease the

overall classification accuracy to an extremely low level,

0.15%. Our algorithm outperforms existing methods by a

very large margin. For example, for the PGD attack, our al-

gorithm outperforms the second best ALP [17] algorithm by

more than 29%. With the FGS attacks, the iterative clean-

ing process will produce image versions with more diversity

than the clean image without attack noise. This helps recon-

struct the original image.

(2) Defending against black-box attacks. We also per-

form experiments of defending black-box attacks on the

SVHN dataset. Table 5 summarizes our experimental re-

sults with the powerful PGD attack and provides the com-

parison with those four methods. We can see that our ap-

proach outperforms other methods by 2.25% for the FGS

attacks and 5.37% for the PGD attacks. From the above

results, we can see that our proposed method is particularly

effective for defense against the strong attacks, for example,
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Table 5. Performance of our method against black-box attacks on

SVHN (ǫ = 12/256).

Defense Methods No Attack FGS PGD

No Defense 96.21% 69.91% 67.66%

M-PGD [20] 96.21% (NA) 55.40%

ALP [17] 96.20% (NA) 56.20%

Adv. PGD [33] 87.45% 87.41% 83.23%

Adv. Network [35] 96.21% 91.48% 81.68%

Our Method 94.00% 94.03% 88.60%

Gain +2.55% +5.37%

Figure 5. The perturbed-data accuracy of ResNet-18 under adver-

sarial attack (Top) versus number of attack iteration, and (Bottom)

versus perturbation magnitude (under L∞) on CIFAR-10 dataset.

the PGD attacks with large iteration steps and noise magni-

tude.

4.4. Ablation Studies and Algorithm Analysis

In this section, we provide in-depth ablation study results

of our algorithm to further understand its capability.

(1) Defense against large-iteration and large-epsilon

attacks. Figure 5 (Top) shows the performance results un-

der large-iteration PGD and BPDA attacks. We can see that

the large-iteration PGD attack significantly degrades the ac-

curacy of the Vanilla Adversary Training method (VAT)

[20] and the PNI (Parametric Noise Injection) method [14],

as well as our method. But, our method significantly out-

performs the other two. In both cases, the perturbed-

data accuracy starts saturating without further drop when

Table 6. Performance of our method with feedback loops under

adversarial attacks on CIFAR-10 dataset.

Attack Method Gen1 Gen2 Gen3 Gen4

FGS 57.64% 78.04% 78.15% 78.31%

PGD 78.46% 85.36% 86.25% 86.55%

BPDA 19.40% 79.12% 79.28% 79.79%

Nstep ≥ 50. In Figure 5 (Top), we also include the perfor-

mance results of our method under large-iteration BPDA at-

tacks. We set the adversarial perturbations within a range of

ǫ = 12/255 with 10 attack iterations as the baseline setting.

This result is not reported by other methods so we could not

include them for comparison. We can see that the BPDA

attack is much more powerful. But, our algorithm can still

survive large-iteration BPDA attacks and largely maintain

the defense performance.

Figure 5 (bottom) shows comparison results against at-

tacks with large perturbation magnitude. We can see that

our method significantly outperforms the VAT and PNI

defense methods even when the magnitude of adversarial

noise is increased to ǫ = 0.3 under the PGD attack. We

also include the performance of our method under large-ǫ
BPDA attacks. We can see that our method is robust under

very powerful attacks of large magnitudes.

(2) Analyze the impact of feedback loops. We notice

that the feedback loop network plays an important role in

the defense. In our method, the key parameter controlling

the image quality is the number of feedback loop k. We

gradually increase k and explore classification accuracy of

the fused image. Table 6 shows the performance (classifica-

tion accuracy after defense) of our method on the CIFAR-

10 dataset with various attacks. We denote Genk as the

number of feedback loops. We can see that the feedback

loops within the range of 3 or 4 yields the best performance.

One feedback loop does not provide efficient defense since

the EGC-FL network is not able to fully destroy the attack

noise pattern and restore useful information. Once the key

features in the original image have been reconstructed, the

classification accuracy will be stable and maintain the high-

est performance, although the image quality may get even

better with accumulative fusion. In Figure 6, we show sam-

ple images from the CIFAR-10 when our method is applied.

The first column is the clean image without attacks. The

second column is attacked image. The third to last columns

are reconstructed images of 4 generations by our EGC-FL

method. We can see that our algorithm is able to remove the

attack noise and largely recover the original image content.

(3) In-depth analysis of major algorithm components.

In the following ablation studies, we perform in-depth anal-

ysis of major components of our EGC-FL algorithm, which

includes the transform, deadzone, and the EGC network

with feedback loops. In Table 7, the first row shows the
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Figure 6. Adversarial images and their fused image produced by

our method.

Table 7. Performance analysis of algorithm components.

Defense Methods FGS PGD BPDA

Our Method (Full Alg.) 88.51% 88.04% 85.77%

- Without Transform 79.32% 79.35% 79.62%

- Without Feedback 77.12% 78.46% 19.37%

classification accuracy of images after defense with our pro-

posed EGC-FL method (full algorithm) on the CIFAR-10

dataset with FGS, PGD, and BPDA attacks. The second

row shows results without the transform. We can see that

the accuracy drops about 7-9%. The transform module is

important because it can help protecting the original con-

tent from being damaged by the deadzone activation func-

tion δ(x) by aggregating the energy of the original image

into a small number of large transform coefficients. The

third row shows the results without the feedback loop. We

can see that it drops the accuracy by 10-11% under the FGS

and PGD attacks. For the powerful BPDA attack, the drop

is very dramatic, about 66%. With multiple feedback loops

for progressive attack noise removal and original image re-

construction, it can significantly improve the defense per-

formance, especially under powerful BPDA attacks.

(4) Visualizing the defense process. Network defense

is essentially a denosing process of the feature maps. To

further understand how the the proposed EGC-FL method

works, we visualize the feature maps of original, attacked,

and EGC-FL cleaned images. We use the feature map from

the activation layer, the third from the last layer in the net-

work. Figure 7 shows two examples. In the first exam-

ple, the first row is the original image (classified into ter-

rapin), its gradient-weighted class activation heatmap, and

the heatmap overlaid on the original image. The heatmap

shows which parts of the original image the classification

network is paying attention to. The second row shows the

Figure 7. Each pair of examples are feature maps corresponding to

clean images (top), to their adversarial perturbed images (middle)

and to their reconstructed images (bottom).

attacked image (being classified into cobra), heatmap, and

the heatmap overlaid on the attacked image. We can see that

the feature map is very noisy and the heatmap is distorted.

The third row shows the EGC-cleaned images. We can see

that both the feature map and heatmaps have been largely

restored.

5. Conclusion

We have developed a new method for defending deep

neural networks against adversarial attacks based on the

EGC-FL network. This network is able to recover the orig-

inal image while cleaning up the residual attack noise. We

introduced a transformed deadzone layer into the defense

network, which consists of an orthonormal transform and a

deadzone-based activation function, to destroy the sophisti-

cated noise pattern of adversarial attacks. By constructing

a generative cleaning network with a feedback loop, we are

able to generate an ensemble of diverse estimations of the

original clean image. We then learned a network to fuse

this set of diverse estimation images together to restore the

original image. Our extensive experimental results demon-

strated that our approach outperforms the state-of-art meth-

ods by large margins in both white-box and black-box at-

tacks. Our ablation studies have demonstrated that the ma-

jor components of our method, the transformed deadzone

layer and the ensemble generative cleaning network with

feedback loops, are both critical, contributing significantly

to the overall performance.
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