
Deep Relational Reasoning Graph Network for Arbitrary Shape Text Detection

Shi-Xue Zhang1, Xiaobin Zhu1, Jie-Bo Hou1, Chang Liu1

Chun Yang1, Hongfa Wang4, Xu-Cheng Yin1,2,3∗

1
School of Computer and Communication Engineering, University of Science and Technology Beijing

2
Institute of Artificial Intelligence, University of Science and Technology Beijing

3
USTB-EEasyTech Joint Lab of Artificial Intelligence,

4
Tencent Technology (Shenzhen) Co. Ltd

zhangshixue111@163.com, {zhuxiaobin, chunyang, xuchengyin}@ustb.edu.cn

houjiebo@gmail.com, lasercat@gmx.us, hongfawang@tencent.com

Abstract

Arbitrary shape text detection is a challenging task due

to the high variety and complexity of scenes texts. In this pa-

per, we propose a novel unified relational reasoning graph

network for arbitrary shape text detection. In our method,

an innovative local graph bridges a text proposal model

via Convolutional Neural Network (CNN) and a deep re-

lational reasoning network via Graph Convolutional Net-

work (GCN), making our network end-to-end trainable. To

be concrete, every text instance will be divided into a se-

ries of small rectangular components, and the geometry at-

tributes (e.g., height, width, and orientation) of the small

components will be estimated by our text proposal model.

Given the geometry attributes, the local graph construc-

tion model can roughly establish linkages between differ-

ent text components. For further reasoning and deduc-

ing the likelihood of linkages between the component and

its neighbors, we adopt a graph-based network to per-

form deep relational reasoning on local graphs. Experi-

ments on public available datasets demonstrate the state-

of-the-art performance of our method. Code is available at

https://github.com/GXYM/DRRG.

1. Introduction

Scene text detection has been widely applied in various

applications, such as online education, product search, in-

stant translation, and video scene parsing [39, 26]. With

the prosperity of deep learning, text detection algorithms

[27, 42, 21, 19] have achieved impressive performance in

controlled environments where text instances have regular

shapes or aspect ratios. However, because of the limited text

representation forms, pioneer works tend to fail in detecting

texts with arbitrary shapes. Recently, some methods, e.g.,

∗Corresponding author.

Figure 1. Illustration of relational reasoning: Generating local

graphs based on the geometry attributes of text components; in-

ferring linkage likelihood via GCN; finally grouping node classi-

fication results into text.

TextSnake [17] and CRAFT [1], try to solve this problem

with the Connected Component (CC) strategy. However,

these methods haven’t fully explored the abundant relations

between text components, which can benefit the aggrega-

tion of text components for final text instance.

In the CC-based method, one essential task is to ex-

cavate the rational relations between separated charac-

ter/component regions for linking them into holistic text in-

stances. The existing methods usually use pre-defined rule,

link map or embedding map to group the detected com-

ponents into text instance. Generally speaking, grouping

the text components with learned link relationship or em-

bedding relationship is more robust than using pre-defined

rules, especially in the cases of long and curve texts. From

our key observations and experiments, deep relational rea-

soning for mining the stable relations between these com-

ponent regions can greatly enhance the performance of ar-
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bitrary shape text detection. The link or embedding based

methods [21, 28] usually uses CNNs to deduce the link-

age of separate components, but the separated components

are actually non-Euclidean data and CNNs are not good

at processing non-Euclidean data. Therefore, the simple

link map or embedding map is inadequate for learning sta-

ble relations between two non-adjacent components. The

non-Euclidean data can be represented with graph, so we

can transform the separate text components into graphs.

As shown in Fig. 1, we regard one text component as a

node. Hence, we can select a node as a pivot and connect it

with surrounding nodes into a local graph, as described in

Sec. 3.3. The context information contained in local graphs

(edges among the nodes) is informative for estimating the

linkage likelihood between pivot and other nodes. It’s a

consensus that graph network has innate advantage for de-

ducing relationships between nodes on the graph. Recently,

the GCN based methods have achieved remarkable perfor-

mance in clustering face [33] and global reasoning for var-

ious tasks [2]. Highly motivated by the works in [33, 2],

we apply a graph convolution network to perform deep rea-

soning on local graphs to deduce deep linkage likelihood

between components and corresponding neighbors for arbi-

trary shape text detection.

In this paper, we propose a novel unified deep relational

reasoning graph network for arbitrary shape text detection.

According to CTPN [27] and TextSnake [17], we divide

every text instance into text components, and propose a

text proposal network to estimate the geometry attributes of

these text components. To group the generated components,

we adopt a graph-based network to perform deep relational

reasoning and inferring the linkage relationship using the

geometry attributes of components and neighbors. In addi-

tion, a local graph is designed to bridge the text proposal

network and relational reasoning network, making our net-

work end-to-end trainable. Finally, we group the detected

text components into holistic text instances according to the

relational results.

In summary, the main contributions of this paper are

three-fold:

• We propose a novel unified end-to-end trainable

framework for arbitrary shape text detection, in which

a novel local graph bridges a CNN based text proposal

network and a GCN based relational reasoning net-

work.

• To the best of our knowledge, our work presents one of

the very first attempts to perform deep relational rea-

soning via graph convolutional network for arbitrary

shape text detection.

• The proposed method achieves the state-of-the-art per-

formance both on polygon datasets and quadrilateral

datasets.

2. Related Work

Regression-Based Methods. Methods of this type rely

on a box-regression based object detection frameworks with

word-level and line-level prior knowledge [19, 10, 11, 42].

Different with generic objects, texts are often presented in

irregular shapes with various aspect ratios. To deal with

this problem, RRD [11] adjusts anchor ratios of SSD [13]

for accommodating the aspect ratio variations in irregu-

lar shapes. Textboxes++ [10] modifies convolutional ker-

nels and anchor boxes to effectively capture various text

shapes. EAST [42] directly inferences pixel-level quadran-

gles of word candidates without anchor mechanism and pro-

posal detection. Although regression-based methods have

achieved good performance in quadrilateral text detection,

they often can’t well adapt to arbitrary shape text detection.

Segmentation-Based Methods. Methods of this type

[3, 30, 28, 34, 17] mainly draw inspiration from semantic

segmentation methods and detect texts by estimating word

bounding areas. In PixelLink [3], linkage relationships be-

tween a pixel and its neighboring pixels are predicted for

grouping pixels belonging to same instance. To effectively

distinguish adjacent text instances, PSENet [30] adopts a

progressive scale algorithm to gradually expand the pre-

defined kernels. Tian et al. [28] considered each text in-

stance as a cluster and perform pixel clustering through

an embedding map. TextField [34] adopts a deep direc-

tion field to link neighbor pixels and generate candidate

text parts. However, the performances of these methods are

strongly affected by the quality of segmentation accuracy.

CC-Based Methods. The CC-based methods usually

detect individual text parts or characters firstly, followed by

a link or group post-processing procedure for generating fi-

nal texts. CC-based methods [24, 38, 41, 37] had been

widely used in traditional scene text detection methods be-

fore the popularity of deep learning. In the era of deep learn-

ing, CC-based methods have also been extensively studied

[27, 21, 25, 1, 4]. CTPN [27] uses a modified framework of

Faster R-CNN [20] to extract horizontal text components

with a fixed-size width for easily connecting dense text

components and generating horizontal text lines. SegLink

[21] decomposes every scene text into two detectable ele-

ments, namely segment and link, where the link indicates

that a pair of adjacent segments belong to the same word.

CRAFT [1] detects the text area by exploring each character

and affinity between characters. TextDragon [4] first detects

the local area of the text, and then groups these bounding

boxes according to their geometric relations.

Relational Reasoning. CC-based methods are usually

robust for long or non-quadrilateral text, but the perfor-

mance of these methods are strongly depends on the robust-

ness of grouping or linkage results. Text pixels are clustered

by learning the linkage relationship between a pixel and its

neighboring pixels in [3] . In [28], embedding features are
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Figure 2. Overview of our overall architecture. Our network mainly consists of five components, i.e., shared convolutions, text component

prediction, local graphs, relational reasioning, and link merging.

used to provide instance information and to generate the text

area. CRAFT [1] predicts character region maps and affin-

ity maps by weakly-supervised learning. The region map

is used to localize characters, and the affinity map is used

to group characters into a single instance. These methods

are based on the CNNs, which cannot directly capture re-

lations between distant component regions for the limita-

tion of local convolutional operators. Recently, Wang et al.

[33] proposed a spectral-based GCN to solve the problem

of clustering faces, where the designed GCN can rationally

link different face instances belonging to the same person

in complex situations.

3. Proposed Method

3.1. Overview

The framework of our method is illustrated in Fig. 2. The

text component proposal network and the deep relational

reasoning graph network share convolutional features, and

the shared convolutions use the VGG-16 [23] with FPN [12]

as backbone, as shown in Fig. 3. The text proposal network

uses the shared features to estimate geometric attributes of

text components. After obtaining the geometry attributes,

the local graph can roughly establish linkages between dif-

ferent text components. Based on local graphs, the rela-

tional reasoning network will further infer the deep likeli-

hood of linkages between the component and its neighbors.

Finally, text components will be aggregated into holistic

text instance according to the reasoning results.

3.2. Text Component Prediction

In our work, each text instance is constructed by a series

of ordered rectangular components, as shown in Fig. 4 (a).

And each text component D is associated with a group of

geometry attributes, i.e., D = (x, y, h, w, cos θ, sin θ), in

which x and y are the axis of text box; h and w are the height

and the width of the component; cos θ and sin θ indicate the

Figure 3. Architecture of shared convolutions, where CR rep-

resents classification and regression operation in text component

prediction, and details are listed in Eq. 3.

orientation of the text component. The h is the sum of h1
and h2, as shown in Fig. 4 (c). The w is obtained by a linear

transformation on h, which is computed as

wi =











wmin, hi <= 2 · wmin,

hi/2, 2 · wmin < hi < 2 · wmax,

wmax, hi >= 2 · wmax,

(1)

where hi denotes the height of the i-th text component. In

experiments, we empirically set wmin = 8 and wmax = 24.

In order to define the orientation of text components

and extract the text center region (TCR) easily, we use the

method in [17] to calculate the head and tail of text re-

gion, as shown with the black arrow in Fig. 4 (a). Text

region is divided into a series of ordered quadrilateral

regions along the long side (indicated by yellow lines
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as shown in Fig. 4 (a)), so we can obtain two groups

of points P1 = {tp0, tp1, ..., tpi, ..., tpn} and P2 =
{bp0, bp1, ..., bpi, ..., bpn} . The line marked with red points

is the top line and green points is the bottom. In our ap-

proach, we need to clearly define the top and bottom of each

text instance, according to the following criterion:

p =

n∑

i=0

sin(vi), vi ∈ V, (2)

where V (V = {tp0 − bp0, ..., tpi − bpi, ..., tpn − bpn}) is

a group of vertexes (tpi is the center of the top line and bpi
is the center of the bottom line). If p >= 0, P1 is top and

P2 is bottom, else P1 is bottom and P2 is top. The angle

of vector vi indicates the orientation θ of text component.

TCR is obtained by shrinking text region (TR), as shown

in Fig. 4 (b). First, we compute the text center line, Then,

we shrink the two ends of center line by 0.5w end pixels,

making it easy for the network to separate adjacent text in-

stances and reduce the computation cost of NMS. Finally,

we expand the center line area by 0.3h. After extracting

shared features, two convolution layers are applied to pre-

dict the attributes of the text component as

CR = conv1×1(conv3×3(Fshare)), (3)

where CR ∈ ℜh×w×8, with 4 channels for the classifica-

tion logits of TR/TCR, and 4 channels for the regression

logits of h1, h2, cos θ, and sin θ. The final predictions are

obtained by softmaxing TR/TCR and regularizing cos θ and

sin θ for squaring sum equals 1 [17]. Final detection results

are produced by threshold and locality-aware NMS on the

positive samples.

Detection Loss. The text component prediction loss is

consisted of two losses, and computed as

Ldet = Lcls + Lreg, (4)

where Lreg is a smooth L1 [20] regression loss and Lcls is

a cross-entropy classification loss. The classification loss is

computed as

Lcls = Ltr + λ1Ltcrp + λ2Ltcrn, (5)

where Ltr represents the loss for TR; Ltcrp only calculates

pixels inside TR and Ltcrn just calculates the pixels out-

side TR. Ltcrn is used to suppress noise of the background

in TCR. In this way, the obtained TCR can benefit post-

processing steps. The OHEM [22] is adopted for TR loss,

in which the ratio between the negatives and positives is set

to 3:1. In our experiments, the weights λ1 and λ2 are em-

pirically set to 1.0 and 0.5, respectively.

Because the attributes of height and orientation are ab-

sent for non-TCR region, we only calculate regression loss

Figure 4. Illustration of the proposal of text component: (a) Gen-

erating text component; (b) Extracting text center region; (c) Cal-

culating geometry attributes.

for TCR region as followings:

Lreg = Lh + β(Lsin + Lcos), (6)

Lsin = smoothL1( ˆsin θ − sin θ), (7)

Lcos = smoothL1( ˆcos θ − cos θ), (8)

Lh =
1

Ω

∑

i∈Ω

(log (h+ 1)
2∑

k=0

smoothL1(
ĥki

hki
− 1)), (9)

where hki, sin θ and cos θ are ground-truth values, and ĥki,
ˆsin θ and ˆcos θ are the corresponding predicted values; the

Ω denotes the set of positive elements in TCR; the h is

the height of text component in ground truth. The weight

log (h+ 1) is beneficial for the height regression of large

scale text component. The hyper-parameter β is set to 1.0
in our work.

3.3. Local Graph Generation

We estimate the linkage likelihood between two nodes

(text components) based on their context information in a

local graph. It is inefficient to construct a whole graph for

each image because text component usually only has the

possibility of connection with its neighbors. Therefore, we

construct multiple local graphs for every image. These local

graphs generally contain a limited number of nodes, which

will make it easy making relational reasoning high efficient.

We modify IPS [33] to generate local graph, where

pivot’s neighbors up to h-hop are used as nodes. In our

work, we just use 2-hop as nodes for local graph. For clear

explanation, Vp is used to represent the nodes in local graph

Gp and p represents the pivot. The 1-hop neighbors of p
consist of 8 nearest neighbors, and the 2-hop neighbors of

p consist of 4 nearest neighbors. The high-order neighbors

provide auxiliary information of the local structure of the

context between a pivot and its neighbor [33]. Here, we
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only consider the Euclidean similarity Es between nodes

for performing KNN operation, and Es computed as

Es = 1−D(p, vi)/max(Hm,Wm), vi ∈ Vp, (10)

where D(p, vi) is an L2 distance between p and vi, Hm

is image height, and Wm is image width. To avoid gradi-

ent accumulation of easy samples caused by many identical

graphs in training, the pivot p should satisfy the following

criterion:

Giou =
Gp ∩Gq

Gp ∪Gq
< ξ, p, q ∈ T, (11)

where Gp and Gq are two local graphs; the pivot p and q
are in the same text instance T ; Gp ∩Gq is the intersection

of 1-hop neighbors of Gp and Gq; Gp ∪ Gq is the union

of 1-hop neighbors of Gp and Gq . In our experiments, ξ
is set to 0.75 . This strategy not only leads to considerable

acceleration, but also reduces the number of easy samples,

yet keep the balance of hard and easy samples.

3.4. Deep Relational Reasoning

The text components in every image will be divided into

multiple local graphs by local graph generation, which con-

sists of the pivot and its 2-hop neighbors. The rough linkage

information contained in the local graph (edges among the

nodes) is valuable for estimating the linkage likelihood be-

tween the pivot and its neighbors. For further reasoning and

deducing the likelihood of linkage between the pivot and its

neighbors, We adopt a specific graph-based neural network

[33, 8] to excavate the linkage relationships between the

pivot and its neighbors based on local graph. The graph is

usually expressed as g(X,A), and the graph convolutional

network usually takes the feature matrix X and the adja-

cency matrix A as the input of the network. Therefore, we

need to extract the feature matrix X and compute matrix A
for the local graph.

Node Feature Extraction. The node features consist of

two parts features, namely, RROI features and geometric

features. In order to obtain the RROI features, we use the

RRoI-Align layer which integrates the advantages of RoI-

Align [6] and RRoI [19] to extract the feature block of the

input text component. To ensure the convergence ability

of our model, we use the ground truth to generate the text

component in training. Text components within the same

text instance have similar geometric features. However, the

RROI features will lose some geometric attributes, such as

location information. Therefore, we should take these geo-

metric attributes into consideration during node feature gen-

eration, as shown in Fig. 5. For one text component, we

feed it with the feature maps Fn to RRoI-Align layer, and

then a 1 × 3 × 4 × Cr feature block is obtained, where Fn

is illustrated in Fig. 3. Afterwards, it will be reshaped to

1 × 12 · Cr, namely Fr. The geometric attributes of text

Figure 5. Illustration of g(X,A) generation. Fr represents the

geometry features; X is node feature matrix; A is an adjacency

matrix; g(X,A) represents the mathematical expression of local

graph. The details of embedding operation in Eq. 12 and Eq. 13.

component are embedded into high dimensional spaces ac-

cording to the technique in [29, 5]. The embedding is per-

formed by applying sine and cosine functions of varying

wavelengths to a scalar z as

ε2i(z) = cos(
z

10002i/Cε

), i ∈ (0, Cε/2− 1), (12)

ε2i+1(z) = sin(
z

10002i/Cε

), i ∈ (0, Cε/2− 1), (13)

where the dimension of the embedding vector ε(z) is Cε.

As a result, each text component is embedded into a vec-

tor Fg with 6 · Cε dimension. Finally, Fr and Fg will be

concatenated together as node features.

Node Feature Normalization. We normalize the fea-

tures of node by subtracting xp. It encodes the pivot p in-

formation into the features of a local graph and makes the

relation reasoning network easily learn the linkage relation-

ships between the pivot and its neighbors.

Fp = [..., xq − xp, ...]
T , q ∈ Vp, (14)

where xp is the feature of the pivot p; the Vp denotes the

node set on local graph and their features are {xq|q ∈ Vp}.

Adjacency Matrix Generation. We use an adjacency

matrix Ap ∈ ℜN∗N to represent the topological structure of

local graph. For a node ni ∈ Vp , we filter out the top u
nearest neighbors U(ni). For the node nj ∈ U(ni), we will

set Ap(ni, nj) = 1. The hyper-parameter u is empirically

set to 3 in our work.

Graph Convolutions. After obtaining the feature matrix

X and the adjacency matrix A, we use a graph-based rela-

tional reasoning network to estimate the linkage relation-

ships of the pivot and its neighbors based on the established

graph. We modify the structure in [33, 8], and the graph

convolution layer in our method can be formulated as

Y
(l) = σ((X(l) ⊕GX

(l))Wl), (15)

G = D̃
−1/2

ÃD̃
−1/2, (16)

where X
(l) ∈ ℜN×di ,Y(l) ∈ ℜN×do , di/do is the dimen-

sion of input / output node features and N is the number

of nodes; G is a symmetric normalized laplacian of size
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N × N ; the operator ⊕ represents matrix concatenation;

W (l) is a layer-specific trainable weight matrix; σ(·) de-

notes a non-linear activation function; Ã = A + IN is

an adjacency matrix of the local graph with added self-

connections; IN is the identity matrix and D̃ is a diago-

nal matrix with D̃ii =
∑

j Ãij . Our relational reasoning

model is the stack of one Batch Normalization layer and

four graph convolution layers activated by the ReLU func-

tion. We adopt softmax cross-entropy loss as the objective

function for optimization. Similar to [33], we only back-

propagate the gradient for nodes on the 1-hop neighbors in

training, because we just care about the linkage between a

pivot and its 1-hop neighbors. For testing, we also only con-

sider the classification on 1-hop nodes.

3.5. Inference

Given the text components, we group text components

into text instances according to the reasoning results. We

first apply thresholding to TR and TCR respectively, and

then NMS is applied to reduce redundancy. To infer the

likelihood of linkages between the pivot and its neighbors,

we loop over all text components, constructing a local graph

with each component as the pivot. Consequently, we obtain

a set of edges weighted by the linkage likelihood. Finally,

we use Breath First Search (BFS) to cluster and merge the

linkages.

After we get the clustered text components, we sort the

components for boundary generation. The text instance T
can be represented as T = {D0, ...Di, ..., Dn}. The Min-

Path algorithm is applied to search the shortest path through

all text component centers, and then we sort T by search-

ing results. For boundary generation, we just need to link

the mid-point of the ordered top and bottom in ordered text

components sequentially, as shown in Fig. 2.

4. Experiments

4.1. Datasets

Total-Text: It consists of 1, 255 training and 300 testing

complex images, including horizontal, multi-oriented, and

curved text instances with polygon and word-level annota-

tions.

CTW-1500: It consists of 1, 000 training and 500 testing

images. Every image has curved text instances, which are

all annotated by polygons with 14 vertices.

MSRA-TD500: It consists of 500 training and 200 test-

ing images, including English and Chinese scripts. This

dataset is dedicated for detecting multi-lingual long texts

of arbitrary orientations.

ICDAR2015: It consists of 1, 000 training images and

500 testing images, including many multi-orientated and

very small-scale text instances. The ground truth is anno-

tated with word-level quadrangle.

ICDAR2017: It consists of 7, 200 training images,

1, 800 validation images and 9, 000 test images with texts

in 9 languages for multi-lingual scene text detection. The

text instances are also annotated by quadrangle.

4.2. Implementation Details

The backbone of our network is the pre-trained VGG16

[23] on ImageNet [9]. The training procedure mainly in-

cludes two steps: pre-training our network on SynthText

dataset with two epochs, and fine-tuning on specific bench-

mark dataset with 600 epochs. In the pre-training stage, we

randomly crop text regions, which will be resized to 512.

The batch size is set to 12. Adam optimizer is applied to

train our model with a learning rate 10−4. In fine-tuning,

for multi-scale training, we randomly crop the text region,

and resize them to 640×640 (batch is 8), 800×800 (batch is

4), and 960 × 960 (batch is 4), respectively. In fine-tuning,

SGD optimizer is applied to train our model. The initial

learning rate is 0.01 and multiplied by 0.8 after each 100
epochs. Also, the basic data augmentation techniques like

rotations, crops, color variations, and partial flipping are ap-

plied. The hyper-parameters related to local graph are fixed

during training and testing. Experiments are performed on

single GPU (RTX-2080Ti), and PyTorch 1.2.0.

Datasets Methods R P H

Total-Text
baseline 80.06 85.45 82.67

baseline+gcn 83.11 85.94 84.50

CTW1500
baseline 80.57 83.06 81.80

baseline+ gcn 81.45 83.75 82.58

TD500
baseline 78.52 83.24 80.81

baseline+ gcn 82.30 88.05 85.08

Table 1. Ablation study for relational reasoning network. “R”, “P”

and “H” represent recall, precision and Hmean, respectively. For

“baseline”, we adopt the intersection of TR and TCL, instead of

the relationship learned by GCN, to group text patches.

4.3. Ablation Study

To verify the effectiveness of the relational reasoning

network, We conduct ablation experiments on Total-Text,

CTW1500 and MSRA-TD500. Tab. 1 shows the experi-

mental results on three datasets. For reducing the influence

of data on the experimental results, we adopt the SynthText

to pre-train model, and then we fine-tune it on Total-Text

and CTW1500. Because MSRA-TD500 consists of En-

glish and Chinese, we use ICDAR2017-MLT to pre-train

our network for MSRA-TD500. The longer sides of the

images within Total-Text, CTW1500 and MSRA-TD500

are restricted to 1, 280, 1, 024 and 640, respectively, mean-

while keeping the aspect ratio. As shown in Tab. 1, the rela-

tional reasoning network achieves improvements by 1.83%,

0.78% and 4.27% in Hmean on Total-Text, CTW1500 and
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Methods
Total-Text CTW-1500 MSRA-TD500

Recall Precision Hmean Recall Precision Hmean Recall Precision Hmean

SegLink [21] - - - - - - 70.0 86.0 77.0

MCN [15] - - - - - - 79 88 83

TextSnake [17] 74.5 82.7 78.4 85.3 67.9 75.6 73.9 83.2 78.3

LSE† [28] - - - 77.8 82.7 80.1 81.7 84.2 82.9

ATTR† [32] 76.2 80.9 78.5 - - - 82.1 85.2 83.6

MSR† [36] 73.0 85.2 78.6 79.0 84.1 81.5 76.7 87.4 81.7

CSE [16] 79.7 81.4 80.2 76.1 78.7 77.4 - - -

TextDragon [4] 75.7 85.6 80.3 82.8 84.5 83.6 - - -

TextField [34] 79.9 81.2 80.6 79.8 83.0 81.4 75.9 87.4 81.3

PSENet-1s† [30] 77.96 84.02 80.87 79.7 84.8 82.2 - - -

ICG [25] 80.9 82.1 81.5 79.8 82.8 81.3 - - -

LOMO*† [40] 79.3 87.6 83.3 76.5 85.7 80.8 - - -

CRAFT [1] 79.9 87.6 83.6 81.1 86.0 83.5 78.2 88.2 82.9

PAN † [31] 81.0 89.3 85.0 81.2 86.4 83.7 83.8 84.4 84.1

Ours 84.93 86.54 85.73 83.02 85.93 84.45 82.30 88.05 85.08

Table 2. Experimental results on Total-Text, CTW-1500 and MSRA-TD500. The symbol ∗ means the multi-scale test is performed. The

symbol † indicates the backbone network is not VGG16. The best score is highlighted in bold.

Figure 6. The representative samples with irregular labels on

CTW-1500. Up row: the results of our method. Bottom row: the

ground truth of CTW-1500.

MSRA-TD500, respectively. Remarkably, the recall of our

method with relational reasoning network has improved sig-

nificantly in all datasets (3.05% on Total-Text, 0.88% on

CTW1500, and 3.78% on MSRA-TD500). Our method

coherently improves the detection performance on MSRA-

TD500 abundant with long texts (recall 3.78%, precision

4.81%, Hmean 4.27%). The performance of our method

on CTW1500 is not remarkable, because its annotations are

sometimes confusing. The CTW1500 has no ”DO NOT

CARE”, so some small texts and Non-English texts are not

annotated, as shown in Fig. 6 1©. Moreover, the text line

annotations are confusing, as shown in Fig. 6 2© and 3©.

4.4. Comparison with the state­of­the­arts

Polygon-Type Datasets. Here, ICDAR2017-MLT is used

to pre-train our model, and fine-tuning is only conducted on

CTW1500 and Total-Text, separately. All experiments are

performed with a single image resolution.

Total-Text. This dataset mainly contains curved and

multi-oriented texts, annotated in word-level. In testing, we

resize the shortest side to 512 if it is less than 512, and keep

the longest side is not larger than 1, 280. Some visible re-

sults are listed in Fig. 7 (a) (b). From Fig. 7, we can ob-

serve that our method precisely detects word-level irregular

texts, and it is can accurately separate close text instances

of arbitrary shapes. The quantitative results are shown in

Tab. 2. The proposed method achieves 85.73% Hmean, sig-

nificantly outperforming other methods.

CTW1500. This dataset mainly contains curved and

multi-oriented texts, annotated in line-level. In testing, we

resize the shortest side to 512 if it is less than 512, and keep

the longest side is not larger than 1, 024. Some visible re-

sults are shown in Fig. 7 (c) and Fig. 6. It indicates that the

proposed method correctly detects the boundaries of arbi-

trary shape text precisely. The quantitative results are listed

in Tab. 2. Compared with the other stsate-of-the-art meth-

ods, our approach achieves promising in recall (83.02%)

and Hmean (84.45%). Specifically, our method greatly out-

performs TextSnake on CTW1500 and Total-Text, improves

Hmean by 8.85% and 6.6% respectively.

Quadrilateral-Type Datasets. For fairly comparison, we

adopt IC17 to pre-train our model, then fine-tune it on IC15

and TD500, separately. However, these datasets are eval-

uated with rectangular boxes, hence we need to convert

the detection results into rectangular boxes. Therefore, we

shrink the text instance by 0.05, and take the smallest cir-

cumscribed rectangle for evaluation.

MSRA-TD500. This dataset contains lots of long texts

and text scales vary significantly. In testing, we resize the
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(a) Total-Text (b) Total-Text (c) CTW1500 (d) MSRA-TD500

Figure 7. Experimental results of our method. Up row: each column shows the results of GCN clustering on different datasets. Bottom

row: each column shows the corresponding results of boundary generation.

Methods Recall Precision Hmean

SegLink [21] 76.8 73.1 75.0

MCN [15] 72 80 76

EAST∗ [42] 78.3 83.3 80.7

TextField [34] 80.05 84.3 82.4

TextSnake [17] 84.9 80.4 82.6

Textboxes++∗[10] 78.5 87.8 82.9

PixelLink [3] 82.0 85.5 83.7

FOTS† [14] 82.04 88.84 85.31

PSENet-1s† [30] 84.5 86.92 85.69

LSE† [28] 85.0 88.3 86.6

ATRR† [32] 83.3 90.4 86.8

CRAFT [1] 84.3 89.8 86.9

Ours 84.69 88.53 86.56

Table 3. Experimental results on ICDAR2015.

shortest side to 512 if it’s less than 512, and keep the longest

side isn’t larger than 640. Fig. 7 (d) are some representative

results. The proposed method successfully detects long text

lines of arbitrary orientations and sizes. The quantitative

comparisons with other methods on this dataset is listed in

Tab. 2. Notably, our method achieves 85.08% on Hmean,

significantly outperforms other methods.

ICDARs (IC15, IC17). Considering IC15 contains

many low resolution and many small text instances. The

instance balance [3] is applied to assist training. The IC17

contains multilingual scene text and the annotations are

given in word-level. In inference, we adjust the size of

test images appropriately. For IC15, we resize the short-

est side to 960 if it is less than 960, and keep the longest

side is not larger than 1, 960. For IC17, we resize the short-

est side to 512 if it is less than 512, and keep the longest

side is not larger than 2, 048. The quantitative results are

Methods Recall Precision Hmean

SARI FDU RRPN[19] 55.50 71.17 62.37

He et al. [7] 57.9 76.7 66.0

Border† [35] 60.6 73.9 66.6

Lyu et al. [18] 55.6 83.8 66.8

FOTS† [14] 57.51 80.95 67.25

LOMO† [40] 60.6 78.8 68.5

Ours 61.04 74.99 67.31

Table 4. Experimental results on ICDAR17 MLT.

listed in Tab. 4 and Tab. 3. Apparently, our method achieves

86.56% Hmean on IC15 and 67.31% Hmean on IC15. The

proposed method achieves competitive results against the

state-of-the-art methods.

5. Conclusion

In this paper, we propose a novel CC-based method for

arbitrary shape scene text detection. The proposed method

adopts a spectral-based graph convolution network learn

linkage relationship between the text components, and use

this information to guide post-processing to connect com-

ponents to text instances correctly. Experiments on five

benchmarks show that the proposed method not only has

good performance for arbitrary shape text detection, but

also good for oriented and multilingual text. In the future,

we are interested in developing an end-to-end text reading

system for text of arbitrary shapes with graph network.
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