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Abstract

For clustering-guided fully unsupervised person re-

identification (re-ID) methods, the quality of pseudo la-

bels generated by clustering directly decides the model

performance. In order to improve the quality of pseudo

labels in existing methods, we propose the HCT method

which combines Hierarchical Clustering with hard-batch

Triplet loss. The key idea of HCT is to make full use of

the similarity among samples in the target dataset through

hierarchical clustering, reduce the influence of hard ex-

amples through hard-batch triplet loss, so as to generate

high quality pseudo labels and improve model performance.

Specifically, (1) we use hierarchical clustering to gener-

ate pseudo labels, (2) we use PK sampling in each itera-

tion to generate a new dataset for training, (3) we conduct

training with hard-batch triplet loss and evaluate model

performance in each iteration. We evaluate our model

on Market-1501 and DukeMTMC-reID. Results show that

HCT achieves 56.4% mAP on Market-1501 and 50.7% mAP

on DukeMTMC-reID which surpasses state-of-the-arts a lot

in fully unsupervised re-ID and even better than most un-

supervised domain adaptation (UDA) methods which use

the labeled source dataset. Code will be released soon on

https://github.com/zengkaiwei/HCT

1. Introduction

Person re-identification (re-ID) is mainly used to match

pictures of the same person that appears in different cam-

eras, which is usually used as an auxiliary method of face

recognition to identify pedestrian information. Currently,

re-ID has been widely used in the field of security and has

been the focus of academic research. With the development

of convolutional neural networks (CNN), supervised re-ID

[9, 11, 21, 25, 30, 2, 31, 23] has achieved excellent per-

formance. However, due to the data deviation in different

∗Corresponding author

Figure 1. Hierarchical clustering. Each circle represents a sam-

ple, and the step represents the current merging stage. We use a

bottom-up method to merge clusters step by step according to the

distance between clusters in the current step.

datasets, the performance of the model trained on the source

domain will significantly decline when it is directly trans-

ferred to the target domain. Besides, supervised learning

requires a large amount of manually annotated data, which

is costly in real life. Therefore, supervised re-ID is difficult

to meet the requirement of practical application and people

tend to focus on unsupervised re-ID.

Recently, people pay more attention on unsupervised re-

ID and achieve good progress. Some works focus on un-

supervised domain adaptation (UDA). UDA usually needs

manually annotated source data and unlabeled target data.
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In UDA, some people use GAN to transform the style of

images in the source domain to the style of the target do-

main [4, 27, 38, 15]. They keep labels unchanged, then

they conduct training on generated labeled images. Others

focus on the change of images between different cameras

and datasets. They identify images by learning differences

between the source domain and the target domain [36]. Al-

though the expansion of the dataset will generate many re-

liable data, it is highly dependent on the quality of gener-

ated images. Besides, it will also generate some awful im-

ages, which will mislead the training and affect model per-

formance. More importantly, these UDA methods only try

to reduce differences between the target domain and source

domain. However, similarities of images within the target

domain are ignored. Besides, UDA methods need a labeled

source dataset which still cost a lot.

In recent studies, a fully unsupervised method BUC is

proposed [14] and it does not use any manually labeled

dataset. BUC only compares the similarity of images in the

target dataset and directly use the bottom-up hierarchical

clustering to merge samples. BUC merges a fixed number

of clusters, updates pseudo labels, and fine-tunes the model

step by step until convergence. Finally, it achieves good

performance and even surpasses some methods of UDA

[4, 6, 26]. However, the performance of BUC has a signifi-

cant drop in later merging steps. Because BUC just relies on

similarities among samples in merging, it makes BUC diffi-

cult to distinguish hard examples, especially in early merg-

ing steps when the model is poor. Hard examples mean

those similar samples but have different identities. Their

features are close to each other in high dimensional space

so it is difficult to distinguish them by clustering and they

will lead to wrong merging. In the later, these wrong merg-

ing will generate lots of false pseudo labels which mislead

training and result in a decline in performance.

In order to solve these problems and make full use of

the similarity of images in the target dataset, we propose

HCT, which also a fully unsupervised method just uses the

target dataset without any manually annotated labels. The

process of hierarchical clustering is shown in Figure 1. In

the beginning, we regard each sample as a cluster which

has different identities, and then we select a fixed number

of clusters for merging in each step according to the dis-

tance between clusters. Finally, all clusters will be merged

gradually and we set pseudo labels according to clustering

results. After clustering, we use hard-batch triplet loss [9] to

optimize the model. Hard-batch triplet loss can reduce the

distance between similar samples and increase the distance

between different samples. It can effectively reduce the in-

fluence of hard examples. Specifically, (1) we use hierarchi-

cal clustering to merge samples and generate pseudo-labels

according to clustering results, (2) we randomly select K in-

stances from P identities (PK sampling) to generate a new

dataset for training to meet the need of hard-batch triplet

loss, (3) we fine-tune the model and evaluate model perfor-

mance. We repeat the process of clustering, PK sampling,

fine-tuning training, evaluation until the model reaches con-

vergence.

To summarize, our contributions are:

• We propose a fully unsupervised re-ID

method HCT. Based on pre-trained ResNet-

50[8] on ImageNet, we directly use pseudo

labels generated by hierarchical clustering

as supervision to conduct model training on

the target dataset without any manually an-

notated labels.

• We use PK sampling to generate a new

dataset for training after hierarchical clus-

tering in each iteration. Compared to using

the whole datasets, PK sampling meets the

need of hard-batch triplet loss[9] which can

reduce the influence of hard examples and

improve model performance.

• To correct false pseudo labels, we initial-

ize all pseudo labels at the beginning of

each iteration until the quality of pseudo la-

bels stabilizes and the model performance

no longer improves.

• We evaluate our method on Market-1501

and DukeMTMC-reID. Extensive experi-

ments show that our method surpass state-

of-the-arts a lot in fully unsupervised re-ID,

even better than most UDA methods.

2. Related Work

2.1. Unsupervised Domain Adaptation ReID

In the past, people tend to use traditional manual fea-

tures [1, 13] to conduct unsupervised domain adaptation,

but the performance on large datasets is usually poor. With

the popular of CNN, people begin to apply deep learning to

unsupervised domain adaptation.

Deng et al. put forward SPGAN [4]. They believe that

the main reason for the poor performance of direct transfer

is the different camera styles of different datasets. They use

CycleGAN [38] to translate images styles from the source

domain to the target domain while keeping image labels un-

changed. Finally, they perform supervised learning on gen-

erated images. Zhong et al. propose ECN [37], ECN fo-

cuses on exemplar-invariance [28, 29], camera-invariance

[36], and neighborhood-invariance [3]. Based on these,

ECN separately sets triplet loss to increase the distance be-

tween different samples and reduce the distance between

similar samples. ECN stores samples in the exemplar mem-

ory model [18, 24] and sets pseudo labels according to it.
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Figure 2. The structure of our HCT. Different colors represents different pseudo labels. We use pre-trained ResNet-50 [8] on ImageNet as

our backbone. The input of HCT are unlabeled target images.

Finally, ECN also conducts training according to pseudo la-

bels and get good performance.

In addition to set pseudo labels as supervision, people

also try to use models to learn some auxiliary informa-

tion to improve generalization ability. Zhong et al. pro-

pose HHL [36]. HHL improves model performance through

camera-invariance and domain connectivity. Xiao et al. pro-

pose EANet [10]. EANet proposes Part Aligned Pooling

(PAP) and Part Segmentation Constraint (PSC). PAP cuts

and aligns images according to the key points of the body

posture. PSC enables the model to predict labels of dif-

ferent part about feature map and locate the corresponding

position of each part accurately. EANet combines PAP with

PSC to make full use of pedestrians pose segmentation in-

formation to improve performance.

Although these methods have achieved some improve-

ments, most of them only focus on the difference between

the source domain and the target domain. However, they

do not fully explore the similarity of images in the target

domain.

2.2. Clusteringguided ReID

Clustering-guided re-ID is usually trained with pseudo

labels generated by clustering, which can be divided into

clustering-guided domain adaptation and clustering-guided

fully unsupervised re-ID.

For clustering-guided domain adaptation, Hehe et al. [6]

propose PUL. PUL gets the pre-trained model through train-

ing on the labeled source dataset, then uses CNN to fine-

tune the model and uses K-means to cluster samples. At the

beginning of training, PUL only selects a part of reliable

samples which close to the clustering centroid for training

to avoid falling into local optimum. As the model becomes

better, more samples will be selected. This strategy effec-

tively promotes the convergence of the model and improves

performance. However, K-means is very sensitive to the k

value. Besides, as a a partition based clustering method,

clustering centroids are easily dragged by outliers, it will

generate lots of false pseudo labels which seriously affect

the optimization of the model and ultimately limit model

performance.

For clustering-guided fully unsupervised re-ID, Lin et

al. propose BUC [14]. BUC does not use any labeled

source data, only use unlabeled target data and pre-trained

model on ImageNet instead of other re-ID dataset. BUC ex-

tracts image features with CNN, then merges a fixed num-

ber of clusters according to the distance between clusters in

each step. After merging, BUC fine-tunes the model with

generated pseudo labels, repeats the progress of merging

and fine-tuning until the model performance no longer im-

proves. However, the performance of BUC has a signifi-

cant drop in later merging steps. That is due to the poor

pre-trained model in the beginning and some hard exam-

ples in the target dataset. BUC cannot solve the problem

of false pseudo labels, which will affect the optimization of

the model. These false pseudo labels have a superposition

effect in later merging steps and result in a significant per-

formance drop in the end. In this paper, we aim to further

improve the quality of pseudo labels and get better perfor-

mance than these methods.
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3. Our Method

3.1. Hierarchical Clustering with Hardbatch
Triplet Loss

Our network structure is shown in Figure 2. The model

is mainly divided into three stages: hierarchical clustering,

PK sampling, and fine-tuning training. We extract image

features to form a sample space and cluster samples step

by step according to the bottom-up hierarchical clustering

in Figure 1. After hierarchical clustering, we label samples

in the same cluster with the same pseudo label. Finally,

we use PK sampling to generate a new dataset for training

according to clustering results. Our goal is to explore sim-

ilarities among images in the target dataset through hierar-

chical clustering, distinguish hard examples through hard-

batch triplet loss, and generate pseudo labels to guide model

training in the end. Compared to other methods, our HCT

can further improve the quality of pseudo labels and finally

get better model performance.

For a dataset X = {x1, x2, · · · , xN}, we will have man-

ually annotated labels Y = {y1, y2, · · · , yn} in supervised

learning, so we can directly use cross-entropy loss to opti-

mize the model. However, we do not have any manually

annotated labels in fully unsupervised re-ID, so we need to

generate pseudo labels as supervision instead of using man-

ually annotated labels. Although hierarchical clustering can

fully explore the similarity of samples, build the underly-

ing structure through a bottom-up clustering and generate

some good pseudo labels. But due to the deficiency of hi-

erarchical clustering, this strategy cannot effectively distin-

guish hard examples and will generate lots of false pseudo

labels in merging. These false pseudo labels will mislead

the optimization of model and limit model performance.

In order to solve this problem, HCT uses hard-batch

triplet loss with PK sampling to reduce the distance between

similar samples and increase the distance between different

samples, which can better distinguish hard examples. Be-

sides, we will initialize all pseudo labels at the beginning of

each iteration so that we are able to correct all false pseudo

labels generated in the previous iteration. Theoretically,

as pseudo labels of hierarchical clustering are approaching

manually annotated labels step by step, the model perfor-

mance is approaching the baseline. Baseline represents the

supervised learning method of hard-batch triplet loss.

3.2. Distance Measurement

For all clustering-guided re-ID [14, 6, 20], the quality

of pseudo labels generated by clusters directly determines

the performance of the model. For hierarchical clustering,

the distance measurement method used in the merging stage

decide how we choose clusters to merge and finally affects

the clustering result and pseudo labels.

BUC [14] uses the minimum distance as the distance

measurement in the merging stage. Minimum distance only

calculates one pair of the nearest pairwise distance in two

clusters. That is not a good method because it ignores

other samples in clusters. Especially when there are lots of

samples in a cluster, minimum distance is easily influenced

by outliers and finally results in wrong merging and false

pseudo labels. To improve the distance measurement and

finally get a better result, we should consider the pairwise

distance of all the samples in two clusters.

In HCT, we use euclidean distance to measure the

distance between each sample. Then, according to the

unweighted average linkage clustering (unweighted pair-

group method with arithmetic means, UPGMA) [19], we

define the distance between clusters as:

Dab =
1

nanb

∑

i∈Ca,j∈Cb

D
(
Cai

, Cbj

)
(1)

where Cai
,Cbj are two samples in the cluster Ca,Cb respec-

tively. na,nb represent the number of samples in Ca,Cb,

D(·) means the euclidean distance. UPGMA takes into ac-

count all the pairwise distance between two clusters and

each pairwise distance has the same weight. It effectively

reduces the influence of outliers in sample space, promote

more rational merging and finally get better results com-

pared to other distance measurement according to discus-

sion in [5].

3.3. Loss Function

Hard-batch triplet loss [9] is proposed to mine the

relationship between anchor with positive sample and

negative sample, which can reduce the distance between

similar samples and increase the distance between differ-

ent samples. In order to use hard-batch triplet loss in HCT,

we use PK sampling to generate a new dataset for training.

Specifically, We randomly select K instances from P iden-

tities for each mini-batch (batchsize = P×K). So our loss is

defined as:

Ltriplet =
P∑

i=1

K∑

a=1

[

m+

hardest positive
︷ ︸︸ ︷

max
p=1...K

D
(
xi
a, x

j
p

)

− min
j=1...P

n=1...N

D
(
xi
a, x

j
n

)

︸ ︷︷ ︸

hardest negative

]

(2)

where xi
a is the anchor, xj

p is the positive sample which

has the same identity as xi
a, xj

n is the negative sample

which identity is different from xi
a. D(·) means the eu-

clidean distance and m is the hyperparameter margin in

hard-batch triplet loss. Hard-batch triplet loss makes sure

that give an anchor xi
a, xj

p is closer to xi
a than xj

n. As a re-

sult, samples which have the same identity will be closer to
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each other than other samples which have different iden-

tities. In other words, these samples will form a cluster

gradually in high dimensional space. So we can use hard-

batch triplet loss to distinguish hard examples, promote bet-

ter clustering, and improve model performance.

3.4. Model Update

As shown in the algorithm, we use pre-trained ResNet-

50 [8] on ImageNet for training. For each iteration, at the

beginning of hierarchical clustering, we regard N samples

as N different identities and initialize all pseudo labels. We

set a hyperparameter mp to control the speed of the merging

and a hyperparameter s represents total merging steps of hi-

erarchical clustering, m = n×mp represents the number of

clusters merged in each step. We calculate all pairwise dis-

tance between samples in the target dataset and generate a

n×n distance matrix dist. According to dist and UMPGA

distance measurement in Eq.(1), we generate a c × c dis-

tance matrix D, D represents the distance between clusters

in each step, c represents the current number of clusters. We

will merge m pairs of nearest clusters in each step until the

s-th step and generate pseudo labels according to the clus-

tering result. Specifically, we regard samples in the same

cluster have the same pseudo labels. Then we use PK sam-

pling to generate a new dataset as the input of CNN, we

conduct fine-tuning training with the new dataset and eval-

uate model performance in the end. We regard hierarchical

clustering, PK sampling, fine-tuning training and evaluation

as one iteration. We iterate the model until the performance

no longer improves.

4. Experiment

4.1. Datasets

Market-1501 Market1501 [33] includes 32,668 images

of 1501 pedestrians captured by 6 cameras. Each pedestrian

is captured by at least two cameras. Market1501 can be

divided into a training set which contains 12,936 images of

751 people and a test set which contains 19,732 images of

750 people.

DukeMTMC-reID DukeMTMC-reID [34] is a sub-

set of pedestrian re-identification dataset DukeMTMC

[17]. DukeMTMC contains a 85 minutes high-resolution

video, which is collected from eight different cameras.

DukeMTMC-reID consists of 36411 labelled images be-

longing to 1404 identities which contains 16,522 images

for training, 2,228 images for query, and 17,661 images for

gallery.

4.2. Implementation Details

HCT Training Setting We directly use pre-trained

ResNet [8] on ImageNet as our backbone. After clustering,

we randomly selected P = 16 identities and K = 4 images

Algorithm 1 HCT Algorithm

Require:

Input X = {x1, x2, · · · , xN};

Merging percent mp ∈ (0, 1);
Merging step s;

Iteration t.

Ensure:

Best model f (w, xi).
1: Initialize:

sample number n = N ,

cluster number c = n,

merging number m = n×mp,

iteration iter = 0,

merging step step = 0.

2: while iter < t do

3: Initialize pseudo labels: Y = {yi = i}
N

i=1
;

4: Extract features, calculate the pairwise distance be-

tween each sample, and generate a n × n distance

matrix dist;

5: while step < s do

6: Calculate distance between each cluster according

to Eq.(1), generate a c× c distance matrix D;

7: Select clusters to merge according to D and start

to merge clusters:

c = c−m;

8: Update Y with new pseudo labels:

Y = {yi = j, ∀xi ∈ Cj}
N

i=1
;

step = step+ 1;

9: end while

10: Generate a new dataset with PK sampling according

to Y ;

11: Fine-tuning model with the new dataset according to

hard-batch triplet loss;

12: Evaluate model performance;

13: if mAPi > mAPbest then

14: mAPbest = mAPi;

15: Best model f (w, xi);
16: end if

17: iter = iter + 1;

18: end while

to generate a new train dataset, so batchsize = P × K =
64. During the training, we adjust the size of the input im-

age to 256×128, we also use random cropping, flipping and

random erasing for data augmentation [35]. We use SGD to

optimize the model and set a momentum [22] of 0.9 without

dampening. The learning rate is 6×10−5, the weight decay

is 0.0005, iteration is 20, and margin is 0.5 in hard-batch

triplet loss. In Market-1501, merging percent mp is 0.07,

merging step s is 13, epoch is 60. Note that the model is

easily to overfit and will have a significant drop in the later

iteration, we adopt an early stop strategy to get best perfor-
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Methods Labels
Market-1501 DukeMTMC-reID

rank-1 rank-5 rank-10 mAP rank-1 rank-5 rank-10 mAP

Baseline[20] Supervised 91.6 - - 78.2 80.8 - - 65.4

Direct transfer None 11.1 22.1 28.6 3.5 8.6 16.4 21.0 3.0

HCT None 80.0 91.6 95.2 56.4 69.6 83.4 87.4 50.7
Table 1. Comparison with baseline and direct transfer on Market-1501 and DukeMTMC-reID . ”Baseline” means supervised learning

method about hard-batch triplet loss. ”Direct transfer” means directly use pre-trained ResNet-50 on ImageNet to evaluate without any

fine-tuning. The label column lists the type of supervision used by the method. ”Supervised” means supervised learning, ”None” denotes

no any manually annotated labels are used, which is fully unsupervised learning.

Methods Labels
Market-1501 DukeMTMC-reID

rank-1 rank-5 rank-10 mAP rank-1 rank-5 rank-10 mAP

UMDL[16] Transfer 34.5 52.6 59.6 12.4 18.5 31.4 37.4 7.3

OIM[29]* None 38.0 58.0 66.4 14.0 24.5 38.8 46.0 11.3

PUL[6] Transfer 45.5 60.7 66.7 20.5 30.0 43.4 48.5 16.4

SPGAN[4] Transfer 51.5 70.0 76.8 22.8 41.1 56.6 63.0 22.3

TJ-AIDL[26] Transfer 58.2 74.8 81.1 26.5 44.3 59.6 65.0 23.0

HHL[36] Transfer 62.2 78.8 84.0 31.4 46.9 61.0 66.7 27.2

BUC[14] None 66.2 79.6 84.5 38.3 47.4 62.6 68.4 27.5

ARN[12] Transfer 70.3 80.4 86.3 39.4 60.2 73.9 79.5 33.4

MAR[32] Transfer 67.7 81.9 - 40.0 67.1 79.8 - 48.0

ECN[37] Transfer 75.1 87.6 91.6 43.0 63.3 75.8 80.4 40.4

EANet[10] Transfer 78.0 - - 51.6 67.7 - - 48.0

Theory[20] Transfer 75.8 85.9 93.2 53.7 68.4 80.1 83.5 49.0

HCT None 80.0 91.6 95.2 56.4 69.6 83.4 87.4 50.7
Table 2. Comparison with other unsupervised methods. The label column lists the type of supervision used by the method. ”Transfer”

means uses an manually annotated source dataset, which is UDA method. ”*” means results are reported by [14]. Results that surpass all

competing methods are bold.

mance.

Evaluating Setting We use the single-shot setting [21]

in all experiments. In evaluation, for an image in query, we

calculate cosine distance with all gallery images and then

sort it as the result. We use the mean average precision

(mAP) [33] and the rank-k accuracy to evaluate the per-

formance of the model. Rank-k emphasizes the accuracy,

it means the query picture has the match in the top-k list.

Beside, mAP is computed from the Cumulated Matching

Characteristics (CMC) [7]. CMC curve shows the probabil-

ity that a query has the match in different size of lists. Given

a single query, the Average Precision (AP) is computed ac-

cording to its precision-recall curve, the mAP is the mean

of AP.

4.3. Ablation Study

Comparison with Baseline and Direct Transfer In or-

der to reflect the effect of our HCT, we compare HCT

with a supervised learning method about hard-batch triplet

loss and direct transfer from pre-trained ResNet-50 on Im-

ageNet. Our results are reported in Table 1. The results

for direct transfer and baseline represent the floor and upper

limit of model performance. Theoretically, when the quality

of our pseudo labels approach to manually annotated labels,

HCT will gradually approach the baseline.

We can see that the performance of direct transfer is

very poor, only get 3.5% mAP on Market-1501 and 3.0%
mAP on DukeMTMC-reID. That is because the model is

pre-trained on ImageNet for a classification task which is

completely different from re-ID task. HCT outperforms the

direct transfer method by 52.9% mAP on Market-1501 and

47.7% mAP on DukeMTMC-reID. That is only less than

supervised method baseline 21.8% mAP and 14.7% mAP

respectively, which indicates that the quality of pseudo la-

bels generated by HCT is very high, so our model perfor-

mance is good.

Effectiveness of HCT As shown in Table 2, we com-

pare our HCT with other unsupervised methods. On

Market-1501, we obtain rank-1 =80.9%, mAP =56.4%.

On DukeMTMC-reID, we obtain rank-1 =69.6%, mAP

=50.7%. HCT not only surpasses other fully unsupervised

methods a lot, but also better than many UDA methods.

Note that we do not use any manually labeled data for train-

ing, we just use unlabeled target data. Results indicates the
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Merge step
Market-1501

IDs epoch rank-1 mAP

s = 12 2069 15 72.2 46.2

s = 13 1171 60 80.0 56.4

s = 14 258 300 × ×
Table 3. Performance comparison with different merging steps on

Market-1501. ”IDs” means identities number, it also represent the

number of clusters after hierarchical clustering. ”Epoch” means

the training epoch in each iteration. ”×” means the model is diffi-

cult to converge.

Merge percent
Market-1501

rank-1 rank-5 rank-10 mAP

mp = 0.04 79.6 90.9 94.6 55.3

mp = 0.05 78.7 91.1 94.6 55.0

mp = 0.06 78.1 91.1 94.2 54.3

mp = 0.07 80.0 91.6 95.2 56.4

mp = 0.08 77.0 90.4 94.1 53.0

mp = 0.09 77.9 90.8 94.2 54.6

mp = 0.1 77.4 90.9 94.6 53.7
Table 4. Performance comparison with different merging percents

on Market-1501.

importance of fully exploring the similarity of the samples

in the target domain. Besides, it also proves that hard-batch

triplet loss can effectively reduce the influence of hard ex-

amples, further improve the quality of pseudo labels, and

get better performance.

Comparison with Different Merging Steps In hierar-

chical clustering, merging step s controls the termination

of merging, determines clusters number, and finally affects

the quality of pseudo labels. In order to get the best per-

formance, we set mp = 0.07 and evaluate the impact of

different s on Market-1501. Our results are reported in Ta-

ble 3. When we set s = 14, we find the model is diffi-

cult to converge even if we set the training epoch very high.

Market-1501 have 751 IDs in the training set, but now HCT

only have 258 IDs. We believe that in the final merge step,

hierarchical clustering will generate lots of awful clusters

and false pseudo labels that cannot be optimized. So we

should adopt an early stop strategy in hierarchical cluster-

ing. However, too small s means too many IDs number of

pseudo labels which will also cause problems. When we set

s = 12, we can see a significant decline on performance. So

too early stop will reduces the performance of the model.

Besides, we have to decrease the training epoch to 15, be-

cause we find a large epoch easily leads to overfitting when

s is too small. Finally, we get the best performance when

we set s = 13.

Comparison with Different Merging Percents In hier-

archical clustering, merging percent mp controls the speed

of merging. It decides the number of clusters merged in

each step and finally affects generated pseudo labels. In or-

der to get the best performance and evaluate the influence

of mp, we evaluate different mp values on Market-1501.

Based on discussion above, we adopt an early stop strategy

in our experiments for the setting of s in all experiments. In

Table 4, we can see that when we set mp = 0.07, we get

the best performance. We believe that both too many and

too few merging in each step will result in a decline of clus-

ter quality. Besides, compared to change merging step s,

changing merging percent mp only causes a slight change

in performance.

Qualitative Analysis of T-SNE Visualization As shown

in Figure 3, we can see that BUC cannot effectively distin-

guish hard examples, so there are lots of False Positive

samples in clusters. These False Positive samples are

close to each other in high dimensional space and easily

result in wrong merging in hierarchical clustering. Besides,

the distribution of clustering results is dispersing and will

generate many False Negative samples. Different from

hard examples, these False Negative samples belong to

the same identity. But they are not very close to each other

in high dimensional space, so we cannot effectively use hi-

erarchical clustering to merge them into one cluster. Our

method HCT solves these problems and get better perfor-

mance. We can see that HCT can promote more compact

clustering, so the number of False Negative samples is

greatly reduced. Besides, HCT can effectively distinguish

hard examples, so the number of False Positive samples

is also greatly reduced. These results illustrate the effective-

ness of hard-batch triplet loss and the high quality of pseudo

labels generated by HCT. In general, due to the significant

improvement of clustering result, HCT surpasses a lot than

other unsupervised methods.

5. Conclusion

In this paper, we propose a fully unsupervised re-ID

method HCT. HCT directly use unlabeled dataset without

using any manually annotated labels for training. We make

full use of similarities between images in the target dataset

through hierarchical clustering. We also effectively reduced

the influence of hard examples in training by PK sampling

and hard-batch triplet loss. Besides, we further improve

the quality of generated pseudo labels through initializing

pseudo labels and training alternately. Finally, as the qual-

ity of pseudo labels gradually improving, our model perfor-

mance are improving step by step. Extensive experiments

prove that HCT surpasses state-of-the-arts in fully unsu-

pervised methods by a large margin, even better than most

UDA methods.
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Figure 3. T-SNE visualization of the feature representation on a subset of Market-1501 about BUC (100 identities and 1747images) and

HCT (100 identities and 1656 images). Samples with the same color represent them have same real labels. True Positive means correct

pseudo labels generated by model. False Positive means model generate the same pseudo label for images that belong to different

identities in fact. False Negative means model generate different pseudo labels for images that belong to the same identity in fact. Both

False Positive and False Negative will generate false pseudo labels which reduce the model performance.
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