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Abstract

According to existing studies, human body edge and pose

are two beneficial factors to human parsing. The effective-

ness of each of the high-level features (edge and pose) is

confirmed through the concatenation of their features with

the parsing features. Driven by the insights, this paper stud-

ies how human semantic boundaries and keypoint locations

can jointly improve human parsing. Compared with the ex-

isting practice of feature concatenation, we find that uncov-

ering the correlation among the three factors is a superior

way of leveraging the pivotal contextual cues provided by

edges and poses. To capture such correlations, we propose

a Correlation Parsing Machine (CorrPM) employing a het-

erogeneous non-local block to discover the spatial affinity

among feature maps from the edge, pose and parsing. The

proposed CorrPM allows us to report new state-of-the-art

accuracy on three human parsing datasets. Importantly,

comparative studies confirm the advantages of feature cor-

relation over the concatenation.

1. Introduction

This paper studies human parsing, aiming to partition a

human image into semantic regions including body parts

and clothes. This problem is challenging due to the com-

plicated textures and styles of clothes, the deformable hu-

man body, the scale diversity of different categories, etc.

As such, directly applying general semantic segmentation

methods to human parsing may lead to unsatisfying results,

which are reflected in two aspects. First, the boundaries be-

tween adjacent parts may be inaccurately located. The sys-

tem might get confused with pixels along the boundaries,

especially when the neighboring parts have similar appear-

ance. Second, semantics of segmented parts may be incon-

sistent with human body structure, if we don not consider

the affinity among different parts. This leads to mislabeling
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Code is available at: https://github.com/ziwei-zh/CorrPM.

Figure 1. Illustration of parsing errors and our motivation. (a)

Given images. (b) Results of parsing baseline [4]. (c) Fusion

of parsing and human body edge features. (d) Fusion of parsing

and the human keypoint features. (e) Results of our method. (f)

Groundtruth. From (b), we observe parsing errors happen due to

boundary ambiguity (white box) and body structure inconsistency

(red box), respectively. The fusion of boundary features (c) or

keypoint features (d) may mitigate one of the two errors. The two

types of errors are obviously mitigated in (e) because we take the

advantage of both boundary and keypoints by learning their cor-

relation with parsing. By comparison, the proposed strategy is

superior to concatenation or post processing as commonly done.

or missing predictions when context clues are not obvious.

Edge detection and pose estimation can potentially ad-

dress the above two problems. For the first problem, i.e.,

boundary confusions, human body edge detection is ben-

eficial to distinguish two adjacent categories [3, 33]. For

the second problem, i.e., semantics inconsistency, pose es-

timation provides keypoints to enforce the parsing results

to be semantically consistent with human body structure

[38, 28, 34]. Therefore, current research [3, 33, 37, 29]

identifies human edge and pose as complementary cues

to improve parsing performance. As shown in Fig. 1(b),

when directly using generic segmentation methods for hu-

man parsing, some pixels of upper clothes are predicted as

pants: the network incorrectly locates the edges between the

two categories. Moreover, due to the lack of human seman-

tic constraints, the left and right arms, left and right shoes

are incorrectly identified. In Fig. 1(c), after adding edge

8900



information to parsing, we observe that the boundary pix-

els are accurately located. Further, when utilizing body part

cues provided by pose features in Fig. 1(d), the mistaken

prediction of the left arm no longer exists, and the left shoe

is clearly distinguished from the right shoe.

In spite of the improvements so far, existing research

utilising edge/pose to improve parsing has not leveraged

them to the full potential. Usually a single factor, i.e. ei-

ther pose or edge, is used, which might be beneficial to

handle a single problem mentioned above. In addition, ex-

isting methods typically perform feature concatenation or

post processing for parsing refinement. We point out that

this practice might be inferior. As shown in Fig. 1(c) and

(d), when only a single factor is concerned for parsing sys-

tem, there still remain blurs and holes in arm and dress area,

and left/right shoes are inexactly predicted. Therefore, sim-

ple fusion or post processing may not be enough to process

fine regions, such as edges of different parts. To address this

problem, we explore the correlations among edge and pose

and find that it is preferable that edge, pose and parsing are

simultaneously integrated.

In this paper, we propose a Correlation Parsing Machine

(CorrPM) to take advantage of both human semantic edge

and pose features to benefit human parsing. Contrary to per-

forming feature concatenation or post processing, we learn

the correlation among the three tasks. The CorrPM has

three encoders and is featured by a heterogeneous non-local

(HNL) module. The encoders calculate vector representa-

tions of the human edge, pose and semantics, respectively.

HNL mixes the three features into a hybrid representation

and explores the spatial affinity between this hybrid feature

and the parsing feature map at all positions. As such, our

method can effectively perceive the human edges and main-

tains the integrity of a semantic region, addressing the inac-

curate boundary localization problem. Meanwhile, by per-

ceiving the body keypoints, our method improves the con-

sistency of the body part geometry. For example, as shown

in Fig. 1 (e), our method corrects the mislabeling of arm

region and correctly segments the boundary between upper

clothes and pants, and between dresses and arms.

To summarize, our contribution is three-fold. 1) We pro-

pose to use a Heterogeneous Non-Local (HNL) structure to

capture the correlations among three closely related factors.

2) We show that human edge and pose, when both integrated

in the Correlation Parsing Machine (CorrPM), bring signif-

icant improvement to parsing task. 3) Using simple edge

detection and pose estimation models, we report very com-

petitive parsing accuracy on three human parsing datasets.

2. Related Work

Semantic Segmentation. Human parsing is a fine-

grained semantic segmentation, which performs per-pixel

prediction on all objects. Due to its great prospects in appli-

cation, semantic segmentation has gained much importance

in the past few years. FCN [25, 5, 42] performs well on

this task which applies fully convolution on the whole im-

age to produce labels of every pixel. Inspired by this, many

researchers [31, 1, 32] start to leverage the encoder-decoder

structure which extracts features by downsampling and then

use upsampling to recover them to the original resolution.

Aiming to enlarge the receptive field, another structure,

DeepLab [4], designs atrous convolution kernels to force

the network to perceive larger area and reduce the predic-

tion errors. Zhao et al. [41] propose a pyramid scene pars-

ing network aggregating multi-scale object clues to make

the segmentation more precise. In [36], Xia et al. propose

the “Auto-zoom Nets” to automatically “zoom” the objects

and parts which have diverse scales.

Human Parsing. Following main approaches in seman-

tic segmentation, early researches in human parsing con-

tribute towards this topic mostly by hand-crafted features

and post-processed by Conditional Random Field (CRF)

[11, 23]. Dong et al. [9] use a variety of parselets assem-

bled by “And-Or” sub-trees to jointly parse human body

labels and keypoint locations. With the development of

convolutional neural network (CNN), especially after the

ResNet [17] is proposed, many deep learning approaches

have achieved much progress in this area. In [22], Liang

et al. propose a Co-CNN framework capturing cross-layer

local and global context information to boost the parsing

performance. Gong et al. [15] introduce a new large-

scale benchmark LIP and a novel self-supervised structure-

sensitive learning method. In [20], Li et al. tackle the hu-

man parsing problem by generating global parsing maps for

person in a bottom-up way.

Utilizing edge or pose for parsing. Aiming to get more

accurate predictions in human parsing task, recent works

[10, 29, 14, 15, 37, 13, 7, 19, 30] utilize edge or pose infor-

mation as a guidance. Chen et al. [3] propose an edge-

aware filtering method to capture accurate semantic con-

tours between two adjacent parts. Ruan et al. [33] fuse the

edge map with parsing feature which can reserve the bound-

ary of person parts to benefit the human parsing. Gong et

al. [14] conduct both semantic part parsing and edge de-

tection in the way of sharing intermediate representation of

both features. Xia et al. [37] train two FCNs to predict

poses and parts separately and then fuse them through a

fully-connected conditional random field (FCRF) as a re-

finement. Nie et al. [29] observe that pose and parsing

can simultaneously boost the performance of each other by

training two parallel models and adapt the mutual parame-

ters. Despite the improvement, the existing methods simply

perform feature concatenation or pose-processing to refine

parsing results, which is inferior to guide parsing model to

learn contextual cues. Our framework simultaneously inte-

grates edge, pose and parsing representation and effectively
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Figure 2. Overview of the proposed network. PaE: parsing en-

coder. EdE: edge encoder. PoE: pose encoder. HNL: hetero-

geneous non-local module. FA: feature aggregation. f∗: pars-

ing/edge/pose features. After extracted by three encoders, parsing,

pose and edge features are fed into HNL to explore their correla-

tion to benefit human parsing task.

exploits the correlation among these three representation.

Non-local Network. Human parsing is closely comple-

mentary to semantic edge information and human pose in-

formation. And the relationship among them is exploited

and employed by HNL which is modified from non-local

network. Originating from non-local means algorithm [2] ,

the non-local network is leveraged in many approaches to

capture long-range dependencies [43, 40]. Wang et al.[35]

propose the non-local block as a weighted summation of re-

lationships of every position and show good performance

in video classification. Even though non-local network has

been a great success in many tasks , existing methods seek

the relationship with the feature itself. Different from the

existing self-attention mechanism, the proposed heteroge-

neous non-local module aggregates parsing, edge and pose

factors together and learns the correlation of parsing with

the other two features.

3. The Proposed Approach

As illustrated in Fig. 2, the proposed Correlation Parsing

Machine (CorrPM) leverages human body keypoint and se-

mantic boundary information to benefit human parsing. We

firstly introduce the overall formulation of our framework

in Section 3.1. The three feature encoders are represented

in Section 3.2 and we propose a heterogeneous non-local

module (HNL) to correlate the three factors in Section 3.3.

Then, Section 3.4 explains the difference between the pro-

posed HNL and the traditional non-local networks. And the

overall training objective is illustrated in Section 3.5.

3.1. Formulation

Given an input image I ∈ R
3×M×N of size M × N ,

our task is to predict the label of every pixel and gener-

ate a segmentation mask P ∈ R
M×N leveraging three

kinds of information: human body part category P ∈
{0, 1, ..., Q}M×N , semantic boundary B ∈ {0, 1}M×N and

human body keypoint location K = {(xi, yi)}
J
i=1

. J and Q

are the number of body joints and part categories. (xi, yi)
are the coordinates of the point i, and the pixels that belong

to boundaries are labeled as 1 otherwise 0. We aim to design

a unified framework that jointly utilizes these three factors

and uncovers the correlation among them to better leverage

the pivotal contextual cues.

3.2. Feature Encoding

Human parsing, pose estimation, edge detection are

complementary and closely related, hence, their features

can be learned by a shared base model Θ, e.g., ResNet101

[17]. The feature at the lower stage of the base model re-

tains high resolution structure and is fed to edge encoder

to capture the object edge boundaries fb. And the higher-

stage feature keeps rich semantic information which is fur-

ther used as parsing feature fp and keypoint feature fk.

Parsing Encoder. We adopt a parsing pipeline to pre-

dict a coarse segmentation map firstly. Context information

is leveraged in many previous work [41, 4] in semantic seg-

mentation and it is also essential in human parsing. Given

the parsing feature of the base model Θ, we observe that

merely performing dense pixel-wise prediction on it will

cause mislabeling. Therefore, we add the Atrous Spatial

Pyramid Pooling (ASPP) [4] to enlarge the receptive fields

and get more useful context cues.

Meanwhile, some objects in human parsing have quite

low resolution, e.g., sunglasses and socks, so the details

might be lost in the process of downsampling. We employ

the feature of Res2 of base model and upsample the output

of ASPP module to the same scale as Res2 and concatenate

them as fp. After extracted from the parsing encoder, the

feature fp obtains a coarse semantic representation and will

be further fed into the heterogeneous non-local module to

obtain pose and edge guidance.

Pose Encoder. In order to get human body structure

cues, we design a pose encoder to get joint locations. Many

existing approaches [37, 29, 28] in pose estimation adopt

complicated CNNs to get more accurate keypoint locations.

For instance, Hourglass [28] performs repeated downsam-

pling and upsampling procedure to capture multi-scale key-

point information. Different from them, we only deploy two
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Figure 3. Structure of the heterogeneous non-local (HNL) module.

It aggregates parsing, edge and pose feature into a hybrid feature

fh and calculates the correlation between fh and fp.

transposed convolution layers [38] to extract human key-

point structure, since pose estimation task can also get ben-

efits from the parsing task. As a result, the shared feature is

upsampled by 4 times generating the pose feature fk. It is

the same scale as the parsing feature fp.

After the pose representation fk is captured, we regress

the heatmap from it. Following [34], we apply 2D Gaussian

filter centered on each annotated keypoint coordinate with

standard deviation of 7 pixels, and generate the ground truth

heatmap as the supervision of pose encoder.

Edge Encoder. In human parsing task, semantic bound-

ary ambiguity remains to be solved. The border pixels of

two adjacent semantic parts may be inaccurately predicted,

particularly when they have similar appearances. Hence,

we propose an edge encoder to learn feature fb with bound-

ary consciousness. It is observed that lower stages in neural

network maintain high resolution and higher-stage feature

obtains detailed semantic information. As shown in Fig. 2,

we leverage the features of Res2, Res3 and Res4 which re-

tain both large spatial details and semantic consistency. The

feature maps are upsampled to the same size as Res2 by lin-

ear interpolation. Then, they are concatenated and fed into

a 1 × 1 convolution layer to generate the edge feature map

fb. The edge encoder is supervised by the edge information

between two adjacent categories and the feature will be fur-

ther fed into the heterogeneous non-local correlation block.

3.3. Heterogeneous Non­Local

Many existing researches prove that either edge or pose

is a beneficial factor to parsing task. However, the fusion

strategy they employ cannot fully leverage the two factors

as discussed above. Recently, the correlation module is used

to capture the long-range contextual information by self-

attention [12, 18] or explore the relationship between the

two features [43]. However, if we follow this operation, the

correlation computation cost is high (O(n2), n is the num-

ber of feature maps) and the overall model is hard to con-

verge. Therefore, we propose a Heterogeneous Non-Local

(HNL) block to fully leverage the contextual cues provided

by boundaries and poses, which we believe is more effective

and more efficient.

As shown in Fig. 3, we first aggregate the three factors

by concatenating them in the channel dimension, and then

a convolution layer parameterized by Wa is conducted to

transform it into a hybrid feature fh, whose dimension is

the same as that of fp ∈ R
C×H×W :

fh = Wa(fp ⊕ fb ⊕ fk), (1)

where ⊕ means concatenation.

We exchange the self-attention in the standard non-local

block with correlation between the hybrid feature fh and

parsing feature fp. First, fh and fp are fed into two convo-

lution layers to generate two new features A and B, then we

reshape them into matrixes with size N × C and C × N ,

respectively, where N = H ×W denotes the total number

of pixels per channel. We compute the relationship map S

∈ R
N×N by a matrix product of A and B, and normalize

the relation map by a softmax operation.

S = softmax(A ·B) (2)

where a point (i, j) in S measures the relation affinity be-

tween the ith pixel in hybrid feature fh and jth pixel in

parsing feature fp.

Then we feed the parsing feature fp into another con-

volution layer to generate fp1
∈ R

C×H×W and reshape it

to R
N×C , which is multiplied by S to integrate the pixel

correlation cues into parsing features. The resulting feature

is fed into the final convolution layer parameterized by Wb

and added back to fp element-wise to get the final parsing

feature fp2
. The overall procedure can be formulated as:

fp2
= Wb(S · fp1

) + fp, (3)

where Wb is initialized as 0. In this way, the hybrid repre-

sentation effectively aggregates parsing, edge and pose in-

formation together. And the refined parsing feature fp2
in

Equation 3 is a weighted summation of every position in the

hybrid feature and the parsing feature. Therefore, it obtains

edge information between two bordered parts and retains

semantic consistency with human body, thus getting more

reasonable parsing results.

3.4. Discussions

The heterogeneous non-local block is an extension of

non-local neural network [35]. However, different from the

traditional non-local operation which only computes the re-

lationship of one feature as a mechanism of self-attention,

the proposed network has three advantages. First, it in-

tegrates human parsing, pose estimation and edge detec-

tion tasks into a unified model, and the correlation is cal-

culated among three different feature representations. Sec-

ond, HNL does not add much computation complexity com-

pared with traditional non-local structure while maintains
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very competitive accuracy. Finally, for other tasks which

are also related to human parsing, it has potential to inte-

grate it into the hybrid representation and model the rela-

tionship among them with only little computation complex-

ity increased (brought by the corresponding encoder).

3.5. Training objectives

In addition to the parsing supervision, human keypoint

location and semantic edge information are utilized to train

the whole model. The total training objective is:

L = Lp2
+ Lp + αLb + βLk, (4)

Lp2
or Lp is the loss between the parsing result fp2

or fp
and the parsing annotations; Lb denotes the loss between

the predicted edge map fb and the edge annotation; Lk is the

loss between the body joints prediction fk and the ground

truth coordinates. It is worth noting that the edge annota-

tion is obtained by finding the borders of the mask between

two different semantic parts, which needs no additional an-

notations. Cross Entropy loss is adopted as Lp2
, Lp and

Lb, and Mean Square Error loss is used for Lk. The whole

framework is trained end-to-end.

4. Experiments

4.1. Experimental Settings

Datasets and metrics. We evaluate the performance of

the proposed method on three human parsing datasets:

LIP [15] is a large-scale benchmark dataset focusing on

semantic understanding of human body parts and clothes

labels. It contains coordinates of 16 body keypoints and

pixel-level annotations of 20 semantic human parts (includ-

ing one background label). There are totally 50,462 im-

ages which are further split into train/val/test sets containing

30,462/10,000/10,000 images, respectively.

ATR [22] contains 18 categories of human part labels

including face, sunglasses, hat, scarf, hair, upper-clothes,

left/right arm, belt, pants, left/right leg, skirt, left/right shoe,

bag, dress and background. Following [22], we use 16,000

images for training, 1,000 for testing and 700 for validation.

CIHP [14] provides 38,280 images with 20 categories. It

contains 28,280 training, 5,000 validation and 5,000 test im-

ages. On account of no human pose annotations in ATR and

CIHP, we utilize the pose estimator [38] trained on COCO

[24] to obtain human body keypoint locations as ground

truth. During training, we first utilize Mask R-CNN[16]

to generate the mask of every person, and apply it on multi-

person images to generate single person images. We obtain

93,213 training images in total. During inference, single

person is segmented from background in the same way as

training and we conduct parsing with the proposed network

and finally merge them into the original image.

Method EA BI Fusion Strategy Accuracy

[33] X Feature concatenation ++

[14] X Feature concatenation ++

[29] X Parameters mutual learning ++

[15] X Loss constraint +

[37] X Post processing +

Ours X X Correlation +++

Table 1. Comparison of different fusion methods. EA represents

edge ambiguity and BI represents boundary inconsistency. Exist-

ing methods use either edge or pose to solve a single problem in

parsing. Different from them, we aggregate parsing, edge and pose

feature and explore the correlation among them which shows the

superiority on Accuracy.

We report Accuracy, mIoU, Precision, Recall and F-1

score to evaluate the parsing performance on the datasets.

Training Details. We train CorrPM from scratch for 150

epochs, and adopt ResNet101 [17] pre-trained on ImageNet

[8] as the base model Θ. During training, the 384 × 384
input images are randomly rotated (from −60◦ to 60◦),

flipped and resized (from 0.75 to 1.25). fp, fk and fb are

in the same size of C × H × W , where C = 512 and

H = W = 96. We use SGD as the optimizer and the learn-

ing rate is initially set as 1e-3. Following previous works

[44], we employ the “poly” learning rate policy, and the

learning rate is multiplied by (1− iter
total iter

)0.9. We set the

momentum to 0.9 and weight decay to 5e-4. The edge loss

weight α and pose loss weight β are 2 and 70.

Testing phase. During inference, the outputs of pose and

edge branches are ignored, and fp2
is employed to predict

the final parsing mask P . The inference procedure is exe-

cuted on a 12GB TITAN V for a fair speed comparison with

other methods. Our model does not add too much complex-

ity compared with direct concatenation, because the base

model (ResNet-101) consumes a majority of computations.

CorrPM achieves a speed of 11 fps which is faster than At-

tention+SSL [15] (2 fps) and MuLA [29] (5 fps).

4.2. Comparison with related methods

4.2.1 Fusion strategy comparison

Tab. 1 lists some existing researches that utilize pose or

edge information to assist human parsing task. For edge

ambiguity issue, [14] and [33] extract edge feature and con-

catenate it with parsing feature to perceive useful cues of

part boundaries. But this fusion strategy is not able to suffi-

ciently obtain the semantic boundary completeness. Aim-

ing to solve body inconsistency problem, [29] conducts

two parallel human pose estimation and human parsing net-

works and mutually learns the parameters. However, the

training process is somewhat complicated. Meanwhile, [37]

adopts FCRF as a way of post-processing and [15] adds a

joint loss utilizing the pose information to constrain part

segments. Above fusion methods only employ a single fac-

tor and merely handle a single problem. In comparison,
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Method Pixel Acc. Mean Acc. mIoU

DeepLabV2 [4] 82.66 51.64 41.64

Attention [5] 83.43 54.39 42.92

Attention+SSL [15] 84.36 54.94 44.73

SS-NAN [42] 87.59 56.03 47.92

MuLA(Hourglass) [29] 88.50 60.50 49.30

JPPNet [21] 86.39 62.32 51.37

CE2P [33] 87.37 63.20 53.10

Ours† 87.36 66.37 54.43

Ours 87.68 67.21 55.33

Table 2. Comparison of different methods on the validation set of

the LIP dataset. † means removing Lp in Equation 4.

Method Acc F.g.Acc Pre Rec F-1 score

DeepLabV2 [4] 94.42 82.93 69.24 78.48 73.53

Attention [5] 95.41 85.71 81.30 73.55 77.23

CoCNN [22] 96.02 83.57 84.59 77.66 80.14

TGPNet [26] 96.45 87.91 83.36 80.22 81.76

Ours 97.12 90.40 89.18 83.93 86.12

Table 3. Comparison of Accuracy, Foreground Accuracy, Preci-

sion, Recall and F-1 score on the ATR test set.

our CorrPM combines parsing with pose and edge infor-

mation, and the experiment also shows exploring the corre-

lation among the three factors is a superior feature fusion

strategy to other recent methods.

4.2.2 Performance on single-person datasets

LIP. We show the performance comparison of the pro-

posed model and the other methods on LIP validation set.

As shown in Tab. 2, the proposed CorrPM achieves the

best performance of 55.33% in terms of mIoU and signifi-

cantly outperforms other methods. Specifically, JPPNet and

MuLA add pose supervision as a constraint of human pars-

ing. CE2P adds edge information to refine parsing results.

Their experiment results show that pose and edge cues help

achieve better performance. However, the pose or edge in

formations are not fully exploited. By exploring the cor-

relation between the three factors, the HNL brings a boost

of 2.23% mIoU to CE2P and 6.03% mIoU to MuLA. Even

when removing the loss Lp, the 54.43% mIoU is higher than

others, which indicates the direct supervision of the parsing

encoder is necessary and our framework effectively utilizes

pose and edge features to assist human body parsing. More-

over, the pose encoder in our network only consists of two

deconvolution layers, and it is much simpler than the hour-

glass which is adopted in MuLA [29]. Thus, the perfor-

mance may get higher if utilizing more powerful network.

ATR. Tab. 3 reports the results and comparisons with

four recent approaches on ATR. The proposed method

brings a significant performance gain in terms of every met-

ric. Particularly, our model achieves 4.36% boost for F-1

score. This increase confirms the effectiveness of the pose

and edge factors to parsing, and the correlation module has

a strong capability to incorporate pose and edge information

with the parsing features. Although the F-1 score 90.89% in

Method Backbone mIoU

PGN [14] ResNet101 55.80

Parsing R-CNN (R50) [39] ResNet50 57.50

Graphonomy [13] DeepLabV3+ 58.58

Parsing R-CNN (X101) [39] ResNeXt101 59.80

Ours ResNet101 60.18

Table 4. Comparison of performance on the CIHP validation set.

[13] is higher than ours, it adopts DeepLabV3+ as backbone

which is more complicated than ResNet101, and the input

size 512×512 is larger than our 384×384. On the basis that

the human joint labels are obtained from the output of the

pose estimator [38], it illustrates that the proposed system

is flexible and has a low-complexity to be deployed with no

additional pose annotation cost.

4.2.3 Performance on multi-person datasets

CIHP. Experiment results are compared with the other

approaches in Tab. 4 on the CIHP dataset. Our model

outperforms the existing approaches and achieves 60.18 in

terms of mIoU. The previous work [14] gets 55.80% mIoU

by jointly conducting human parsing and edge detection.

Parsing R-CNN [39] gets 57.50% mIoU using ResNet50

and its training images are in the size of 512 × 864. Us-

ing smaller input size and backbone ResNet101, our per-

formance is 0.38% mIoU higher than Parsing R-CNN even

when it changes the backbone to ResNeXt101. Our result

is 1.6% mIoU higher than Graphonomy [13], which uses

a graph convolution model and adopts a strong backbone

DeepLabV3+ [6]. This performance suggests the superi-

ority of our parsing method with the assistance of pose and

edge factors, and correlating parsing with pose and edge can

introduce contextual cues into human parsing task.

4.3. Evaluation of each component

We analyze the parameter sensitivities of our model in

Tab. 6 and validate the effect of each component in Tab. 5.

The effect of different loss weights. The loss values in

different branches are crucial to the model. In Tab. 6, we

test four α values {0, 1, 2, 10} with six β values {0, 1, 10,

50, 70, 80}. α = 0 or β = 0 indicates the baseline that re-

moves the edge branch or pose branch from our model. It is

observed that adding either edge or pose information to the

parsing network brings a significant boost to the baseline.

And the model achieves the highest mIoU when α = 2 and

β= 70, which we choose as the final loss weights.

The effect of pose and edge cues. Firstly, we train a

baseline model P which only contains parsing branch. In

Tab. 5, without the contextual cues from pose and edge fea-

ture, the baseline model achieves 48.67% mIoU. We then

add an edge/pose branch to the baseline model and concate-

nate parsing with edge/pose feature to perform prediction,

denoted as P+B and P+K. Compared with baseline model
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Method hat hair glove glass u-clot dress coat sock pants j-suit scarf skirt face l-arm r-arm l-leg r-leg l-shoe r-shoe bkg Avg

Attention [5] 58.87 66.78 23.32 19.48 63.20 29.63 49.70 35.23 66.04 24.73 12.84 20.41 70.58 50.17 54.03 38.35 37.70 26.20 27.09 84.00 42.92

DeepLabV2 [4] 56.48 65.33 29.98 19.67 62.44 30.33 51.03 40.51 69.00 22.38 11.29 20.56 70.11 49.25 52.88 42.37 35.78 33.81 32.89 84.53 44.03

MMAN [27] 57.66 65.63 30.07 20.02 64.15 28.39 51.98 41.46 71.03 23.61 9.65 23.20 69.54 55.30 58.13 51.90 52.17 38.58 39.05 84.75 46.81

SS-NAN [42] 63.86 70.12 30.63 23.92 70.27 33.51 56.75 40.18 72.19 27.68 16.98 26.41 75.33 55.24 58.93 44.01 41.87 29.15 32.64 88.67 47.92

JPPNet [21] 63.55 70.20 36.16 23.48 68.15 31.42 55.65 44.56 72.19 28.39 18.76 25.14 73.36 61.97 63.88 58.21 57.99 44.02 44.09 86.26 51.37

CE2P [33] 65.29 72.54 39.09 32.73 69.46 32.52 56.28 49.67 74.11 27.23 14.19 22.51 75.50 65.14 66.59 60.10 58.59 46.63 46.12 87.67 53.10

P 63.61 69.18 36.25 27.68 67.23 31.80 53.69 43.45 71.75 28.76 14.33 24.39 72.33 57.76 60.74 47.80 47.38 34.18 34.90 86.22 48.67

PP 62.60 68.47 35.78 27.36 65.16 27.78 51.50 41.60 70.42 29.60 17.11 21.50 71.69 59.46 62.11 50.80 50.75 37.76 40.03 85.69 48.86

P+B 65.11 70.71 38.38 30.04 68.65 32.60 55.13 46.31 73.37 31.94 17.51 28.36 73.51 60.68 63.52 51.50 51.37 39.75 39.78 87.09 51.27

P+K 64.30 70.24 39.10 28.85 68.03 33.10 55.16 46.74 72.99 27.57 16.59 28.44 73.03 60.60 63.34 51.22 51.42 38.68 39.40 86.90 50.79

P+B+K 65.01 71.13 40.30 29.14 69.47 33.91 55.78 47.82 73.85 31.98 18.81 28.94 74.12 61.93 63.95 52.35 51.99 40.19 40.81 87.23 51.93

PB 65.43 71.77 40.69 26.00 69.32 32.82 56.33 46.61 74.52 30.87 23.46 27.51 74.28 64.23 66.68 57.64 56.72 44.80 44.80 87.77 53.11

PK 66.16 72.06 40.52 31.15 69.74 33.97 56.81 49.22 74.74 32.56 20.19 27.81 74.78 65.48 67.45 59.48 58.41 45.41 45.95 87.72 53.98

PBB 66.14 72.42 41.04 27.81 70.12 34.91 57.01 47.21 75.03 31.38 22.99 28.21 74.39 64.92 67.58 58.33 57.64 45.51 46.10 87.46 53.82

PKK 66.15 72.26 40.78 31.34 69.94 34.02 57.40 49.41 74.91 32.19 21.77 28.11 74.98 65.38 67.55 59.66 58.62 45.58 46.01 87.32 54.17

Ours (CorrPM) 66.20 71.56 41.06 31.09 70.20 37.74 57.95 48.40 75.19 32.37 23.79 29.23 74.36 66.53 68.61 62.80 62.81 49.03 49.82 87.77 55.33

Table 5. Comparison of per-class IoU on the LIP validation set. P: Only parsing feature; PP: Performing self-correlation on parsing feature;

P+B/P+K: Concatenating parsing with edge/pose feature; P+B+K: Concatenating parsing, edge and pose feature; PB/PK: Correlating

parsing with edge/pose feature; PBB/PKK: Correlating parsing with two edge/pose features. CorrPM outperforms existing methods and

achieves 55.33% mIoU.

α
β

0 1 10 50 70 80

0 48.72 52.08 52.77 53.10 53.98 53.59

1 50.98 51.15 52.03 51.54 53.78 53.13

2 53.08 53.52 54.08 54.01 55.33 54.45

10 53.12 53.46 53.57 53.24 53.45 53.53

Table 6. Parameter discussion of α and β values in Equation 4 on

the LIP dataset.

P, simple concatenation boosts 2.6% and 2.12% in terms

of mIoU, respectively. Particularly, after fusing edge and

parsing feature, the performances of some classes which are

usually adjacent and have similar appearances (e.g., upper

clothes and pants), gain nearly 1.5% mIoU. These results

demonstrate the effectiveness of edge and pose factors to

parsing task. And the model P+B+K denotes concatenat-

ing both edge and pose feature with parsing feature. It only

improves the performance by 0.66% mIoU compared with

P+B, which indicates that even pose and edge factors are

necessary for parsing, concatenating all three factors is not

an ideal method to sufficiently leverage contextual cues.

The effect of self-correlation. To investigate the ef-

fect of the non-local operation, we add a traditional non-

local self-attention module at the end of baseline model, de-

noted as PP. From Tab. 5, there is little improvement (0.09%

mIoU) when calculating the relationship within parsing fea-

ture itself, and the performance of some classes is reduced

such as hat, dress and upper-clothes. It shows that only ex-

ploiting the self-correlation of parsing feature is not enough

and we need more pivotal factors from pose and edge to

boost parsing performance.

The effect of correlation among parsing, edge and

pose. We conduct two heterogeneous non-local correla-

tions experiments, one is between parsing and edge factor,

denoted as PB, and the other is between parsing and pose

factor, denoted as PK, to validate the benefits of correlation

module to parsing task. The performance improvement is

more significant if leveraging the proposed heterogeneous

non-local module, yielding 4.44% and 5.31% increases in

terms of mIoU to baseline model P. And compared with

P+B and P+K, the correlation module brings 1.84% and

3.19% mIoU gains. And even if we only use either pose

or edge features, the result is more than 1.18% mIoU higher

than the concatenation of all the three features, P+B+K. It is

also observed that some categories which are closely related

to human body joints are significantly improved by a large

margin, which yields about 10% improvement in terms of

mIoU. It shows that our HNL can make sufficient use of

edge and pose information to accurately locate the bound-

ary of semantics and maintain the body part geometry.

The effect of integration of multiple tasks. Aggre-

gating the feature maps from multiple tasks will increase

the channel number for fusion with parsing feature. Thus

experiments are performed to study the efficacy of it. In

Tab. 5, PBB (PKK) demonstrates the result of fusing two

edge (pose) feature maps with parsing feature along channel

dimension in HNL. PBB/PKK has the same channel num-

ber as CorrPM, while the mIoU is more than 1% lower than

it. It shows the improvements are from the integration of

multiple tasks rather than the increased channel number.

4.4. Qualitative Results

The solution of pose and edge to two problems. As

mentioned in Sec. 1, there are two problems in human pars-

ing task: inaccurate boundary localization between two ad-

jacent parts and semantics inconsistency of segmented cat-

egories. Several images and sub-relation maps are shown

in Fig. 4 to demonstrate the benefits that the proposed HNL

learns from pose and edge information. The size of rela-

tion map S mentioned in Sec. 3.3 is HW × HW . Hence,

for a certain position in the image (marked as red point in

Fig 4), the size of its corresponding sub-relation map is

H × W . As shown in the left half of Fig 4, some pixels

in right arm are wrongly predicted as left arm, while there

is no semantic boundary in this region. In the second row,
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Figure 4. Visualization results of different fusion methods. These images show the benefits of edge/pose information to parsing task. The

meaning of symbols is the same as Tab. 5.

Figure 5. Visualization of different methods on the LIP dataset.

The proposed CorrPM obtains smoother edge prediction and more

reasonable body structure results.

the appearances of the coat and bird are similar so that the

baseline model cannot tell them apart. After concatenat-

ing edge with parsing feature, the number of error pixels

reduces but the boundary is still not clear. When utiliz-

ing correlation module, all the semantic edges are rightly

predicted. Hence correlating edge with parsing factor can

solve inaccurate boundary localization problem. From the

right part of Fig. 4, the shoes region loses much detail dur-

ing downsampling process, thus is not correctly classified.

Concatenating pose with parsing feature can mitigate this

problem. After correlating with parsing feature, the model

obtains the awareness of the position of foot and shoe, hence

the shoes classes are segmented correctly. Therefore, cor-

relating pose with parsing factor can settle the semantics

inconsistency matter.

Comparison with the previous methods. We show the

quality results in Fig. 5 compared with DeepLabV2 [4],

MMAN [27]. Our model outperforms other methods and

the predictions are more precise. For example, on the first

row, the head and right arms of the person are missing in

other methods, while our model correctly predicts them de-

spite the complexity of the background. Besides, with the

help of edge information, our framework successfully lo-

cates the semantic boundary of the clothes and the legs

shown in the second row, and keeps the semantics consis-

tent among upper clothes category. We also observe from

the third row that by adding pose information, the model

can learn the global body structure of human and accurately

identifies the left and right shoes, not legs. Consequently,

the proposed HNL effectively employs the relationship of

edge, pose and parsing features, and outputs more reason-

able and precise results on the human parsing task.

5. Conclusion

In this paper, we propose a Correlation Parsing Machine

(CorrPM) to take advantage of both semantic edge and hu-

man body keypoint features. For the two problems in hu-

man parsing task, our approach utilizes semantic edge to

distinguish the boundary of two adjacent categories and hu-

man keypoint to enforce segmented classes to be consistent

with body parts. With the heterogeneous non-local (HNL)

module, the proposed model explores the relationship of

edge, pose and parsing factors, and provides the contextual

cues for human parsing task. The whole model is end-to-

end learnable. Experiments on three benchmarks demon-

strate the effectiveness of the proposed method. Moreover,

the proposed system is flexible and easy to be deployed even

without pose annotation.
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