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Abstract

A popular method for anomaly detection is to use the

generator of an adversarial network to formulate anomaly

score over reconstruction loss of input. Due to the rare oc-

currence of anomalies, optimizing such networks can be a

cumbersome task. Another possible approach is to use both

generator and discriminator for anomaly detection. How-

ever, attributed to the involvement of adversarial training,

this model is often unstable in a way that the performance

fluctuates drastically with each training step. In this study,

we propose a framework that effectively generates stable

results across a wide range of training steps and allows us

to use both the generator and the discriminator of an ad-

versarial model for efficient and robust anomaly detection.

Our approach transforms the fundamental role of a discrim-

inator from identifying real and fake data to distinguishing

between good and bad quality reconstructions. To this end,

we prepare training examples for the good quality recon-

struction by employing the current generator, whereas poor

quality examples are obtained by utilizing an old state of the

same generator. This way, the discriminator learns to de-

tect subtle distortions that often appear in reconstructions

of the anomaly inputs. Extensive experiments performed on

Caltech-256 and MNIST image datasets for novelty detec-

tion show superior results. Furthermore, on UCSD Ped2

video dataset for anomaly detection, our model achieves a

frame-level AUC of 98.1%, surpassing recent state-of-the-

art methods.

1. Introduction

Due to rare occurrence of anomalous scenes, the

anomaly detection problem is usually seen as one-class

classification (OCC) in which only normal data is used to

learn a novelty detection model [22, 57, 25, 51, 11, 45, 40,

10, 44, 34, 35]. One of the recent trends to learn one-class

data is by using an encoder-decoder architecture such as de-

noising auto-encoder [41, 52, 53, 49]. Generally, in this

scheme, training is carried out until the model starts to pro-

duce good quality reconstructions [41, 43]. During the test

time, it is expected to show high reconstruction loss for ab-

normal data which corresponds to a high anomaly score.

With the recent developments in Generative Adversarial

Networks (GANs) [8], some researchers also explored the

possibility of improving the generative results using adver-

sarial training [43, 32]. Such training fashion substantially

enhances the data regeneration quality [30, 8, 43]. At the

test time, the trained generator G is then decoupled from the

discriminator D to be used as a reconstruction model. As

reported in [41, 35, 36], a wide difference in reconstruction

loss between the normal and abnormal data can be achieved

due to adversarial training, which results in a better anomaly

detection system. However, relying only on the reconstruc-

tion capability of a generator does not oftentimes work well

because the usual encoder-decoder style generators may un-

expectedly well-reconstruct the unseen data which drasti-

cally degrades the anomaly detection performance.

A natural drift in this domain is towards the idea of using

D along with the conventional utilization of G for anomaly

detection. The intuition is to gain maximum benefits of the

one-class adversarial training by utilizing both G and D in-

stead of only G. However, this also brings along the prob-

lems commonly associated with such architectures. For ex-

ample, defining a criteria to stop the training is still a chal-

lenging problem [8, 30]. As discussed in Sabokrou et al.

[41], the performance of such adversarially learnt one-class

classification architecture is highly dependent on the criteria

of when to halt the training. In the case of stopping prema-

turely, G will be undertrained and in the case of overtrain-

ing, D may get confused because of the real-looking fake

data. Our experiments show that a G+D trained as a collec-

tive model for anomaly detection (referred to as a baseline)

will not ensure higher convergence at any arbitrary train-

ing step over its predecessor. Figure 1 shows frame-level

area under the curve (AUC) performance of the baseline

over several epochs of training on UCSD Ped2 dataset [4].
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Figure 1: Dynamics of AUC performance over training

epochs: The baseline shows high fluctuations while our ap-

proach not only shows stability across various epochs but

also yields higher AUC.

Although we get high performance peaks at times, it can

be seen that the performance fluctuates substantially even

between two arbitrary consecutive epochs. Based on these

findings, it can be argued that a D as we know it, may not be

a suitable choice in a one-class classification problem, such

as anomaly detection.

Following this intuition, we devise an approach for train-

ing of an adversarial network towards anomaly detection by

transforming the basic role of D from distinguishing be-

tween real and fake to identifying good and bad quality

reconstructions. This property of D is highly desirable in

anomaly detection because a trained G would not produce

as good reconstruction for abnormal data as it would for the

normal data conforming to the learned representations. To

this end we propose a two-stage training process. Phase one

is identical to the common practice of training an adversar-

ial denoising auto-encoder [30, 53, 49]. Once G achieves

a reasonably trained state (i.e. showing low reconstruction

losses), we begin phase two in which D is optimized by

training on various good quality and bad quality reconstruc-

tion examples. Good quality reconstruction examples come

from real data as well as the data regenerated by G, whereas

bad reconstruction examples are obtained by utilizing an old

state of the generator (Gold) as well as by using our pro-

posed pseudo-anomaly module. Shown in Figure 3, this

pseudo-anomaly module makes use of the training data to

create anomaly-like examples. With this two-phase training

process, we expect D to be trained in such a way that it can

robustly discriminate reconstructions coming from normal

and abnormal data. As shown in Figure 1, our model not

only provides superior performance but also shows stability

across several training epochs.

In summary, the contributions of our paper are as fol-

lows: 1) this work is among the first few to employ D along

with G at test time for anomaly detection. Moreover, to the

best of our knowledge, it is the first one to extensively report

the impacts of using the conventional G+D formulation and

the consequent instability. 2) Our approach of transforming

the role of a discriminator towards anomaly detection prob-

lem by utilizing an old state Gold of the generator along

with the proposed pseudo-anomaly module, substantially

improves stability of the system. Detailed analysis pro-

vided in this paper shows that our model is independent of a

hard stopping criteria and achieves consistent results over a

wide range of training epochs. 3) Our method outperforms

state-of-the-art [41, 13, 37, 27, 7, 48, 25, 28, 11, 23, 35, 24,

34, 46, 10, 22, 52, 57, 58] in the experiments conducted on

MNIST [18] and Caltech-256 [9] datasets for novelty detec-

tion as well as on UCSD Ped2 [4] video dataset for anomaly

detection. Moreover, on the latter dataset, our approach pro-

vides a substantial absolute gain of 5.2% over the baseline

method achieving frame level AUC of 98.1%.

2. Related Work

Anomaly detection is often seen as a novelty detection

problem [22, 57, 25, 11, 51, 45, 40, 2, 10, 44, 34, 34, 35] in

which a model is trained based on the known normal class

to ultimately detect unknown outliers as abnormal. To sim-

plify the task, some works proposed to use object track-

ing [50, 1, 26, 31, 56] or motion [16, 12, 5]. Handpick-

ing features in such a way can often deteriorate the per-

formance significantly. With the increased popularity of

deep learning, some researchers [44, 35] also proposed to

use pre-trained convolution network based features to train

one-class classifiers. Success of such methods is highly de-

pendent on the base model which is often trained on some

unrelated datasets.

A relatively new addition to the field, image regenera-

tion based works [7, 37, 52, 13, 27, 28, 53, 40] are the ones

that make use of a generative network to learn features in

an unsupervised way. Ionescu et al. in [13] proposed to

use convolutional auto-encoders on top of object detection

to learn motion and appearance representations. Xu et al.

[52, 53] used a one-class SVM learned using features from

stacked auto-encoders. Ravanbakhsh et al. [35] used gener-

ator as a reconstructor to detect abnormal events assuming

that a generator is unable to reconstruct the inputs that do

not conform the normal training data. In [27, 28], the au-

thors suggested to use a cascaded decoder to learn motion

as well as appearance from normal videos. However, in all

these schemes, only a generator is employed to perform de-

tection. Pathak et al. [30] proposed adversarial training to

enhance the quality of regeneration. However, they also dis-

card the discriminator once the training is finished. A uni-

fied generator and discriminator model for anomaly detec-

tion is proposed in Sabokrou et al. [41]. The model shows

promising results, however it is often not stable and the per-

formance relies heavily on the criteria to stop training. Re-

cently, Shama et al. [43] proposed an idea of utilizing output
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Figure 2: Our proposed OGNet framework. Phase one is the baseline training, carried out to obtain a reasonably trained state

of G and D. A frozen low epoch state (Gold) of the generator is stored during this training. In phase two, only D is updated

to distinguish between good and bad quality reconstructions. Good quality examples correspond to real training images as

well as the images reconstructed using G while bad quality examples are obtained using Gold as well as the proposed pseudo-

anomaly module. This module assists D to learn the underlying patterns of anomalous input reconstructions. During test,

inferences are carried out through G and D only and the output of D is considered as anomaly score. Best viewed in color.

of an adversarial discriminator to increase the image qual-

ity of generated images. Although not related to anomaly

detection, it provides an interesting intuition to make use of

both adversarial components for an enhanced performance.

Our work, although built on top of an unsupervised

generative network, is different from the approaches in

[7, 13, 27, 28, 53, 40] as we explore to utilize the unified

generator and discriminator model for anomaly detection.

The most similar work to ours is by Sabokrou et al. [41]

and Lee et al. [19] as they also explore the possibility of

using discriminator, along with the conventional usage of

generator, for anomaly detection. However, our approach is

substantially different from these. In [41], a conventional

adversarial network is trained based on a criteria to stop the

training whereas, in [19], an LSTM based approach is uti-

lized for training. In contrast, we utilize a pseudo-anomaly

module along with an old state of the generator, to modify

the ultimate role of a discriminator from distinguishing be-

tween real and fake to detecting between and bad quality

reconstructions. This way, our overall framework, although

trained adversarially in the beginning, finally aligns both the

generator and the discriminator to complement each other

towards anomaly detection.

3. Method

In this section, we present our OGNet framework. As

described in Section 1, most of the existing GANs based

anomaly detection approaches completely discard discrimi-

nator at test time and use generator only. Furthermore, even

if both models are used, the unavailability of a criteria to

stop the training coupled with the instability over training

epochs caused by adversary makes the convergence uncer-

tain. We aim to change that by redefining the role of a dis-

criminator to make it more suitable for anomaly detection

problems. Our solution is generic, hence it can be integrated

with any existing one-class adversarial networks.

3.1. Architecture Overview

In order to maintain consistency and to have a fair com-

parison, we kept our baseline architecture similar to the one

proposed by Sabokrou et al. [41]. The generator G, a typical

denoising auto-encoder, is coupled with the discriminator D
to learn one class data in an unsupervised adversarial fash-

ion. The goal of this model is to play a min-max game to

optimize the following objective function:

min
G

max
D

(

EX∼pt
[log(1−D(X))]

+ EX̃∼pt+Nσ
[log(D(G(X̃)))]

)

,

(1)

where X̃ is the input image X with added noise Nσ as in

a typical denoising auto-encoder. Our model, built on top

of the baseline, makes use of an old frozen generator (Gold)

to create low quality reconstruction examples. We also pro-
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Figure 3: Our proposed pseudo-anomaly module. A

pseudo-anomaly ˆ̄X is created by regenerating two arbi-

trary training images through Gold followed by a pixel-level

mean. Finally, X̂pseudo is created as G( ˆ̄X) to mimic the

regeneration behavior of G for anomalous inputs.

pose a pseudo-anomaly module to assist D in learning the

behavior of G in the case of unusual or anomalous input,

which we found out to be very useful towards the robust-

ness of our approach (Table 4). The overall purpose of our

proposed framework is to alter the learning paradigm of D
from distinguishing between real and fake to differentiating

between good and bad reconstructions. This way, the dis-

criminator gets aligned with the conventional philosophy of

generative one-class learning models in which the recon-

struction quality of the data from a known class is better

than the data from unknown or anomaly classes.

3.2. Training

The training of our model is carried out in two phases

(see Figure 2). Phase one is similar to the common prac-

tices in training an adversarial one-class classifier [41, 17,

42, 36]. G tries to regenerate real-looking fake data which

is then fed into D along with real data. The D learns to dis-

criminate between real and fake data, success or failure of

which then becomes a supervision signal for G. This train-

ing is carried out until G starts to create real looking images

with a reasonably low reconstruction loss. Overall, phase

one minimizes the following loss function:

L = LG+D + λLR, (2)

where LG+D is the loss function of our joint training objec-

tive defined in Equation 1, LR = ||X − G(X̃)||2 is the re-

construction loss, and λ is a weighing hyperparameter. Ad-

ditionally, as phase one progresses, we save a low-epoch

generator model (Gold) for later use in phase two of the

training. Deciding which low epoch to be used can be an

intuitive selection based on the quality of regeneration. Ob-

viously, we want Gold to generate low quality images com-

pared to a trained G. However, it is not necessary to select

any specific epoch number for this generator. We will prove

this empirically in Section 4 by showing that the final con-

vergence of our model is not dependent on a strict selection

of the epoch numbers and that various generic settings are

possible to obtain a Gold.

Phase two of the training is where we make use of the

frozen models Gold and G to update D. This way D starts

learning to discriminate between good and bad quality re-

constructions, hence becoming suitable for one-class clas-

sification problems such as anomaly detection.

Details of the phase two training are discussed next:

Goal. The essence of phase two training is to provide ex-

amples of good quality and bad quality reconstructions to

D, with a purpose of making it learn about the kind of out-

put that G would produce in the case of an unusual input.

The training is performed for just a few iterations since the

already trained D converges quickly. A detailed study on

this is added in Section 4.

Good quality examples. D is provided with real data (X),

which is the best possible case of reconstruction, and the ac-

tual high quality reconstructed data (X̂ = G(X)) produced

by the trained G as an example of good quality examples.

Bad quality examples. Examples of low quality re-

construction (X̂ low) are generated using Gold. In addi-

tion, a pseudo-anomaly module, shown in Figure 3, is

formulated with a combination of Gold and the trained

G, which simulates examples of reconstructed pseudo-

anomalies (X̂pseudo).

Pseudo anomaly creation. Given two arbitrary images Xi

and Xj from the training dataset, a pseudo anomaly image
ˆ̄X is generated as:

ˆ̄X =
Gold(Xi) + Gold(Xj)

2
=

X̂ low
i + X̂ low

j

2
,where i 6= j.

(3)

This way, the resultant image can contain diverse variations

such as shadows and unusual shapes, which are completely

unknown to both G and D models. Finally, as the last step

in our pseudo-anomaly module, in order to mimic the be-

havior of G when it gets unusual data as input, ˆ̄X is then

reconstructed using G to obtain X̂pseudo:

X̂pseudo = G( ˆ̄X). (4)

Example images at each intermediate step can be seen in

Figures 3 and 4.

Tweaking the objective function. The model in phase two

of the training takes the form:

max
D

(

αEX [log(1−D(X))]+

(1− α)E
X̂
[log(1−D(X̂))] + βE

X̂low [log(D(X̂ low))]+

(1− β)E
X̂pseudo [log(D(X̂pseudo))]

)

,

(5)

where α and β are the trade-off hyperparameters.
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Quasi ground truth for the discriminator in phase one

training is defined as:

GTphase one =

{

0 if input is X ,

1 if input is X̂.
(6)

However, for phase two training, it takes the form:

GTphase two =

{

0 if input is X or X̂ ,

1 if input is X̂ low or X̂pseudo.
(7)

3.3. Testing

At test time, as shown in Figure 2, only G and D are uti-

lized for one-class classification (OCC). Final classification

decision for an input image X is given as:

OCC =

{

normal class if D(G(X)) < τ ,

anomaly class otherwise.
(8)

where τ is a predefined threshold.

4. Experiments

The evaluation of our OGNet framework on three differ-

ent datasets is reported in this section. Detailed analysis of

the performance and its comparison with the state-of-the-art

methodologies is also reported. In addition, we provide ex-

tensive discussion and ablation studies to show the stability

as well as the significance of our proposed scheme. In order

to keep the experimental setup consistent with the existing

works [22, 57, 25, 51, 11, 45, 40, 10, 44, 34, 35, 41, 13, 7,

(b) Test images(a) Training images
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Figure 4: Example images from different stages of our

framework. (a) Left to right: Original image (X),

high quality reconstructed (X̂), low quality reconstructed

(X̂ low), pseudo anomaly ( ˆ̄X), pseudo anomaly recon-

structed (X̂pseudo). (b) Left column shows outlier /

anomaly examples whereas right column shows respective

regenerated outputs G(X).

28, 27], we tested our method for the detection of outlier

images as well as video anomalies.

Evaluation criteria. Most of our results are formulated

based on area under the curve (AUC) computed at frame

level due to its popularity in related works [48, 25, 28,

11, 23, 35, 24, 7, 34, 46, 10, 22, 52, 27, 57, 13, 58, 41].

Nevertheless, following the evaluation methods adopted in

[47, 20, 54, 33, 21, 55, 41, 38, 35, 36, 52, 39, 40] we also re-

port F1 score and Equal Error Rate (EER) of our approach.

Parameters and implementation details. Our implemen-

tation is done in PyTorch [29] and the source code is pro-

vided at https://github.com/xaggi/OGNet. Phase one of the

training in our reports is performed from 20 to 30 epochs.

These numbers are chosen because the baseline shows high

performance peaks within this range (Figure 1). We train

on Adam [15] with the learning rate of generator and dis-

criminator in all these epochs set to 10−3 and 10−4, re-

spectively. Phase two of the training is done for 75 itera-

tions with the learning rate of the discriminator reduced to

half. λ, α, and β are set to 0.2, 0.1, 0.001, respectively. Un-

til stated otherwise, default settings of our experiments are

set to the aforementioned values. However, for the detailed

evaluation provided in a later part of this section, we also

conducted experiments and reported results on a range of

epochs and iterations for both phases of the training, respec-

tively. Furthermore, until specified otherwise, we pick the

generator after 1st epoch and freeze it as Gold. This selec-

tion is arbitrary and solely based on the intuition explained

in Section 3. Additionally, in a later part of this section, we

also present a robust and generic method to formulate Gold

without any need of handpicking an epoch.

4.1. Datasets

Caltech-256. This dataset [9] contains a total of 30,607

images belong to 256 object classes and one ‘clutter’ class.

Each category has different number of images, as low as 80

and as high as 827. In order to perform our experiments, we

used the same setup as described in previous works [47, 20,

54, 33, 21, 55, 41]. In a series of three experiments, at most

150 images belong to 1, 3, and 5 randomly chosen classes

are defined as training (inlier) data. Outlier images for test

are taken from the ‘clutter’ class in such a way that each

experiment has exactly 50% ratio of outliers and inliers.

MNIST. This dataset [18] consists of 60,000 handwritten

digits from 0 to 9. The setup to evaluate our method on

this dataset is also kept consistent with the previous works

[51, 3, 41]. In a series of experiments, each category of

digits is individually taken as inliers. Whereas, randomly

sampled images of the other categories with a proportion of

10% to 50% are taken as outliers.

USCD Ped2. This dataset [4] comprises of 2,550 frames in

16 training and 2,010 frames in 12 test videos. Each frame

is of 240×360 pixels resolution. Pedestrians dominate most
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DPCP[47] REAPER[20] OutlierPersuit[54] CoP[33] LRR[21] R-graph[55] ALOCC[41] Ours

AUC 78.3% 81.6% 83.7% 90.5% 90.7% 94.8% 94.2% 98.2%

F1 78.5% 80.8% 82.3% 88.0% 89.3% 91.4% 92.8% 95.1%

AUC 79.8% 79.6% 78.8% 67.6% 47.9% 92.9% 93.8% 97.7%

F1 77.7% 78.4% 77.9% 71.8% 67.1% 88.0% 91.3% 91.5%

AUC 67.6% 65.7% 62.9% 48.7% 33.7% 91.3% 92.3% 98.1%

F1 71.5% 71.6% 71.1% 67.2% 66.7% 85.8% 90.5% 92.8%

Table 1: AUC and F1 score performance comparison of our framework on Caltech-256 [9] with the other state of the art

methods. Following the existing work [55], each subgroup of rows from top to bottom shows evaluation scores on inliers

coming from 1, 3, and 5 different random classes respectively (best performance as bold and second best as underlined).

of the frames whereas anomalies include skateboards, vehi-

cles, bicycles, etc. Similar to [48, 25, 28, 11, 23, 35, 24, 7,

34, 46, 10, 22, 52, 27, 57, 13, 58, 41], frame-level AUC and

EER metrics are adopted to evaluate performance on this

dataset.

4.2. Outlier Detection in Images

One of the significant applications of a one-class learn-

ing algorithm is outlier detection. In this problem, objects

belonging to known classes are treated as inliers based on

which the model is trained. Other objects that do not be-

long to these classes are treated as outliers, which the model

is supposed to detect based on its training. Results of the

experiments conducted using Caltech-256 [9] and MNIST

[18] datasets are reported and comparisons with state-of-

the-art outlier detection models [14, 55, 51, 41, 47, 20, 54,

33, 21] are provided.

Results on Caltech-256. Figure 4b shows outlier examples

reconstructed using G. It is interesting to observe that al-

though the generated images are of reasonably good quality,

our model still depicts superior results in terms of F1 score

and area under the curve (AUC), as listed in Table 1, which

demonstrates that our model is robust to the over-training

of G.

Results on MNIST. As it is a well-studied dataset, various

outlier detection related works use MNIST as a stepping-

stone to evaluate their approaches. Following [51, 3, 41],

we also report F1 score as an evaluation metric of our

method on this dataset. A comparison provided in Figure 5

shows that our approach performs robustly to detect out-

liers even when the percentage of outliers is increased. An

insight of the performance improvement by our approach

is shown in Figure 6. It can be observed that as the phase

two training continues, score distribution of inliers and out-

liers output by our network smoothly distributes to a wider

range.

4.3. Anomaly Detection in Videos

One-class classifiers are finding their best applications in

the domain of anomaly detection for surveillance purposes

[45, 48, 6, 57, 36, 35]. However, this task is more compli-

cated than the outlier detection because of the involvement

of moving objects, which cause variations in appearance.

Experimental setup. Each frame I of the Ped2 dataset is

divided into grayscale patches XI = {X1, X2, ..., Xn} of

size 45 × 45 pixels. Normal videos, which only contain
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Figure 5: F1 score results on MNIST dataset. Compared

to state-of-the-art, our method retains superior performance

even with an increased percentage of outliers at test time.
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Figure 6: Anomaly score distribution on MNIST dataset

over various training iterations of our framework. Divisibil-

ity of inliers and outliers is improved significantly as phase

two of the training proceeds.
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RE[38] AbnormalGAN[35] Ravanbakhsh[36] Dan Xu[52]

15% 13% 14% 17%

Sabokrou[39] Deep-cascade[40] ALOCC[41] Ours

19% 9% 13% 7%

Table 2: EER results comparison with existing works on

UCSD Ped2 dataset. Lower numbers mean better results.

scenes of walking pedestrians, are used to extract training

patches. Test patches are extracted from abnormal videos

which contain abnormal as well as normal scenes. In order

to remove unnecessary inference of the patches, a motion

detection criteria based on frame difference is set to dis-

card patches without motion. A maximum of all patch-level

anomaly scores is declared as the frame-level anomaly score

of that particular frame as:

AI = max
X

D(G(X)), where X ∈ XI (9)

Performance evaluation. Frame-level AUC and EER are

the two evaluation metrics used to compare our approach

with a series of existing works [48, 25, 28, 11, 23, 35, 24,

7, 34, 46, 10, 22, 52, 27, 57, 13, 58, 41] published within

last 5 years. The corresponding results provided in Table

2 and Table 3 show that our method outperforms recent

state-of-the-art methodologies in the task of anomaly detec-

tion. Comparing with the baseline, our approach achieves

an absolute gain of 5.2% in terms of AUC. Examples of

the reconstructed patches are provided in Figure 4. As

shown in Figure 4b, although G generates noticeably good

reconstructions of anomalous inputs, due to the presence

of our proposed pseudo-anomaly module, D gets to learn

the underlying patterns of reconstructed anomalous images.

This is why, in contrast to the baseline, our framework pro-

vides consistent performance across a wide range of train-

ing epochs (Figure 1).

Method AUC Method AUC

Unmasking[48] 82.2% TSC[25] 92.2%

HybridDN[28] 84.3% FRCN action[11] 92.2%

Liu et al[23] 87.5% AbnormalGAN[35] 93.5%

ConvLSTM-AE[24] 88.1% MemAE[7] 94.1%

Ravanbakhsh et al[34] 88.4% GrowingGas[46] 94.1%

ConvAE[10] 90% FFP[22] 95.4%

AMDN[52] 90.8% ConvAE+UNet[27] 96.2%

Hashing Filters[57] 91% STAN[19] 96.5%

AE Conv3D[58] 91.2% Object-centric[13] 97.8%

Baseline 92.9% Ours 98.1%

Table 3: Frame-level AUC comparison on UCSD Ped2

dataset with state-of-the-art works published in last 5 years.

Best and second best performances are highlighted as bold

and underlined, respectively.
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Figure 7: The plot shows frame level AUC performance

of our phase two training, starting after different epochs

of phase one (baseline) training. The model after phase

two training shows significantly less variance than base-

line/phase one.

4.4. Discussion

When to stop phase one training? The convergence of

our framework is not strictly dependent on phase one train-

ing. Figure 7 shows the AUC performance of phase two

training applied after various epochs of phase one on Ped2

dataset [4]. Values plotted at iterations = 0, representing the

performance of the baseline, show a high variance. Interest-

ingly, it can be seen that after few iterations into phase two

training of our proposed approach, the model starts to con-

verge better. Irrespective of the initial epoch in phase one

training, models converged successfully showing consistent

AUC performances.

When to stop phase two training? As seen in Figure 7

and Figure 8, it can be observed that once a specific model

is converged, further iterations do not deteriorate its perfor-

mance. Hence, a model can be trained for any number of

iterations as deemed necessary.

Which low epoch generator is better? For the selection of

Gold, as mentioned earlier, the generator after the 1st epoch

of training was arbitrarily chosen in our experiments. This

selection is intuitive and mostly based on the fact that the

generator has seen all dataset once. In addition, we visu-

ally observed that after first epoch, although the generator

was capable of reconstructing its input, the quality was not

‘good enough’, which is a suitable property for Gold in our

model. However, this way of selection is not a generalized

solution across various datasets. Hence, to investigate the

matter further, we evaluate a range of low epoch numbers as

candidates for Gold. The baseline epoch of G is kept fixed

throughout this experiment. Results in Figure 8a show that

irrespective of the low epoch number chosen as Gold, the

model converges and achieves state-of-the-art or compara-

ble AUC. In pursuit of another more systematic way to ob-

tain Gold, we also explored the possibility of using average

parameters of all previous G models. Hence, for each given

epoch of the baseline that we pick as G, a Gold is formu-
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(a) Experiments with the Gold taken across first 10

epochs, where G is kept fixed.
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(b) Experiments with the Gold obtained at various arbi-

trary epochs by averaging the parameters of generators

from all previous epochs.

Figure 8: Results from a series of experiments on UCSD

Ped2 dataset show that our framework is not dependent on

a strict choice of epoch number for Gold. In (a), various

Gold selected at a varied range of epochs are experimented

with a fixed G. In (b), an average of parameters from all

past generators is taken as Gold.

lated by taking an average of all previous G models until

that point. The results plotted in Figure 8b show that such

Gold also depicts comparable performances. Note that this

formulation completely eradicates the need of handpicking

a specific epoch number for Gold, thus making our formula-

tion generic towards the size of a training dataset.

4.5. Ablation

Ablation results of our framework on UCSD Ped2

dataset [4] are summarized in Table 4. As shown, while

each input component of our training model (i.e. real im-

ages X , high quality reconstructions X̂ , low quality re-

constructions X̂ low, and pseudo anomaly reconstructions

X̂pseudo) contributes towards a robust training, removing

any of these at a time still shows better performance than

the baseline. One interesting observation can be seen in

the fourth column of the phase two training results. In this

case, the performance is measured after we remove the last

step of pseudo-anomaly module, which is responsible for

providing regenerated pseudo-anomaly (X̂pseudo) through

G, as in Equation 4. Hence, by removing this part, the

Phase one Phase two

X ✓ - ✓ ✓ ✓ ✓

X̂ ✓ ✓ ✓ ✓ ✓ ✓

X̂ low - ✓ ✓ - ✓ ✓

X̂pseudo - - - ✓ - ✓

ˆ̄X as X̂pseudo - - - - ✓ -

AUC 92.9% 94.4% 95.1% 95.9% 88.5% 98.1%

Table 4: Frame-level AUC performance ablation of our

framework on UCSD Ped2 dataset.

fake anomalies ( ˆ̄X) obtained using Equation 3 are chan-

neled directly to the discriminator as one of the two sets

of bad reconstruction examples. With this configuration,

the performance deteriorates significantly (i.e. 9.6% drop in

the AUC). The model shows even worse performance than

the baseline after phase one training. This shows the sig-

nificance of our proposed pseudo-anomaly module. Once

pseudo-anomalies are created within the module, it is nec-

essary to obtain a regeneration result of these by inferring

G. This helps D to learn the underlying patterns of recon-

structed anomalous images, which results in a more robust

anomaly detection model.

5. Conclusion

This paper presents an adversarially learned approach in

which both the generator (G) and the discriminator (D) are

utilized to perform a stable and robust anomaly detection.

A unified G and D model employed towards such prob-

lems often produces unstable results due to the adversary.

However, we attempted to tweak the basic role of the dis-

criminator from distinguishing between real and fake to dis-

criminating between good and bad quality reconstructions,

a formulation that aligns well with the philosophy of con-

ventional anomaly detection using generative networks. We

also propose a pseudo-anomaly module which is employed

to create fake anomaly examples from normal training data.

These fake anomaly examples help D to learn about the be-

havior of G in the case of unusual input data.

Our extensive experimentation shows that the approach

not only generates stable results across a wide range of

training epochs but also outperforms a series of state-of-

the-art methods [48, 25, 28, 11, 23, 35, 24, 7, 34, 46, 10, 22,

52, 27, 57, 13, 58, 41] for outliers and anomaly detection.
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