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Abstract

We present an automatic annotation pipeline to recover

9D cuboids and 3D shapes from pre-trained off-the-shelf 2D

detectors and sparse LIDAR data. Our autolabeling method

solves an ill-posed inverse problem by considering learned

shape priors and optimizing geometric and physical param-

eters. To address this challenging problem, we apply a

novel differentiable shape renderer to signed distance fields

(SDF), leveraged together with normalized object coordi-

nate spaces (NOCS). Initially trained on synthetic data to

predict shape and coordinates, our method uses these pre-

dictions for projective and geometric alignment over real

samples. Moreover, we also propose a curriculum learning

strategy, iteratively retraining on samples of increasing dif-

ficulty in subsequent self-improving annotation rounds. Our

experiments on the KITTI3D dataset show that we can re-

cover a substantial amount of accurate cuboids, and that

these autolabels can be used to train 3D vehicle detec-

tors with state-of-the-art results. The code is available at

github.com/TRI-ML/sdflabel.

1. Introduction

Deep learning methods require large labeled datasets to

achieve state-of-the-art performance. Concerning object

detection for automated driving, 3D cuboids are preferred

among other annotation types as they allow appropriately

reasoning over all nine degrees of freedom (instance loca-

tion, orientation, and metric extent). However, obtaining

a sufficient amount of labels to train 3D object detectors

is laborious and costly, as it mostly relies on involving a

large number of human annotators. Existing approaches

for scaling up annotation pipelines include the usage of

better tooling, active learning, or a combination thereof

[22, 16, 39, 25, 4]. Such approaches often rely on heuristics

and require human effort to correct the outcomes of semi-

automatic labeling, specifically for difficult edge cases.
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Figure 1: Our pipeline for 3D object autolabeling. Top: off-

the-shelf 2D detections are fed into our Coordinate Shape

Space (CSS) network to predict surface coordinates and a

shape vector. We backproject the coordinates to LIDAR

in the camera frustum and decode the shape vector into an

object model. Then, we establish 3D-3D correspondences

between the scene and model to estimate an initial affine

transformation. Bottom: We iteratively refine the estimate

via differentiable geometric and visual alignment.

Alternatively, we propose a novel approach relying on

differentiable rendering of shape priors to recover metric

scale, pose, and shape of vehicles in the wild. Our 3D

autolabeling pipeline requires only 2D detections (bound-

ing boxes or instance masks) and sparse point clouds

(ubiquitous in 3D robotic contexts). Detections them-

selves are produced using off-the-shelf 2D detectors. We

demonstrate that differentiable visual alignment, also re-
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ferred to as “analysis-by-synthesis” [42] or “render-and-

compare” [20], is a powerful approach towards autolabel-

ing for the purpose of autonomous driving.

The present study introduces three novel contributions.

First, we formulate the notion of a Coordinate Shape

Space (CSS), which combines Normalized Object Coordi-

nates (NOCS) [38] with the DeepSDF framework [30]. This

allows to reliably set object shapes into correspondence to

facilitate deformable shape matching. Second, we present

a way to differentiate DeepSDF with respect to its surface,

thereby introducing a novel differentiable SDF renderer

for comparative scene analysis over a defined shape space.

The third contribution is a curriculum learning-based au-

tolabeling pipeline of driving scenes. Figure 1 presents an

example optimization on the KITTI3D dataset [12].

Our pipeline starts with a CSS network, which is trained

to predict 2D NOCS maps as well as shape vectors from

image patches. To bootstrap an initial version, we train the

network on synthetic data, for which we can easily obtain

ground truth NOCS and shape vector targets, and apply aug-

mentations to minimize the sim2real domain gap. Our au-

tolabeling loop includes the following steps: 1) leveraging

2D detections to localize instances; 2) running the CSS net-

work on an extracted patch; 3) reprojecting NOCS into the

scene using LIDAR, 4) decoding an object model from the

shape space; 5) computing an approximate pose using 3D-

3D correspondences; and 6) running projective and geomet-

ric alignment for refinement. After processing all images,

we collect the recovered autolabels and retrain our CSS pre-

diction network to gradually expand it into the new domain.

Then, we repeat this process to achieve better CSS predic-

tions and, consequently, better autolabels. To avoid drifting

due to noisy autolabels, we employ a curriculum that is fo-

cused on easy samples first and increases the difficulty in

each loop.

In summary, our main contributions are as follows:

(i) a novel, fully-differentiable renderer for signed distance

fields that can traverse smooth shape spaces; (ii) a mixed

synthetic/real curriculum framework that learns to predict

shape and object coordinates on image patches; and (iii)

a multi-modal optimization pipeline combining differen-

tiable alignment over vision and geometry. We evalu-

ate our approach on the KITTI3D dataset [12] and show

that our method can be used to accurately recover metric

cuboids with structural, differentiable priors. Furthermore,

we demonstrate that such cuboids can be leveraged to train

efficient 3D object detectors.

2. Related Work

In recent years, assisted labeling has gained growing at-

tention as the increasing amount of data hinders the ability

to label it manually. In [41], the authors utilize a 2D detec-

tor to seed 2D box annotations further refined by humans

and report an increase of 60% in the overall labeling speed.

The authors in [2] train a recurrent CNN to predict polygons

on an image to accelerate semantic segmentation tasks. A

follow-up work [25] further improves the system by pre-

dicting all polygon vertices simultaneously and facilitates

real-time interaction. In [22], the authors propose a 3D la-

beling interface that enables the users selecting spatial seeds

to infer segmentation, 3D centroid, orientation, and extent

using pretrained networks. In [10], 2D labels are used to

seed a LIDAR-based detector combined with human anno-

tation based on uncertainty. All mentioned works are active

learning frameworks in which a human is assisted by pre-

dictive models. Instead, we aim to investigate how well an

automatic pipeline with geometric verification can perform

in this context.

Independently from our research, several recent works

focused on differentiable rendering have been published.

The works [27, 15, 4] discuss different ways to produce

gradients for rasterization of triangle-based meshes. The

study described in [26] represents a soft rasterizer approach

in which each pixel is softly assigned to each triangle in

the mesh, followed by a softmax to emulate z-buffering. In

contrast, the authors in [23] propose a path tracing approach

towards differentiable rendering of triangle meshes.

Concerning the more practically relevant research works,

in [20, 29] the authors employ a learned shape space from

PCA or CAEs to predict the shape of cars. Nonetheless,

their shape space has been either not differentiable in an

end-to-end manner, or they use finite differences of lo-

cal samples to approximate the gradient aiming to avoid a

complex back-propagation through the rasterizer. Unlike

these works, our differentiable rendering approach utilizes

a shape space derived from DeepSDF [30], which enables

backpropagation onto a smooth shape manifold. Therefore,

our method avoids the typical topology problems inherent

to the related mesh-based approaches.

DensePose [13] introduces a framework to densely map

canonical 2D coordinates to human bodies. The subsequent

works [18, 44, 45] discuss how to employ such coordinates

with differentiable rendering in the wild to recover the pose,

shape, texture and even future motion for different entities

from localized crops. The study in [19] presents impressive

results using a similar approach trained with a cycle con-

sistency and differentiable rendering. These methods allow

for projective scene analysis up to scale and cannot be im-

mediately used for 3D automotive purposes.

Dense coordinates have recently been extended to 3D

space. The authors in [43, 31, 24, 17, 33] apply such rep-

resentations for monocular pose estimation of known CAD

models. In [38], the authors learn to predict normalized co-

ordinates (NOCS) for object categories in RGB data and

recover the metric scale and pose using an additional depth

map via 3D-3D correspondences.
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Figure 2: CSS representation. Top: Car models from the

PD dataset [1]. Bottom: The same cars in the CSS repre-

sentation: decoded shape vector z colored with NOCS.

In [8], the authors use stereo depth and run a detector

to initialize the instances which are further optimized for

pose and shape via SDF priors. In a follow-up work [9], the

authors extend the framework with temporal priors to si-

multaneously recover smooth shapes and pose trajectories.

Finally, [37] explores 3D object completion using a shape

space and LIDAR as weak supervision with a probabilistic

formulation. This work assumes correct localization and is

focused solely on the reconstruction quality.

3. Methodology

We first discuss our shape space construction and the

coupling into the CSS representation. Afterwards, we intro-

duce our differentiable rendering approach tailored towards

implicit surface representations. Eventually, our autolabel-

ing pipeline is described in more detail.

3.1. Coordinate Shape Space

We employ DeepSDF [30] to embed watertight car mod-

els into a joint and compact shape space representation

within a single neural network. The idea is to transform in-

put models into signed distance fields in which each value

corresponds to a distance to the closest surface, with posi-

tive and negative values representing exterior/interior area.

Eventually, DeepSDF forms a shape space of implicit sur-

faces with a decoder f that can be queried at spatially-

continuous 3D locations x = {x1, ..., xN} using the pro-

vided latent code z to retrieve SDF values s = {s1, ..., sN}
as follows:

f(x; z) = s. (1)

To facilitate approximate deformable shape matching,

we combine the shape space with NOCS [38] to form the

Coordinate Shape Space (CSS). To this end, we resize our

models to unit diameter and interpret the 3D coordinates of

the 0-level set as dense surface descriptions.

To train f , we use a synthetic dataset provided by Paral-

lel Domain [1], which comprises car CAD models, as well

as rendered traffic scenes with ground truth labels. Other

synthetic datasets (e.g., CARLA [7] & VKITTI [11]) could

be used here as well. We trained on a subset of 11 mod-

els and with a latent code dimensionality of 3. We follow

the original DeepSDF training, but project the latent vector

Figure 3: Surface projection. DeepSDF outputs the signed

values s for query locations x. Normals n can be computed

analytically by a single backward pass. Given the signed

values and normals, we project the query locations onto the

object surface points p. Only exterior points are visualized.

onto the unit sphere after each iteration. In Figure 2, we

depict example models with their CSS representations.

3.2. Differentiable SDF Rendering

An essential component of our autolabeling pipeline is

the possibility to optimize objects with respect to the pose,

scale, and shape. To this end, we propose, to the best of

our knowledge, the first differentiable renderer for signed

distance fields. Our renderer avoids mesh-related problems

such as connectivity or intersection, but necessitates imple-

menting a different approach for sampling the representa-

tion. Rendering implicit surfaces is done either with ray-

tracing [6] or variants of Marching Cubes [28]. Here, we

present an alternative that lends itself to backpropagation.

Projection of 0-Isosurface Given query points xi and as-

sociated signed distance values si, we need a differentiable

way to access the implicit surface encoded by z. Simply

selecting query points based on their distance values do not

form a derivative with respect to the latent vector z. More-

over, the regularly-sampled locations can be estimated only

approximately on the surface. However, we utilize that de-

riving SDFs with respect to their location yields a normal at

this point, practically computed in a backward pass:

ni =
∂f(xi; z)

∂xi

. (2)

As normals outline the direction to the closest surface

and signed distance values provide the exact distance, we

project the query location onto a 3D surface position pi:

pi = xi −
∂f(xi; z)

∂xi

f(xi; z). (3)

To obtain clean surface projections we disregard all

points xi outside a narrow band (|si| > 0.03) of the sur-

face. A schematic explanation can be found in Figure 3.

With this formulation, we can define derivatives at pi with

respect to the scale, pose, or latent code.
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Figure 4: Oriented tangent discs (right) represent the sur-

face geometry more accurately than billboard ones. We re-

duced spatial sampling and diameters for better emphasis.

Surface Tangent Discs In the computer graphics domain,

the concept of surface elements (surfels) [34] is a well-

established alternative to connected triangular primitives.

Our differentiable SDF representation yields oriented points

and can be immediately used to render surface discs. To ob-

tain a water-tight surface, we determine disk diameters large

enough to close holes. In Figure 4 we outline the difference

between (oriented) surface tangent discs and billboard ones

pointing straight at the camera.

We construct the surface discs with the following steps:

1. Given the normal of a projected point ni = ∂f(pi;z)
∂pi

,

we estimate the 3D coordinates of the resulting tangent

plane visible in the screen. The distance d of the plane

to each 2D pixel (u, v) can be computed by solving

a system of linear equations for the plane and camera

projection, resulting in the following solution (we refer

to the supplement for details):

d =
ni · pi

ni ·K−1 · (u, v, 1)T , (4)

where K−1 is the inverse camera matrix, followed by

backprojection to get the final 3D plane coordinate:

P = K−1 · (u · d, v · d, d)T . (5)

2. Estimate the distance between the plane vertex and sur-

face point and clamp if it is larger than a disc diameter:

M = max(diam− ||pi − P ||2, 0) (6)

To ensure water-tightness we compute the diameter from

the query location density: diam = mini 6=j ||xi−xj ||2
√
3.

Executing the above steps for each pixel yields a depth map

Di and a tangential distance mask Mi at point pi.

Rendering Function To generate a final rendering we

need a function to compose layers of 2D-projected discs

onto the image plane. Similarly to [26], we combine col-

ors from different point primitives based on their depth val-

ues. The closer the primitive is to the camera, the stronger

its contribution. We use softmax to ensure that all primitive

contributions sum up to 1 at each pixel. More specifically,

the rendering function is:

CSS Net
CSS Label Pool

Autolabel

Verification

Automatic Looping

Dataset

Optimization

Retraining

Figure 5: Automatic annotation pipeline. We fetch frames

from the dataset and separately process each 2D detection

using our CSS network and differentiable optimization pro-

cedure. Afterwards, we perform a verification to discard

incorrect autolabels before saving them into our CSS label

pool. Once all frames are processed, we retrain our CSS

network and begin the next loop over the dataset.

I =
∑

i

NOCS(pi) ∗ wi, (7)

where I is the resulting image, NOCS returns coordinate

coloring, and wi are the weighting masks that define the

contribution of each disc:

wi =
exp(−D̃iσ)Mi∑
j exp(−D̃jσ)Mj

, (8)

where D̃ is the normalized depth, and σ is a transparency

constant with σ −→ ∞ being completely opaque as only the

closest primitive is rendered. This formulation enables gra-

dient flow from pixels to surface points and allows image-

based optimization.

3.3. 3D Autolabeling Pipeline

The general idea of our autolabeling approach is to ex-

ploit weak labels and strong differentiable priors to recover

labels of higher complexity. While this idea is generic, we

focus specifically on cuboid autolabeling of driving scenes.

We present a schematic overview in Figure 5 where we

run multiple loops of the annotation pipeline. In the first

loop, the CSS label pool solely consists of synthetic labels

and the trained CSS network is therefore not well-adapted

to real imagery. The results are noisy NOCS predictions

which are reliable only for well-behaved object instances in

the scene. Therefore, we define a curriculum in which we

first focus on easy annotations and increase the difficulty

over more loops. We define the difficulty of a label by mea-

suring the pixel sizes, the amount of intersection with other

2D labels, and whether the label touches the border of an

image (often indicating object truncation). We also estab-

lish thresholds for these criteria to define a curriculum of

increasing difficulty.
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Figure 6: Synthetic PD dataset. Top: Random RGB frame.

Bottom: Patches used for CSS training.

CSS Network The network is derived from ResNet18 and

adopts an encoder-decoder structure, processing 128×128

input patches to output a NOCS map of the same size and

a 3D shape vector. Before executing the first annotation

loop, our CSS network must learn to infer 2D NOCS maps

and shape vectors from patches. As mentioned, we boot-

strap such a mapping from a synthetic dataset. In total, we

extract around 8k patches and, having access to CAD mod-

els, also create the necessary regression targets. We demon-

strate some frames and training data in Figure 6 and provide

the additional information in the supplement.

3.3.1 Initialization and Optimization

Here, we describe the process represented in Figure 1 in

more detail. For a given patch we infer the 2D NOCS

map M and shape vector z. We decode z into an SDF

and retrieve the 3D surface points p = {p1, ..., pn} of

the object model (as described in Section 3.2) in its lo-

cal frame, for which we compute the NOCS coordinates

pc = {pc1, ..., pcn}. We also project the 3D LIDAR points

l = {l1, ..., lk} contained inside the camera frustum onto

the patch and collect the corresponding NOCS coordinates

lc. To estimate an initial pose and scale, we establish 3D-

3D correspondences between p and l. For each pi, we find

its nearest neighbor based on NOCS distances:

j∗ = argmin
j

||pci − lcj ||2 (9)

and keep it if ||pci − lcj∗ || < 0.2. Finally, we run Procrustes

[35] with RANSAC to estimate pose (R, t) and scale s.

On this basis, we apply our differentiable optimization

over complimentary 2D and 3D evidence. While the projec-

tive 2D information provides strong cues about the orienta-

tion and shape, 3D points allow reasoning over the scale and

translation. At every iteration we decode the current shape

vector estimate ẑ, extract surface points pi, and transform

them based on the current estimates of the pose and scale:

p̂i = (R̂ · ŝ) · pi + t̂. (10)

Given these surface model points in the scene frame, we

compute the individual losses as follows.

2D loss: We employ our differentiable SDF renderer to

produce a rendering R for which we seek maximum align-

ment with NOCS map M. Since our predicted M can be

noisy (especially in the first loop), minimizing dissimilarity

min||M−R|| can yield suboptimal solutions. Instead, for

each rendered spatial pixel ri in R we determine the clos-

est NOCS space neighbor in M, named mj within a small

radius θ, and set them in correspondence if their NOCS dis-

tance is below a predefined threshold. The loss is then de-

fined as the mean distance over all such correspondences

C2D in the NOCS space:

loss2D =
1

|C2D|
∑

(i,j)∈C2D

||R(ri)−M(mi)||2. (11)

3D loss: For each p̂i, we determine the nearest neighbor

from l and keep it if it is closer than 0.25m. As the initializa-

tions are usually good, we avoid outliers in the optimization

with such a tight threshold. The loss is then calculated as

the mean distance over all correspondences C3D:

loss3D =
1

|C3D|
∑

(i,j)∈C3D

||p̂i − lj ||2. (12)

Altogether, the final criterion is the sum of both losses:

loss = loss2D + loss3D. (13)

As the loss terms have similar magnitudes we did not con-

sider a need for any additional balancing.

3.3.2 Verification and CSS Retraining

Our optimization framework will inevitably output incor-

rect results at times, so we need to ensure that the influ-

ence of badly-inferred autolabels is minimized. To this end,

we enforce geometric and projective verification aiming to

remove incorrect autolabels with the largest impact. To

achieve this, we measure the amount of LIDAR points that

are in a narrow band (0.2m) around the surface of an au-

tolabel and reject it if less than 60% are outside this band.

Furthermore, we define a projective constraint where auto-

labels should be rejected if the rendered mask’s IoU with

the provided 2D label is below 70%.

All autolabels that remain after the verification stage are

gathered and added to the CSS label pool. After the first

loop, we obtain a mixture of synthetic and real samples that

are then used to retrain and improve the robustness of our

CSS network. Over multiple self-improving loops, we keep

growing and retraining, which results in better CSS predic-

tions, better initializations, and more accurate autolabels.
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Figure 7: Qualitative results of our labeling pipeline. We mark the ground truth cuboids in red and our predictions in blue.

We can achieve rather tight fits that lead to cuboids of slightly different sizes compared with the ground truth.

4. Experimental Evaluation

We evaluate our approach on the well-established

KITTI3D dataset [12], including 7481 frames with accom-

panied cuboid labels for the “Car” category, which we focus

on. We consider the most-widely used 3D metrics for driv-

ing datasets: BEV IoU and 3D IoU from KITTI3D as well

as the distance-thresholded metric (NS) from NuScenes [3],

which decouples location from scale and orientation. All

three metrics are utilized to evaluate Average Precision for

matches at certain cutoffs, and we threshold BEV and 3D

IoUs at 0.5 whereas NS is computed at distance cutoffs of

0.5m and 1m.

The KITTI3D metrics are often evaluated at a strict

threshold of 0.7. After thorough inspection, we observed

that it is difficult to infer the correct cuboid size from tight

surface fits. The KITTI3D cuboids have a varying amount

of spatial padding and 3D detection methods learn these

offsets. Therefore, we opted to relax the threshold aim-

ing to facilitate a fairer comparison with respect to the esti-

mated tight cuboids. Figure 7 represents several examples

of appropriate autolabel estimates among which some do

not pass the 0.7 3D IoU criterion.

Implementation Details We use PyTorch [32] to imple-

ment the whole pipeline. For each 2D-labeled instance we

run 50 iterations and use the ADAM optimizer for the pose

variables with a learning rate of 0.03 whereas SGD is ap-

plied to the scale and shape with smaller learning rates (0.01
and 0.0005) and no momentum to avoid observed over-

shooting behavior. It takes approximately 6 seconds to au-

tolabel a single instance on a Titan V GPU, and one autola-

beling loop takes 1-2 hours to complete for all frames when

parallelizing on 2 GPUs.

Data Augmentation Our synthetic bootstrapping re-

quires many kinds of augmentation to allow for initial do-

main transfer. We utilize an extensive set of functions, in-

cluding random rotations up to 10◦, horizontal flips, and

random cropping. This allows not only to considerably ex-

pand the data size, but also enables explicitly covering cases

of partial occlusion and truncation. Additionally, we vary

the brightness, contrast, and saturation of input patches.

Moreover, as we have access to corresponding CAD mod-

els, we render surface normals and use Phong shading to

generate geometrically-sensible relighting.

4.1. Correctness of autolabels

The most important quantitative criterion is the actual

correctness of the estimated cuboids. Although our method

is fully automatic, we have access to KITTI3D 2D ground

truth boxes and therefore evaluate two scenarios. Firstly, we

obtain 2D boxes from KITTI3D for autolabeling and then,

utilize their predefined criteria to determine whether an an-

notation is considered easy or moderate. Secondly, we em-

ploy the detectron2 implementation [40] of Mask-RCNN

[14] using a ResNeXt101 backbone trained on COCO to

evaluate the applicability of off-the-shelf object detectors

for full automation. In the detection scenario, we run sepa-

rate experiments for boxes and masks and apply following
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Loop Diff.

KITTI GT RCNN MASK-RCNN

BEV@0.5 3D@0.5 NS@0.5 NS@1.0 BEV@0.5 3D@0.5 NS@0.5 NS@1.0 BEV@0.5 3D@0.5 NS@0.5 NS@1.0

1 E 78.09 63.53 85.59 95.58 78.45 63.71 85.85 95.62 78.46 63.69 86.27 95.76

2
E 77.84 62.25 82.40 90.84 80.57 60.11 86.05 94.62 80.70 63.96 86.52 94.31

M 59.75 42.23 60.27 77.91 61.17 42.37 64.11 85.85 63.36 44.79 64.44 85.24

Table 1: Cuboid autolabel quality when inputting into the CSS network (a) 2D ground truth boxes, (b) RCNN detections, and

(c) Mask-RCNN detections. We run two self-improving loops to slowly incorporate more labels into the pool.

difficulty criteria similar to KITTI3D: easy if label height

> 40px and not touching other labels or image borders;

moderate if height > 25px and not having an IoU > 0.30
with any other label.

We present the obtained results in Table 1. As expected,

the first loop with a purely synthetically-trained inference

on easy real samples does not yield a considerable differ-

ence between the three scenarios. All of them are im-

pacted by noisy CSS predictions and start from the same

RANSAC initialization, although the detection-derived la-

bels are tighter and slightly less influenced by CSS back-

ground noise. Overall, each scenario achieves a BEV AP

close to 80% and a 3D AP of approximately 60% over all

easy samples. We execute a second loop over the dataset us-

ing the retrained CSS network and observe that the results

for the easy samples stabilized. Additionally, we note that

we can recover approximately 60% BEV AP over all con-

sidered moderate samples. Noteworthy, the estimated NS

scores are quite high, indicating that most autolabels (more

than 90%) are within one meter of the real location.

However, we observe a drop of around 20 points across

all metrics for the harder samples. As our method is reliant

on 3D-3D RANSAC, it requires a minimum set of inliers to

In
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u
t

Lo
o

p
 1
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o

p
 2
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o

p
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Figure 8: NOCS prediction quality of our network over

consecutive loops for the same patch. Initially, the predic-

tions are rather noisy because of the synthetic domain gap.

Within each subsequent autolabeling loop the predictions

become more accurate overall.

achieve proper solutions. We often observe that this made

correspondence finding difficult for occasional samples due

to occlusion and distance, thus impacting recall.

Figure 8 shows the increasing quality of the estimated

NOCS predictions over multiple loops. Overall, we observe

a rather fast diffusion into the target domain and that exe-

cuting two loops is sufficient to stabilize the results.

4.2. Ablation

We aim to investigate how much the initial estimates

from 3D-3D RANSAC benefit from our optimization. To

this end, we consider the easy ground truth boxes from

KITTI3D and utilize the synthetic CSS network to ana-

lyze the first annotation loop with the worst initialization.

As represented in Table 3, the RANSAC baseline pro-

vides rather good localization which is best captured by the

NS metrics (81.36% and 95.45%). Nonetheless, the pose-

optimized autolabels yield a significant jump in 3D IoU

(41.85% vs. 63.42%), suggesting that we recover substan-

tially better rotations, given that the NS scores are similar.

When ablating over the other variables we observe rather

mixed results in which certain metrics increase or decrease.

When ablating over the losses, we note a drastic drop in

the 3D metrics when optimizing only in 2D. Intuitively, our

differentiable renderer aligns the data rather appropriately

in the image space; however, both scale and translation are

freely drifting. Therefore, optimizing the 3D loss results in

strong spatial alignment. Nonetheless, optimizing the sum

of both losses trades BEV AP (80.61 to 78.09) for 3D AP

(60.92 to 63.53).

4.3. 3D Object Detection

Since autolabels are usually not the final goal but rather

a means to an end, we investigate the applicability of our la-

bels to the task of 3D object detection. We evaluate the qual-

ity of our labels concerning both a traditional LIDAR-based

detection setting and a purely monocular setting, based on

several recent works that achieved high quality results on

the KITTI dataset [29, 36, 21].

We implemented a version of the current state-of-the-art

monocular detector MonoDIS [36] and ensured that we can

reproduce the reported results. Additionally, we utilize the

official implementation of PointPillars [21], a state-of-the-
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2D AP @ 0.5/0.7 3D AP @ 0.5/0.7 BEV AP @ 0.5/0.7

Method Easy Moderate Easy Moderate Easy Moderate

PointPillars [21] (Original Labels) - / - - / - 94.8 / 81.1 92.4 / 68.2 95.1 / 92.1 95.1 / 84.7

PointPillars [21] (Autolabels) - / - - / - 90.7 / 22.4 71.1 / 13.3 94.9 / 81.0 88.5 / 59.8

MonoDIS [36] (Original Labels) 96.1 / 95.5 92.6 / 86.5 45.7 / 11.0 32.9 / 7.1 52.4 / 17.7 37.2 / 11.9

MonoDIS [36] (Autolabels) 96.7 / 85.8 86.2 / 67.6 32.9 / 1.23 22.1 / 0.54 51.1 / 15.7 34.5 / 10.52

Table 2: The performance comparison of the 3D object detectors trained on the true KITTI labels vs. our autolabels. Con-

cerning the BEV metric, the detectors trained on autolabels alone achieve the results equal to the current state of the

art. In the case of the 3D AP metric, the competitive results are achieved in both considered variants at the IoU 0.5 threshold.

art LIDAR-only detector. To train MonoDIS, we follow the

training schedule proposed in [36]. Concerning PointPil-

lars training, we accelerate the training by means of 8 V100

GPUs and a batch size of 16. Accordingly, we scale the

learning rate by a factor of 8. We evaluate the obtained re-

sults on the MV3D train/val split [5]. While training on

autolabels, we do not change any hyperparameters defined

in the baseline protocols.

We present the comparison results in Table 2 and de-

pict several qualitative detections obtained from autolabel-

trained detectors in Figure 9.

Remarkably, concerning the BEV metric, both detec-

tors trained on autolabels alone achieve competitive per-

formance compared with detectors trained on true KITTI

labels at both the 0.5 and 0.7 IoU thresholds. This indicates

Figure 9: Detections from the autolabel-trained detectors.

We draw local 3D frames to identify correct orientation.

Config BEV@0.5 3D@0.5 NS@0.5 NS@1.0

RANSAC 77.00 41.85 81.36 95.45

(R, t) 77.19 63.42 86.20 95.53

(R, t), s 77.23 62.92 86.01 95.32

(R, t), s, z 78.09 63.53 85.59 95.58

2D loss 18.08 11.09 18.35 46.19

3D loss 80.61 60.92 85.63 95.49

Table 3: Ablation study over each optimization variable and

each separate loss.

that our autolabeling pipeline is capable of highly accurate

localization of cuboids.

Considering the 3D AP metric, the obtained results are

in line with the conclusions represented in Table 1. At the

more tolerant IoU 0.5 threshold, our autolabel trained de-

tectors performed within 70−90% of the true labels. Occa-

sionally missing detections and poor shape estimates do not

deteriorate the overall performance.

At the IoU 0.7 threshold, the detector performance wors-

ens. We observe that this is not caused by poor predictions,

but by the fact that KITTI labels are often inflated with re-

spect to the estimated cuboids. Therefore, at the strictest

thresholded 3D IoU, we observe a corresponding drop in

precision for detectors trained on our “tight” autolabels.

5. Conclusion

We present a novel view on parametric 3D instance re-

covery in the wild based on a self-improving autolabel-

ing pipeline, purely bootstrapped from synthetic data and

off-the-shelf detectors. Fundamental to our approach is

the combination of dense surface coordinates with a shape

space, and our contribution towards differentiable rendering

of SDFs. We show that our approach can recover a substan-

tial amount of cuboid labels with high precision, and that

these labels can be used to train 3D object detectors with

results close to the state of the art. Future work will be fo-

cused on investigating additional categories for parametric

reconstruction, such as pedestrians or road surfaces.
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