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Abstract

Estimating 3D mesh of the human body from a single

2D image is an important task with many applications such

as augmented reality and Human-Robot interaction. How-

ever, prior works reconstructed 3D mesh from global im-

age feature extracted by using convolutional neural network

(CNN), where the dense correspondences between the mesh

surface and the image pixels are missing, leading to sub-

optimal solution. This paper proposes a model-free 3D hu-

man mesh estimation framework, named DecoMR, which

explicitly establishes the dense correspondence between the

mesh and the local image features in the UV space (i.e.

a 2D space used for texture mapping of 3D mesh). De-

coMR first predicts pixel-to-surface dense correspondence

map (i.e., IUV image), with which we transfer local fea-

tures from the image space to the UV space. Then the

transferred local image features are processed in the UV

space to regress a location map, which is well aligned

with transferred features. Finally we reconstruct 3D hu-

man mesh from the regressed location map with a prede-

fined mapping function. We also observe that the exist-

ing discontinuous UV map are unfriendly to the learning

of network. Therefore, we propose a novel UV map that

maintains most of the neighboring relations on the origi-

nal mesh surface. Experiments demonstrate that our pro-

posed local feature alignment and continuous UV map out-

performs existing 3D mesh based methods on multiple pub-

lic benchmarks. Code will be made available at https:

//github.com/zengwang430521/DecoMR.

1. Introduction

Estimation of the full human body pose and shape

from a monocular image is a fundamental task for vari-

ous applications such as human action recognition [12, 35],

VR/AR [11] and video editing [10]. It is challenging mostly

due to the inherent depth ambiguity and the difficulty to

SMPL based methods
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Figure 1. Prior methods (e.g., SPIN [20] and CMR [21]) usu-

ally reconstruct 3D meshes of human body from the global im-

age feature vector extracted by neural networks, where the dense

correspondences between the mesh surface and the image pixels

are missing, leading to suboptimal results (top). Our DecoMR

framework explicitly establishes such correspondence in the fea-

ture space with the aid of a novel continuous UV map, which re-

sults in better results in mesh details (bottom).

obtain the ground-truth 3D human body data. There are

several popular representations for 3D objects in litera-

ture, e.g., point clouds, 3D voxels and 3D meshes. Be-

cause of its compatibility with existing computer graphic

engines and the efficiency to represent object surface in

details with reasonable storage, 3D mesh representation

has been widely adopted for 3D human body reconstruc-

tion [18, 4, 20, 8, 27, 38, 11, 26, 25, 37, 21, 39].

However, unlike 3D voxel representation, the dense cor-

respondence between the template human mesh surface and

the image pixels is missing, while this dense correspon-

dence between the input and the output has been proven

crucial for various tasks [24, 39]. Due to this limita-

tion, most existing 3D mesh based methods, either model-

based [18, 26, 25, 20] or model-free [21], have to ignore

the correspondence between the mesh representation and

pixel representation. And they have to estimate the human

meshes based on either global image feature [18, 21, 20], or

hierarchical projection and refinement [39], which is time

consuming and sensitive to initial estimation.

To utilize the 3D mesh representation without losing
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the correspondence between the mesh space and the im-

age space, we propose a 3D human mesh estimation frame-

work that explicitly establishes the dense correspondence

between the output 3D mesh and the input image in the UV

space.

Representing output mesh by a new UV map: Every point

on the mesh surface is represented by its coordinates on the

continuous UV map. Therefore, the 3D mesh can be pre-

sented as a location map in the UV space, of which the pixel

values are the 3D coordinates of its corresponding point on

the mesh surface, as shown in Figure 1. Instead of using

SMPL default UV map, we construct a new continuous UV

map that maintains more neighboring relations of the origi-

nal mesh surface, by parameterizing the whole mesh surface

into a single part on the UV plane, as shown in Figure 1.

Mapping image features to the UV space: To map the

image features to the continuous UV map space, we first

use a network that takes a monocular image as input for pre-

dicting an IUV image [2], which assign each pixel to a spe-

cific body part location. Then the local image features from

the decoder are transferred to the UV space with the guid-

ance of predicted IUV image to construct the transferred

feature maps that are well aligned with the corresponding

mesh area.

Given the transferred local features, we use both the lo-

cal features and the global feature to estimate the location

map in the UV space, which is further used to reconstruct

the 3D human body mesh with the predefined UV mapping

function. Since our UV map is continuous and maintains

the neighboring relationships among body parts, details be-

tween body parts can be well preserved when the local fea-

tures are transferred.

In summary, our contributions are twofold:

• We propose a novel UV map that maintains most of the

neighboring relations on the original mesh surface.

• We explicitly establish the dense correspondence be-

tween the output 3D mesh and the input image by the

transferred local image features.

We extensively evaluate our methods on multiple widely

used benchmarks for 3D human body reconstruction. Our

method achieves state-of-the-art performance on both 3D

human body mesh reconstruction and 3D human body pose

estimation.

2. Related Work

2.1. Optimization­based methods

Pioneer works solve the 3D human body reconstruction

by optimizing parameters of an predefined 3D human mesh

models, e.g., SCAPE [3] and SMPL [23], with respect to

the ground-truth body landmark locations [8], or employing

a 2D keypoints estimation network [4]. To improve the pre-

cision, extra landmarks are used in [22]. Recent work [38]

enables multiple persons body reconstruction by incorpo-

rating human semantic part segmentation clues, scene and

temporal constrains.

2.2. Learning­based methods

Model-based methods: Directly reconstruction of the

3D human body from a single image is a relatively hard

problem. Therefore, many methods incorporate a parame-

terized 3D human model and change the problem into the

model parameter regression. For example, HMR [18] re-

gresses the SMPL parameters directly from RGB image. In

order to mitigate the lack of robustness caused by the inade-

quacy of in-the-wild training data, some approaches employ

intermediate representations, such as 2D joint heatmaps and

silhouette [26], semantic segmentation map [25] or IUV

image [36]. Recently, SPIN [20] incorporates 3D human

model parameter optimization into network training pro-

cess by supervising network with optimization result, and

achieves the state-of-the-art results among model-based 3D

human body estimation approaches.

Compared with optimization-based methods, model pa-

rameter regression methods are more computationally ef-

ficient. While these methods can make use of the prior

knowledge embedded in 3D human model, and tend to re-

construct more biologically plausible human bodies com-

pared with model-free methods, the representation capabil-

ity is also limited by the parameter space with these prede-

fined human models. In addition, as stated in [21], 3D hu-

man model parameter space might not be so friendly to the

learning of network. On the contrary, our framework does

not regress model parameters. Instead, it directly outputs

3D coordinates of each mesh vertex.

Model-free methods: Some methods do not rely on

human models and regress 3D human body representation

directly from image. BodyNet [33] estimates volumetric

representation of 3D human with a Voxel-CNN. A recent

work [6] estimates visible and hidden depth maps, and com-

bines them to form a point cloud of human. Voxel and point

cloud based representations are flexible and can represent

objects with different topology. However, the capability of

reconstructing surface details is limited by the storage cost.

CMR [21] uses a Graph-CNN to directly regress 3D co-

ordinates of vertices from image features. Densebody [37]

estimates vertex location in the form of UV-position map.

A recent work [28] represents the 3D shapes using 2D ge-

ometry images, which can be regarded as a special kind

of UV-position map. These methods do not use any hu-

man model. However, they still lack correspondence be-

tween human mesh and image and estimate the whole sur-

face only relying on global image feature. On the contrary,

our method can employ local feature for the reconstruction
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Figure 2. Overview of our framework. Given an input image, an IUV map is first predicted by the correspondence net. Then local image

features are transferred to the UV space. Location net takes transferred local features, expanded global feature and reference location map

as input, and regresses a location map. Finally, 3D mesh is reconstructed from the location map.

of corresponding surface area.

The efficacy of the UV space representation has been

demonstrated in recent work Tex2Shape [1], where the 3D

human shape is estimated from the texture map which is ob-

tained by transferring images pixels according to the IUV

image estimated by DensePose [2]. We also use the IUV

image to guide the human mesh estimation. However, in

[1], the UV transfer is used to preprocess the raw image

and is independent from the model learning, while we in-

corporate the UV transfer into our network to enable the

end-to-end learning. We observe the efficacy of learning the

transferred features end-to-end, which has also been proved

by prior works, e.g., Spatial Transformer Networks [15] and

Deformable ConvNets [5].

Very recently, HMD [39] refines initial estimated hu-

man mesh by hierarchical projection and mesh deforma-

tion. PIFu [30] reconstructs 3D human as implicit func-

tion. HMD and PIFu are able to utilize local image features

to achieve impressive details in the reconstruction results.

However, HMD is computationally intensive and sensitive

to the initial estimation, while implicit function lacks the se-

mantic information of human body. In contrast, we estimate

the pixel-to-surface dense correspondence from images di-

rectly, which is computationally efficient and more robust,

and the location map maintains the semantic information of

human body.

3. Our Method

Overview. As shown in Figure 2, our framework De-

coMR consists of two components, including a dense cor-

respondence estimation network (CNet), which preforms in

the image space, as well as a localization network (LNet),

which performs on a new continuous UV map space. The

CNet has an encoder-decoder architecture to estimate an

IUV image. It also extracts local image features Fim, and

then uses the the estimated IUV image for transferring the

image features Fim to the transferred local features FUV

in the UV space. LNet takes the above transferred local

features FUV as input, and regresses a location map X ,

whose pixel value is the 3D coordinates of the correspond-

ing points on the mesh surface. Finally, the 3D human mesh

V is reconstructed from the above location map by using a

predefined UV mapping function. As a result, the location

map and the transferred feature map are well aligned in the

UV space, thus leading to dense correspondence between

the output 3D mesh and the input image.

Although the SMPL UV map [23] is widely used in

the literature [37, 1, 7], it loses the neighboring relation-

ships between different body parts as shown in Figure 3

(a), which is crucial for network learning as stated in [21].

Therefore, we design a new UV map that is able to maintain

more neighboring relationships on the original mesh surface

as shown in Figure 3 (b).

The overall objective function of DecoMR is

L = LIUV + LLoc + λconLcon. (1)

It has three loss functions of different purposes. The first

loss denoted as LIUV minimizes the distance between the

predicted IUV image and the ground-truth IUV image. The

second loss function denoted as LLoc minimizes the dis-

similarity between the regressed human mesh (e.g. location

map) and the ground-truth human mesh. In order to en-

courage the output mesh to be aligned with the input image,

we add an extra loss function, denoted as Lcon, which is a

consistent loss to increase the consistency between the re-

gressed location map and the ground-truth IUV image. The

λcon in Equation 1 is a constant coefficient to balance the
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consistent loss Lcon. We first define the new UV map below

and then introduce different loss functions in details.

3.1. The Continuous UV map

First we define a new continuous UV map that preserves

more neighboring relationships of the original mesh than

the ordinary UV map of SMPL. As shown in Figure 3 (a),

multiple mesh surface parts are placed separately on the

SMPL default UV map, which loses the neighboring rela-

tionships of the original mesh surface. Instead of utilizing

SMPL UV map as [1, 7, 37], we design a new continuous

UV map. We first carefully split the template mesh into

an open mesh, while keeping the entire mesh surface as

a whole. Then we utilize an algorithm of area-preserving

3D mesh planar parameterization [14, 16], to minimize the

area distortion between the UV map and the original mesh

surface, in order to obtain an initial UV map. To maintain

symmetry for every pair of symmetric vertices on the UV

map, we further refine the initial UV map by first aligning

the fitted symmetric axis with v axis and then averaging the

UV coordinates with the symmetric vertex flipped by v axis.

Comparisons. Here we quantitatively show that our

continuous UV map outperforms the SMPL UV map in

terms of preserving connection relationships between ver-

tices on the mesh. To do so, we compute the distance ma-

trix, where each element is the distance between every ver-

tex pair. We also compute the distance matrix on the UV

map. Figure 4 shows such distance matrices. This distance

matrix can be computed by using different types of data.

For the mesh surface, the distance between two vertices is

defined as the length of the minimal path between them on

the graph built from the mesh. For the UV map, the dis-

tance between two vertices is directly calculated by the the

distance between their UV coordinates.

Now we quantitatively evaluate the similarity between

the distance matrices of UV map and original mesh in two

aspects as shown in Table 1. In the first aspect, we calculate

the 2D correlation coefficient denoted as S1. We have

S1 =

∑

m

∑

n

(

Amn − Ā
) (

Bmn − B̄
)

√

(

∑

m

∑

n

(

Amn − Ā
)2
)(

∑

m

∑

n

(

Bmn − B̄
)2
)

,

(2)

where A and B are the distance matrices of original mesh

and UV map, respectively. Ā and B̄ are the mean value

of A and B respectively. m and n are the indices of mesh

vertices.

In the second aspect, we calculate the normalized co-

sine similarity between the distance matrices of UV map

and original mesh, denoted as S2. From Table 1, we see

that our continuous UV map outperforms SMPL UV map

by large margins on both metric values, showing that our

IUV image UV map 3D mesh

(a)

RGB image

(b)

Figure 3. Comparisons of UV maps. Row (a) shows SMPL default

UV map and row (b) shows our continuous UV map.

SMPL UV map Our UV map Original mesh

Figure 4. Comparisons of distance matrices between vertices cal-

culated on SMPL UV map , the proposed UV map, and the original

mesh surface. Compared to SMPL UV map, the distance matrix of

the proposed UV map is more similar to that of the original mesh.

UV map 2D correlation (S1) cosine similarity (S2)

SMPL [23] 0.2132 0.8306

Ours 0.7758 0.9458

Table 1. Comparisons of the similarity between the vertices’ dis-

tance matrices of the original mesh surface and different types of

UV maps. S1 is the 2D correlation coefficient and S2 is the nor-

malized cosine similarity. We see that the proposed UV map out-

performs SMPL default UV map on both metrics.

UV map preserves more neighboring relationships than the

SMPL UV map.

Pixel-to-Mesh Correspondence. With the proposed

UV map, every point on the mesh surface can be expressed

by its coordinates on the UV map (i.e. UV coordinates).

Therefore, we can predict the pixel-to-surface correspon-

dence by estimating the UV coordinates for each pixel be-

longing to human body, leading to an IUV image as shown

in Figure 3. More importantly, we can also represent a 3D

mesh with a location map in the UV space, where the pixel

values are 3D coordinates of the corresponding points on

the mesh surface. Thus it is easy to reconstruct 3D mesh

from a location map with the following formula,

Vi = X(ui, vi), (3)

where Vi denotes 3D coordinates of vertex, X is the loca-

tion map, ui and vi are UV coordinates of the vertex.

3.2. Dense Correspondence Network (CNet)

CNet establishes the dense correspondence between pix-

els of the input image and areas of 3D mesh surface. As
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Figure 5. Illustration of the UV transferring of raw image pixels.

Elements in the image space can be transferred to the UV space

with the guidance of IUV image.

illustrated in Figure 2, CNet has an encoder-decoder archi-

tecture, where the encoder employs ResNet50 [9] as back-

bone, and the decoder consists of several upsampling and

convolutional layers with skip connection with encoder. In

particular, the encoder encodes the image as a local feature

map and a global feature vector, as well as regresses the

camera parameters, which are used to project the 3D mesh

into the image plane. The decoder first generates a mask of

the human body, which distinguishes fore pixels (i.e. human

body) from those at the back. Then, the decoder outputs

the exact UV coordinates for the fore pixels, constituting an

IUV image as shown in Figure 3. With the predicted IUV

image, the corresponding point on the mesh surface for ev-

ery image pixel can be determined. The loss function for

the CNet contains two terms,

LIUV = λcLc + λrLr, (4)

where Lc is a dense binary cross-entropy loss for classifying

each pixel as ‘fore’ or ‘back’, Lr is an l1 dense regression

loss for predicting the exact UV coordinates, and λc and λr

are two constant coefficients.

3.3. Vertex coordinates regression

The location net (LNet) aims to regress 3D coordinates

of mesh vertices by outputting a location map, from which

the 3D mesh can be reconstructed easily. As shown in Fig-

ure 2, the LNet first transfers image features from the image

space to the UV space with the guidance of predicted IUV

image:

FUV (u, v) = Fim(x, y), (5)

where (x, y) are the coordinates in image space of the pixels

classified as fore, and (u, v) are the predicted coordinates in

UV space of these pixels. Fim is the feature map in image

space and FUV is the transferred feature map in UV space.

The feature map FUV is well aligned with the output lo-

cation map. So the LNet can predict location map utilizing

corresponding local image features. In this way, the dense

correspondence between image pixels and mesh surface ar-

eas is established explicitly. An example of raw image pix-

els transferred to UV space is shown in Figure 5. Note that

our framework transfers features instead of pixel values.

The LNet is a light CNN with skip connections taking

the transferred local image features, expanded global image

Projected

2D coordinates 

Coordinates 

in image space

(𝑥, 𝑦)
IUV Image UV map

Location mapTransferred 3D 

coordinates

Projection

(𝑢, 𝑣)
𝐿𝑐𝑜𝑛

Figure 6. Illustration of our consistent loss between the location

map and the IUV image. 3D coordinates in the location map are

transferred back to the image space using IUV image, and then

projected to the image plane. The projected 2D coordinates are

supervised by the coordinates of image pixels in the image space.

feature and a reference location map as input. Intuitively,

we apply an weighted l1 loss between the predicted location

map X and ground-truth location map X̂ , i.e.,

Lmap =
∑

u

∑

v

W (u, v) ·
∥

∥

∥
X(u, v)− X̂(u, v)

∥

∥

∥

1
. (6)

W is a weight map used to balance the contribution of dif-

ferent mesh areas, where areas away from torso are assigned

higher weights.

We also reconstruct a 3D human mesh from the predicted

location map and get 3D joints from human mesh employ-

ing joint regressor as previous works [18, 21, 20]. Then

we add supervision on the 3D coordinates and projected 2D

coordinates in the image space of the joints, i.e.,

L3D
J =

k
∑

i

∥

∥

∥
Zi − Ẑi

∥

∥

∥

1
, (7)

L2D
J =

k
∑

i

‖vi(zi − ẑi)‖
2
2 , (8)

where Zi and zi are the regressed 3D and 2D coordinates

of joints, while Ẑi and ẑi refer to the coordinates of the

ground-truth joints, and vi denotes the visibility of joints.

Finally, the full loss for LNet is

Lloc = Lmap + L3D
J + L2D

J . (9)

Consistent Loss: Besides the above widely used super-

vision, we add an extra supervision between regressed loca-

tion map and ground-truth IUV image to improve the align-

ment between 3D mesh and image.

As shown in Figure 6, with an IUV image, we can also

transfer location map from the UV space back to the image

space and get 3D coordinates for every foreground pixel.

The 3D coordinates are then projected to image plane to get

2D coordinates, which should be consistent with the coor-

dinates of the pixels in the image space. Then the consistent
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loss is constructed as follows:

Lcon =
∑

(x,y)

‖(x, y)− π(X(u, v), c))‖
2
2 , (10)

where X is the predicted location map, π(X, c) denotes the

projection function with predicted camera parameters c, and

x, y, u, v are the same as that in Equation 5. This consistent

loss is similar to the loss item Ldense in recent work of Rong

et al. [29]. However, in our framework there is no need

to calculate the corresponding point on mesh surface as in

[29], because the correspondence between mesh surface and

image pixel is already established.

3.4. Implementation details

We set λc, λr and λcons to 0.2, 1 and 1 respectively and

optimize the framework with an Adam optimizer [19], with

batch size 128 and learning rate 2.5e-4. The training data

is augmented with randomly scaling, rotation, flipping and

RGB channel noise. We first train the CNet for 5 epochs

and then train the full framework end-to-end for 30 epochs.

4. Experiments

4.1. Datasets

In the experiment, we train our model on the Hu-

man3.6M [13], UP-3D [22] and SURREAL [34] dataset,

while we provide evaluations on the test set of Human3.6M,

SURREAL and LSP dataset [17].

Human3.6M: Human3.6M [13] is a large scale indoor

dataset for 3D human pose estimation, including multiple

subjects performing typical actions like walking, sitting and

eating. Following the common setting [18], we use subjects

S1, S5, S6, S7 and S8 as training data and use subjects S9

and S11 for evaluation. For evaluation, results are reported

using two widely used metrics (MPJPE and MPJPE-PA) un-

der two popular protocols: P1 and P2, as defined in [18],

UP-3D: UP-3D [22] is an outdoor 3D human pose esti-

mation dataset. It provides 3D human body ground truth by

fitting SMPL model on images from 2D human pose bench-

marks. We utilize the images of training and validation set

for training.

SURREAL: SURREAL dataset [34] is a large dataset

providing synthetic images with ground-truth SMPL model

parameters. We use the standard split setting [34] but re-

move all images with incomplete human body and evaluate

on the same sampled test set as BodyNet [33].

LSP: LSP [17] dataset is a 2D human pose estimation

benchmark. In our work, we evaluate the segmentation ac-

curacy of each model on the segmentation annotation [22].

4.2. Comparison with the state­of­the­art

In this section, we present comparison of our method

with other state-of-the-art mesh-based methods.

Methods MPJPE-PA

Lassner etc. [22] 93.9

SMPLify [4] 82.3

Pavlakos etc. [26] 75.9

HMR[18] 56.8

NBF[25] 59.9

CMR[21] 50.1

DenseRaC[36] 48.0

SPIN[20] 41.1

Ours 39.3

Table 2. Comparison with the state-of-the-art mesh-based 3D hu-

man estimation methods on Human3.6M test set. The numbers are

joint errors in mm with Procrustes alignment under P2, and lower

is better. Our approach achieves the state-of-the-art performance.

Methods Surface Error

SMPLify++ [22] 75.3

Tunget al. [32] 74.5

BodyNet[33] 73.6

Ours 56.5

Table 3. Comparison with the state-of-the-art methods on SUR-

REAL dataset. The numbers are the mean vertex errors in mm,

and lower is better. Our methods outperform baselines with a large

margin.

FB Seg. Part Seg

acc. f1 acc. f1

SMPLify oracle [4] 92.17 0.88 88.82 0.67

SMPLify [4] 91.89 0.88 87.71 0.67

SMPLify on [26] 92.17 0.88 88.24 0.64

HMR [18] 91.67 0.87 87.12 0.60

CMR [21] 91.46 0.87 88.69 0.66

SPIN [20] 91.83 0.87 89.41 0.68

Ours 92.10 0.88 89.45 0.69

Table 4. Comparison with the state-of-the-art methods on LSP test

set. The numbers are accuracy and f1 scores, and higher is better.

SMPLify [4] is optimization based, while HMR [18], CMR [21],

SPIN [20] and our method are regression based. Our framework

achieves the state-of-the-art result among regression based meth-

ods and is competitive with optimization based methods.

Table 2 shows the results on Human3.6M test set. We

train our model following the setting of CMR [21] and

utilize Human3.6M and UP-3D as the training set. Our

method achieves the state-of-the-art performance among the

mesh-based methods. It’s worth notice that SPIN [20] and

our method focus on different aspect and are compatible.

SPIN [31] focus on the training using data with scarce 3D

ground truth and the network is trained with extra data from

2D human pose benchmarks. While we focus on the dense

correspondence between mesh and image, and do not in-

clude data from 2D human pose benchmarks.

Similarly, we show the results on SURREAL dataset in
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UV
FG FL

raw MPJPE MPJPE-PA

map pixel P1 P2 P1 P2

SMPL

X 72.1 68.9 51.9 49.1

X 71.9 69.6 47.4 44.8

X X 65.0 61.7 45.1 42.6

X X 65.0 63.2 46.5 44.7

Ours

X 69.5 67.7 49.4 47.1

X 69.8 68.4 44.6 42.3

X X 62.7 60.6 42.2 39.3

X X 63.2 61.0 45.5 42.6

Table 5. Comparison on Human3.6M test set with different UV

map and input of location net. The numbers are 3D joint errors in

mm. FG and FL refer to global feature vector and local feature

map, respectively. With both UV maps, the framework use local

feature outperforms the baseline using global feature with a large

margin. Combining global feature and local feature further im-

proves the performance. However, transferring raw image pixels

brings a gain much smaller. With the same input, the frameworks

using our UV map outperform these using SMPL default UV map.

Table 3. Our model is trained only with training data of

SURREAL dataset and outperforms the previous methods

by a large margin. The human shape in SURREAL dataset

is of great variety, and this verifies the human shape recon-

struction capability of our method.

We also investigate human shape estimation accu-

racy by evaluating the foreground-background and part-

segmentation performance on the LSP test set. During the

evaluation, we use the projection of the 3D mesh as seg-

mentation result. The predicted IUV image is not used in

evaluation for fair comparison. The results are shown in Ta-

ble 4. Our regression based method outperforms the state-

of-the-art regression based methods and is competitive with

the optimization based methods, which tend to outperform

the regression based methods on this metric but are with

much lower inference speed.

4.3. Ablative studies

In this section, we provide the ablation studies of the pro-

posed method. We train all networks with training data from

Human3.6M and UP-3D dataset, and evaluate the models

on Human3.6M test set.

Dense correspondence: We first investigate the effec-

tiveness of the dense correspondence between 3D mesh and

image features. We train networks that only use global fea-

ture or transferred local feature as the input of LNet. The

comparison is shown in Table 5. With both UV maps, the

framework utilizing transferred local feature outperforms

the baseline using global feature with a large margin, which

proves the effectiveness of the established dense correspon-

dence. Combining global feature with local feature further

improves the performance.

We also train frameworks that transfer raw image pixels

RGB image

GT 

mesh

Mesh 

detail

Estimated

mesh

Mesh surface in 

UV space

Regressed 

location map

Figure 7. An example of mesh reconstructed using our new UV

map (top) and SMPL default UV map (bottom). SMPL default

UV map may cause discontinuity between different parts as well

as erroneous estimation of some vertices near part edges. While

our new UV map mitigates these problems.

rather than image features and observe much less improve-

ment than transferring local features. We attribute this phe-

nomenon to the lack of human pose information in trans-

ferred raw pixels. For images with the same person in dif-

ferent poses, the pixels of a certain body part will be trans-

ferred to the same position in the UV space, which gener-

ates similar inputs for the LNet. So the LNet can only use

transferred pixels to refine the estimation of human shape,

and predict human pose only based on global feature.

On the contrary, the CNet is able to embed human pose

information into image features. Then the LNet can resort

to transferred features to refine both human shape and pose

estimation.

UV map: For the second ablative study, we investigate

the influence of different UV maps. We compare the per-

formance of frameworks using SMPL default UV map [23],

and our continuous UV map.

As shown in Table 5, with the same input of LNet,

the frameworks using our continuous UV map outperforms

these frameworks using SMPL default UV map with a large

margin. We attribute the gain to the continuity of the new

UV map. As shown in Figure 7, some neighboring parts on

mesh surface are distant on SMPL default UV map, such

as arms and hands. This may lead to discontinuity of these

parts on the final 3D mesh. Additionally, some faraway sur-

face parts are very close on the UV plane, such as hands

and foots, which might cause erroneous estimation of ver-

tices on edges of these parts. These phenomenons are both

shown in Figure 7. On the contrary, our UV map preserves

more neighboring relations of the original mesh surface, so

these problems are mitigated.

4.4. Qualitative result

Some qualitative results are presented in Figure 8, and

Figure 9 includes some failure cases. Typical failure cases

can be attributed to challenging poses, viewpoints rare seen
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Figure 8. Qualitative results of our approach. Rows 1-3: LSP [17]. Rows 4-5: Human3.6M [13].

(a) Image (b) Result (c) Image (d) Result

Figure 9. Examples of erroneous reconstruction of our methods.

Typical failures can be attributed to challenging poses, viewpoints

rare seen in training set, severe self-osculation, as well as confu-

sion caused by interaction among multiple people.

in training set, severe self-osculation, as well as confusion

caused by interaction among multiple people.

5. Conclusion

This work aims to solve the problem of lacking dense

correspondence between the image feature and output 3D

mesh in mesh-based monocular 3D human body estimation.

The correspondence is explicitly established by IUV image

estimation and image feature transferring. Instead of re-

constructing human mesh from global feature, our frame-

work is able to make use of extra dense local features trans-

ferred to the UV space. To facilitate the learning of frame

work, we propose a new UV map that maintains more

neighboring relations of the original mesh surface. Our

framework achieves state-of-the-art performance among 3D

mesh-based methods on several public benchmarks. Future

work can focus on extending the framework to the recon-

struction of surface details beyond existing human models,

such as cloth wrinkles and hair styles.
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