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Abstract

Modelling long-range dependencies is critical for scene
understanding tasks in computer vision. Although CNNs
have excelled in many vision tasks, they are still limited in
capturing long-range structured relationships as they typ-
ically consist of layers of local kernels. A fully-connected
graph is beneficial for such modelling, however, its com-
putational overhead is prohibitive. We propose a dynamic
graph message passing network, that significantly reduces
the computational complexity compared to related works
modelling a fully-connected graph. This is achieved by adap-
tively sampling nodes in the graph, conditioned on the in-
put, for message passing. Based on the sampled nodes, we
dynamically predict node-dependent filter weights and the
affinity matrix for propagating information between them.
Using this model, we show significant improvements with
respect to strong, state-of-the-art baselines on three different
tasks and backbone architectures. Our approach also out-
performs fully-connected graphs while using substantially
fewer floating-point operations and parameters.

1. Introduction

Capturing long-range dependencies is crucial for complex
scene understanding tasks such as semantic segmentation,
instance segmentation and object detection. Although con-
volutional neural networks (CNNSs) have excelled in a wide
range of scene understanding tasks [20, 30, 15], they are still
limited by their ability to capture these long-range interac-
tions. To improve the capability of CNNs in this regard, a
recent, popular model Non-local networks [34] proposes a
generalisation of the attention model of [31] and achieves
significant advance in several computer vision tasks.

Non-local networks essentially model pairwise structured
relationships among all feature elements in a feature map
to produce the attention weights which are used for fea-
ture aggregation. Considering each feature element as a
node in a graph, Non-local networks effectively model a
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fully-connected feature graph and thus have a quadratic in-
ference complexity with respect to the number of the feature
elements. This is infeasible for dense prediction tasks on
high-resolution imagery, as commonly encountered in se-
mantic segmentation [9]. Moreover, in dense prediction
tasks, capturing relations between all pairs of pixels is usu-
ally unnecessary due to the redundant information contained
within the image (Fig. 1). Simply subsampling the feature
map to reduce the memory requirements is also suboptimal,
as such naive subsampling would result in smaller objects in
the image not being represented adequately.

Graph convolution networks (GCNs) [19, 12] — which
propagate information along graph-structured input data —
can alleviate the computational issues of non-local networks
to a certain extent. However, this stands only if local neigh-
bourhoods are considered for each node. Employing such
local-connected graphs means that the long-range contex-
tual information needed for complex vision tasks such as
segmentation and detection [29, 28, 3] will only be partially
captured. Along this direction, GraphSAGE [13] introduced
an efficient graph learning model based on graph sampling.
However, the proposed sampling method considered a uni-
form sampling strategy along the spatial dimension of the
input, and was independent of the actual input. Consequently,
the modelling capacity was restricted as it assumed a static
input graph where the neighbours for each node were fixed
and filter weights were shared among all nodes.

To address the aforementioned shortcomings, we propose
a novel dynamic graph message passing network (DGMN)
model, targeting effective and efficient deep representational
learning with joint modeling of two key dynamic properties
as illustrated in Fig. 1. Our contribution is twofold: (i) We
dynamically sample the neighbourhood of a node from the
feature graph, conditioned on the node features. Intuitively,
this learned sampling allows the network to efficiently gather
long-range context by only selecting a subset of the most
relevant nodes in the graph; (ii) Based on the nodes that
have been sampled, we further dynamically predict node-
dependant, and thus position specific, filter weights and also
the affinity matrix, which are used to propagate information
among the feature nodes via message passing. The dynamic
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(@) Fully-connected message passing

(b) Locally-connected message passing

(c) Dynamic graph message passing

Figure 1: Contextual information is crucial for complex scene understanding tasks. To recognise the “boathouse”, one needs to consider
the “boat” and the “water” next to it. Fully-connected message passing models (a) are able to obtain this information, but are prohibitively
expensive. Furthermore, they capture a lot of redundant information (i.e.“trees” and “sky”). Locally-connected models (b) are more efficient,
but miss out on important context. Our proposed approach (c), dynamically samples a small subset of relevant feature nodes based on a
learned dynamic sampling scheme, i.e. the learned position-specific random walk (indicated by the white dashed arrow lines), and also
dynamically predicts filter weights and affinities (indicated by unique edge and square colors.), which are both conditioned on the sampled

feature nodes.

weights and affinities are especially beneficial to specifically
model each sampled feature context, leading to more ef-
fective message passing. Both of these dynamic properties
are jointly optimised in a single model, and we modularise
the DGMN as a network layer for simple deployment into
existing networks.

We demonstrate the proposed model on the tasks of se-
mantic segmentation, object detection and instance segmen-
tation on the challenging Cityscapes [9] and COCO [26]
datasets. We achieve significant performance improvements
over the fully-connected Non-local model [34], while using
substantially fewer floating point operations (FLOPs). Sig-
nificantly, one variant of our model with dynamic filters and
affinities (i.e. the second dynamic property) achieves simi-
lar performance to Non-local while only using 9.4% of its
FLOPs and 25.3% of its parameters. Furthermore, “plugging’
our module into existing networks, we show considerable im-
provements with respect to strong, state-of-the-art baselines
on three different tasks and backbone architectures.

s

2. Related work

An early technique for modelling context for computer
vision tasks involved conditional random fields. In particu-
lar, the DenseCRF model [21] was popular as it modelled
interactions between all pairs of pixels in an image. Al-
though such models have been integrated into neural net-
works [43, 1, 2, 37], they are limited by the fact that the
pairwise potentials are based on simple handcrafted features,
Moreover, they mostly model discrete label spaces, and are
thus not directly applicable in the feature learning task since
feature variables are typically continuous. Coupled with the
fact that CRFs are computationally expensive, CRFs are no
longer used for most computer vision tasks.

A complementary technique for increasing the receptive

field of CNNs was to use dilated convolutions [5, 39]. With
dilated convolutions, the number of parameters does not
change, while the receptive field grows exponentially if
the dilation rate is linearly increased in successive layers.
Other modifications to the convolution operation include de-
formable convolution [10, 44], which learns the offset with
respect to a predefined grid from which to select input values.
However, the weights of the deformable convolution filters
do not depend on the selected input, and are in fact shared
across all different positions. In contrast, our dynamic sam-
pling aims to sample over the whole feature graph to obtain
a large receptive field, and the predicted affinities and the
weights for message passing are position specific and con-
ditioned on the dynamically sampled nodes. Our model is
thus able to better capture position-based semantic context to
enable more effective message passing among feature nodes.

The idea of sampling graph nodes has previously been ex-
plored in GraphSAGE [13]. Crucially, GraphSAGE simply
uniformly samples nodes. In contrast, our sampling strategy
is learned based on the node features. Specifically, we first
sample the nodes uniformly in the spatial dimension, and
then dynamically predict walks of each node conditioned
on the node features. Furthermore, GraphSAGE does not
consider our second important property, i.e. the dynamic
prediction of the affinities and the message passing kernels.

We also note that [ 1 8] developed an idea of “dynamic con-
volution”, that is predicting a dynamic convolutional filter for
each feature position. More recently, [35] further reduced
the complexity of this operation in the context of natural
language processing with lightweight grouped convolutions.
Unlike [18, 35], we present a graph-based formulation, and
jointly learn dynamic weights and dynamic affinities, which
are conditioned on an adaptively sampled neighbourhood for
each feature node in the graph using the proposed dynamic
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sampling strategy for effective message passing.

3. Dynamic graph message passing networks
3.1. Problem definition and notation

Given an input feature map interpreted as a set of feature
vectors, i.e. F = {f;}V, with f; € R*Y, where N is the
number of pixels and C is the feature dimension, our goal is
to learn a set of refined latent feature vectors H = {h;}¥ |
by utilising hidden structured information among the fea-
ture vectors at different pixel locations. H has the same
dimension as the observation F. To learn such structured
representations, we convert the feature map into a graph
domain by constructing a feature graph G = {V, €, A} with
V as its nodes, £ as its edges and A as its adjacency matrix.
Specifically, the nodes of the graph are represented by the
latent feature vectors, i.e. V = {hi}f\il and A € RV*N
is a binary or learnable matrix with self-loops describing
the connections between nodes. In this work, we propose
a novel dynamic graph message passing network [12] for
deep representation learning, which refines each graph fea-
ture node by passing messages on the graph G. Different
from existing message passing neural networks consider-
ing a fully- or locally-connected static graph [34, 12], we
propose a dynamic graph network model with two dynamic
propetties, i.e. dynamic sampling of graph nodes to approx-
imate the full graph distribution, and dynamic prediction
of node-conditioned filter weights and affinities, in order to
achieve more efficient and effective message passing.

3.2. Graph message passing neural networks for
deep representation learning

Message passing neural networks (MPNNs) [12] present
a generalised form of graph neural networks such as graph
convolution networks [19], gated graph sequential net-
works [24] and graph attention networks [32]. In order to
model structured graph data, in which latent variables are
represented as nodes on an undirected or directed graph,
feed-forward inference is performed through a message pass-
ing phase followed by a readout phase upon the graph nodes.
The message passing phase usually takes 7' iteration steps
to update feature nodes, while the readout phase is for the
final prediction e.g. graph classification with updated nodes.
In this work, we focus on the message passing phase for
learning efficient and effective feature refinement, since well-
represented features are critical in all downstream tasks. The
message passing phase consists of two steps, i.e. a message
calculation step M* and a message updating step U*. Given
a latent feature node hl(.t) at an iteration ¢, for computational
efficiency, we consider a locally connected node field with
v; C Vandv; € REXO) where K < N is the number
of sampled nodes in v;. Thus we can define the message

calculation step for node ¢ operated locally as

i 7h(;?}’Wj)

= Z Ai’jhg-t)Wj, (1)
JEN(3)

) 21t (A 00

where A; ; = A[i, j] describes the connection relationship
i.e. the affinity between latent nodes hl(.t) and h;t), N (i)

denotes a self-included neighborhood of the node hgt) which
can be derived from v; and w; € RE*¢ is a transformation

matrix for message calculation on the hidden node hg-t). The

message updating function U? then updates the node hgt)
with a linear combination of the calculated message and the
observed feature f; at the node position i as:

B = U (£,m{™) = o (£ +arm™), @
where " of a learnable parameter for scaling the message,
and the operation o (+) is a non-linearity function e.g. ReLU.

By iteratively performing message passing on each node with
T steps, we obtain a refined feature map H(™) as output.

3.3. From a fully-connected graph to a dynamic
sampled graph

A fully-connected graph typically contains many connec-
tions and parameters, which, in addition to computational
overhead, results in redundancy in the connections, and also
makes the network optimisation more difficult especially
when dealing with limited training data. Therefore, as in
Eq. 1, alocal node connection field is considered in the graph
message passing network. However, in various computer vi-
sion tasks, such as detection and segmentation, learning deep
representations capturing both local and global receptive
fields is important for the model performance [29, 28, 23].
To maintain a large receptive field while utilising much fewer
parameters than the fully-connected setting, we further ex-
plore dynamic sampling strategies in our proposed graph
message passing network. We develop a uniform sampling
scheme, which we then extend to a predicted random walk
sampling scheme, aimed at reducing the redundancy found
in a fully-connected graph. This sampling is performed in a
dynamic fashion, meaning that for a given node h;, we aim
to sample an optimal subset of v; from V' to update h; via
message passing as shown in Fig. 2.

Multiple uniform sampling for dynamic receptive fields.
Uniform sampling is a commonly used strategy for graph
node sampling [22] based on Monte-Carlo estimation. To
approximate the distribution of V), we consider a set of .S
uniform sampling rates ¢ with ¢ = {p,} 3:1’ where pq is a
sampling rate. Let us assume that the latent feature nodes
are located in a P-dimensional space R¥. For instance,
P = 2 for images considering the x- and y-axes. For each
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Figure 2: Overview of our proposed dynamic graph message passing network (DGMN). The neighbourhood used to update the feature
representation of each node (we show a single node with a red square) is predicted dynamically conditioned on each input. This is done by
first uniformly sampling (denoted by “US”) a set of S neighbourhoods around each node. Each neighbourhood contains K (e.g. 3 x 3)
sampled nodes. Here, the blue nodes were sampled with a low sampling rate, and the green ones with a high sampling rate. Walks are
predicted (conditioned on the input) from these uniformly sampled nodes, denoted by the () symbol representing the random walk sampling

operation described in Sec. 3.3. DMCy,--- ,DMCg and S, - - -

, Bs denotes S dynamic message calculation operations and S message

scaling parameters, respectively. The DMC module is detailed in Figure 3. The symbol ¢ indicates an element-wise addition operation.

latent node h;, a total of K neighbouring nodes are sampled
from R”. The receptive field of v; is thus determined by
pq and K. Note that the sampling rate p, corresponds to
the “dilation rate” often used in convolution [39] and is thus
able to capture a large receptive field whilst maintaining a
small number of connected nodes. Thus we can achieve
much lower computational overhead compared with fully-
connected message passing in which typically all N nodes
are used when one of the nodes is updated. Each node
receives S complementary messages from distinct receptive
fields for updating as

m" =3 3 547 nw! 3)

q FENG(i)

where 3, is a weighting parameter for the message from the
g-th sampling rate and ¢ = 1,--- , 5. A? denotes an adja-
cency matrix formed under a sampling rate p,, with A7 3
w and N (i) defined analogously. The uniform sampling
scheme acts as a linear sampler based on the spatial distribu-
tion while not considering the original feature distribution
of the hidden nodes, i.e. sampling independently of the node
features. Eq. 2 can still be used to update the nodes.

Learning position-specific random walks for node-
dependant adaptive sampling. To take into account the
feature data distribution when sampling nodes, we further
present a random walk strategy upon the uniform sampling.
Walks around the uniformly sampled nodes could sample the
graph in a non-linear and adaptive manner, and we believe
that it could facilitate learning better approximation of the
original feature distribution. The “random” here refers to the
fact that the walks are predicted in a data-driven fashion from
stochastic gradient descent. Given a matrix, uf € REXC
constructed from K uniformly sampled nodes under a sam-

pling rate, pg, the random walk of each node is further esti-
mated based on the feature data of the sampled nodes. Given
the P-dimensional space where the nodes distribute (P = 2
for images), let us denote Ad;’» € RP*1 as predicted walks
from a uniformly sampled node h; with j € N,(i). The
node walk prediction can then be performed using a matrix
transformation as

Adl =W ol +bl “)

where W{ ; € RF* (KX and bY ; € RP*! are the matrix
transformatlon parameters, which are learned separately for
each node v!. With the predicted Walks we can obtain a
new set of adaptlvely sampled nodes v'{, and generate the
corresponding adjacency matrix A’?, Wthh can be used to
calculate the messages as

t+1 Z Z /BqA/qu (h’ v, j, Adq)

q FENG(i)
&)
where the function o(+) is a bilinear sampler [ 7] which sam-
ples a new feature node h’ gt) around h( ) given the predicted

walk Adq and the whole set of graph vertexes V.

3.4. Joint learning of node-conditioned dynamic fil-
ters and affinities

In the message calculation formulated in Eq. 5, the set of
weights {W]q- ]K:l of the filter is shared for each adaptively
sampled node field v’ ;-1. However, since each v’ ;-1 essentially
defines a node-specific local feature context, it is more mean-
ingful to use a node-conditioned filter to learn the message
for each hidden node h’ E-t). In additional to the filters for
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Figure 3: Schematic illustration of the proposed dynamic message passing calculation (DMC) module. The small red square indicates the
receiving node whose message is calculated from its neighbourhood, i.e. the sampled K (e.g. 3 x 3) features nodes. The module accepts a
feature map as input and produces its corresponding message map. The symbol * denotes group convolution operation using the dynamically

predicted and position specific group kernels and affinities.

the message calculation in Eq. 5, the affinity A’; ; of any
pair of nodes h’ Et) and h’ ;t) could be also be predicted and
should also be conditioned on the node field v’ 3, since the
affinity reweights the message passing only in v'{. As shown
in Fig. 3, we thus use matrix transformations to simultane-
ously estimate the dynamic filter and affinity which are both
conditioned on v'?,

{wl, AT} = WEANT 4 b (6)

i,j
exp(A'} ;)
EzeNq(z‘) eXP(A/?,l) 7

where the function softmax.(-) denotes a softmax opera-
tion along the channel axis, which is used to perform a
normalisation on the estimated affinity A’ . ;€ R Wk’A

R(GEXCHDX(KXC) and kaA € R(GXC“) are matrix trans-
formation parameters. To reduce the number of the filter
parameters, we consider grouped convolutions [8] with a
set of G groups split from the total C' feature channels, and
G <« C, i.e. each group of C/G feature channels shares the
same set of filter parameters. The predicted dynamic filter
weights and the affinities are then used in Eq. 5 for dynamic
message calculation.

A"l = softmax (A’ ;) = ™

3.5. Modular instantiation

Figures 2 and 3 shows how our proposed dynamic graph
message passing network (DGMN) can be implemented in
a neural network. The proposed module accepts a single
feature map F' as input, which can be derived from any CNN
layer. H(®) denotes an initial state of the latent feature map,
H, and is initialised with F. H and F have the same di-
mension, i.e. F,H € RHXWXC where H, W and C are
the height, width and the number of feature channels of

the feature map respectively. We first define a set of S uni-
form sampling rates (we show two uniform sampling rates in
Fig. 2 for clarity). The uniform and the random walk sampler
sample the nodes from the full graph and return the node
indices for subsequent dynamic message calculation (DMC)
in Fig. 3. The matrix transformation W . ;,; to estimate the
node random walk in Eq. 4 is implemented by a 3 x 3 convo-
lution layer [10]. Note that other sampling strategies could
also be flexibly employed in our framework.

The sampled feature nodes are processed along two data
paths: one for predicting the node-dependant dynamic affini-
ties A'? € REXW>K and another path for dynamic filters
wi € REXWXKXG where K (e.g. , 3 x 3) is the kernel size
for the receiving node. The matrix transformation Wk ]A
used to jointly predict the dynamic filters and afﬁnltles in
Eq 6 is implemented by a 3 x 3 convolution layer. Mes-
sage M, € R¥>*WxC corresponding to the g-th sampling
rate is then scaled to perform a linear combination with the
observed feature map F, to produce a refined feature map
HW as output. To balance performance and efficiency, as in
existing graph-based feature learning models [34, 7, 25, 40],
we also perform 7' = 1 iteration of message updating.

3.6. Discussion

Our approach is related to deformable convolution [ 10,

] and Non-local [33], but has several key differences:

A fundamental difference to deformable convolution is
that it only learns the offset dependent on the input feature
while the filter weights are fixed for all inputs. In contrast,
our model learns the random walk, weight and affinity as
all being dependent on the input. This property makes our
weights and affinities position-specific whereas deformable
convolution shares the same weight across all convolution
positions in the feature map. Moreover, [10, 44] only con-
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sider 3 x 3 local neighbours at each convolution position.
In contrast, our model, for each position, learns to sample
a set of K nodes (where K >> 9) for message passing glob-
ally from the whole feature map. This allows our model to
capture a larger receptive field than deformable convolution.

Whilst Non-local also learns to refine deep features, it
uses a self-attention matrix to guide the message passing
between each pair of feature nodes. In contrast, our model
learns to sample graph feature nodes to capture global fea-
ture information efficiently. This dynamic sampling reduces
computational overhead, whilst still being able to improve
upon the accuracy of Non-local across multiple tasks as
shown in the next section.

4. Experiments
4.1. Experimental setup

Tasks and datasets. We evaluate our proposed model on
two challenging public benchmarks, i.e. Cityscapes [9] for
semantic segmentation, and COCO [26] for object detection
and instance segmentation. Both datasets have hidden test
sets which are evaluated on a public evaluation server. We
follow the standard protocol and evaluation metrics used
by these public benchmarks. More details can be found in
supplementary material.

Baseline models. For semantic segmentation on Cityscapes,
our baseline is Dilated-FCN [39] with a ResNet-101 back-
bone pretrained on ImageNet. A randomly initialised 3 x 3
convolution layer, together with batch normalisation and
ReLU is used after the backbone to produce a dimension-
reduced feature map of 512 channels which is then fed
into the final classifier. For the task of object detection
and instance segmentation on COCO, our baseline is Mask-
RCNN [14, 27] with FPN and ResNet/ResNeXt [15, 36] as a
backbone architecture. Unless otherwise specified, we use a
single scale and test with a single model for all experiments
without using other complementary performance boosting
“tricks”. We train models on the COCO training set and test
on the validation and test-dev sets.

Across all tasks and datasets, we consider Non-local net-
works [34] as an additional baseline. To have a direct com-
parison with the Deformable Convolution method [10, 44],
we consider two baselines: (i) “deformable message pass-
ing”, which is a variant of our model using randomly ini-
tialised deformable convolutions for message calculation,
but without using the proposed dynamic sampling and dy-
namic weights/affinities strategies, and (ii) the original de-
formable method which replaces the convolutional opera-
tions as in [10, 44].

Implementation details. For our experiments on
Cityscapes, our DGMN module is randomly initialised and
inserted between the 3 x 3 convolution layer and the final
classifier. For the experiments on COCO, we insert one

mloU (%) Params FLOPs

Dilated FCN [39] 75.0 - -

+ Deformable [44] 78.2 +1.31M  +12.34G
+ ASPP [6] 78.9 +4.42M  +38.45G
+ Non-local [34] 79.0 +2.88M  +73.33G
+ DGMN w/ DA 76.5 +0.57TM  +5.32G
+ DGMN w/ DA+DW 79.1 +0.73M  +6.88G
+ DGMN w/ DA+DW+DS 80.4 +2.61M  +24.55G

Table 1: Ablation study on the Cityscapes validation set
for semantic segmentation. All models have a ResNet-101
backbone and are evaluated at a single scale.

or multiple randomly initialised DGMN modules into the
backbone for deploying our approach for feature learning.
Our models and baselines for all of our COCO experiments
are trained with the typical “1x” training settings from the
public Mask R-CNN benchmark [27].

When predicting dynamic filter weights, we used the
grouping parameter G = 4. For our experiments on
Cityscapes, the sample rates are setto ¢ = {1, 6, 12,24, 36}.
For experiments on COCO, we use smaller sampling rates
of p = {1,4,8,12}. The effect of this hyperparameter and
additional implementation details are described in the sup-
plementary material.

4.2. Model analysis

To demonstrate the effectiveness of the proposed com-
ponents of our model, we conduct ablation studies of: (i)
DGMN w/ DA, which adds the dynamic affinity (DA) strat-
egy onto the DGMN base model; (ii)) DGMN w/ DA+DW,
which further adds the proposed dynamic weights (DW)
prediction; (iii) DGMN w/ DA+DW+DS, which is our full
model with the dynamic sampling (DS) scheme added upon
DGMN w/ DA+DW. Note that DGMN Base was described
in Sec. 3.2, DS in Sec. 3.3, and DA and DW in 3.4.
Effectiveness of the dynamic sampling strategy. Table 1
shows quantitative results of semantic segmentation on the
Cityscapes validation set. DGMN w/ DA+DW+DS clearly
outperforms DGMN w/ DA+DW on the challenging segmen-
tation task, meaning that the feature-conditioned adaptive
sampling based on learned random walks is more effective
compared to a spatial uniform sampling strategy when se-
lecting nodes. More importantly, all variants of our module
for both semantic segmentation and object detection that use
dynamic sampling (Tab. 1 and Tab. 2) achieve higher per-
formance than a fully-connected model (i.e. Non-local [34])
with substantially fewer FLOPs. This emphasises the per-
formance benefits of our dynamic graph sampling model.
Visualisations of the nodes dynamically sampled by our
model are shown in Fig. 4.

Effectiveness of joint learning the dynamic filters and
affinities. As shown in Tab. 1, DGMN w/ DA is 1.5 points
better than Dilated FCN baseline with only a slight increase
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Figure 4: Visualisation of the nodes sampled via learning the random walks with our network (trained for instance segmentation on COCO).
The red point indicates a receiving node 4. Different colour families (i.e. yellow and blue) indicate the learned position specific weights and
affinities of the sampled nodes. Different colours in the same family show the sampled nodes with different sampling rates for the same

receiving node.

AP APY, AP2 | AP™ APE APL
Mask R-CNN baseline 37.8  59.1 414 | 344 558 366
+ GCNet [4] 381 600 412 | 349 565 372
+ Deformable Message Passing| 38.7 604 424 | 350 569 374
+ Non-local [34] 39.0 61.1 419 | 355 58.0 374
+ CCNet [16] 39.3 - - 36.1 - -
+ DGMN 395 61.0 433 | 357 580 379
+ GCNet (C5) [4] 387 61.1 417 | 352 574 374
+ Deformable (C5) [44] 39.9 - - 34.9 - -
+ DGMN (C5) 402 620 434 | 360 583 382

Table 2: Quantitative results of different models on the COCO
2017 validation set for object detection (APP) and instance seg-
mentation (AP™). C5 denotes inserting DGMN after all 3 x 3
convolutional layers in res5. All methods are based on the Mask
R-CNN with ResNet-50 as backbone.
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Figure 5: Validation curves of AP** and AP™#* on COCO for
Mask-RCNN baseline, Non-local and the proposed DGMN. The

number of training epochs is 90K.

in FLOPs and parameters, showing the benefit of using
predicted dynamic affinities for reweighting the messages
in message passing. By further employing the estimated
dynamic filter weights for message calculation, the perfor-
mance increases substantially from a mloU of 76.5% to
79.1%, which is almost the same as the 79.2% of the Non-
local model [34]. Crucially, our approach only uses 9.4%
of the FLOPs and 25.3% of the parameters compared to
Non-local. These results clearly demonstrate our motivation
of jointly learning the dynamic filters and dynamic affinities
from sampled graph nodes.

Comparison with other baselines. For semantic segmenta-

tion on Cityscapes, we clearly outperform the ASPP module
of Deeplab v3 [6] which also increases the receptive field
by using multiple dilation rates. Notably, we improve upon
the most related method, Non-local [34] which models a
fully-connected graph, whilst using only 33% of the FLOPs
of [34]. This suggests that a fully-connected graph models
redundant information, and further confirms the performance
and efficiency of our model.

For fair comparison with Non-local [34] as well as
other alternatives on COCO, we insert one randomly ini-
tialised DGMN module right before the last residual block
of res4 [34] (Tab. 2). We also compare to GCNet [4] and CC-
Net [16] which both aim to reduce the complexity of the fully
connected Non-local model. Our proposed DGMN model
substantially improves upon these strong baselines and al-
ternatives. Figure 5 further shows the validation curves of
our method and different baselines using the standard APB°*
and APM®* measures for semantic and instance segmenta-
tion respectively. Our method is consistently better than the
Non-local and Mask R-CNN baselines throughout training.

Effectiveness of multiple DGMN modules. We further
show the effectiveness of our approach for representation
learning by inserting multiple of our DGMN modules into
the ResNet-50 backbone. Specifically, we add our full
DGMN module after all 3 x 3 conv layers in res5 which we
denote as “C5”. The second part of Tab. 2 shows that our
model significantly improves upon the Mask R-CNN base-
line with the improvements of 2.4 points for the APP°* on
object detection, and 1.6 points for the AP™# on instance
segmentation. Furthermore, when we insert the GCNet mod-
ule [4] in the same locations for comparison, our model
achieves better performance too. A straightforward com-
parison to the deformable method of [44] is the deformable
message passing baseline in which we disable the proposed
dynamic sampling and the dynamic weights and affinities
learning strategies. In Tab. 2, our model significantly im-
proves upon the deformable message passing method, which
is a direct evidence of the effectiveness of jointly modeling
the dynamic sampling and dynamic filters and affinities for
feature learning. Furthermore, we also consider inserting
the improved Deformable Conv method [44] in C5, which is
complementary to our model since it is plugged before 3 x 3
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DGMN (ours)

Mask R-CNN

DGMN (ours) Ground truth

Mask R-CNN DGMN (ours)

Figure 6: Qualitative examples of our results for semantic segmentation on Cityscapes (first row), and object detection and instance

segmentation on COCO (second row)

Backbone mloU (%)
PSPNet [41] ResNet 101 78.4
PSANet [42] ResNet 101 80.1
DenseASPP [38]| DenseNet 161 80.6
GloRe [7] ResNet 101 80.9
Non-local [34] ResNet 101 81.2
CCNet [16] ResNet 101 81.4
DANet [11] ResNet 101 81.5
DGMN (Ours) ResNet 101 81.6

Table 3: Comparison to state-of-the-art for semantic seg-
mentation on Cityscapes. All methods are trained with the
finely-annotated data from the training and validation sets.

Backbone | APPOX  APPS*  APRoX | Apmask  Apmpsk  Apmask
Mask R-CNN baseline 380 59.7 415 346 56.5 36.6
+DGMN (C5) ResNet 50 | 40.2 62.5 439 36.2 59.1 384
+DGMN (C4, C5) 410 63.2 4.9 36.8 59.8 391
Mask R-CNN baseline 40.2 61.9 4.0 36.2 58.6 384

ResNet 101
+DGMN (C5) 419 64.1 459 376 60.9 400
Mask R-CNN baseline[ o o\ [ 426 64.9 46.6 383 61.6 408
+DGMN (C5) 443 66.8 484 395 63.3 421

Table 4: Quantitative results via plugging our DGMN module on
different backbones on the COCO 2017 test-dev set for object
detection (APP°*) and instance segmentation (AP™2sk),

layers to replace the convolution operations. Our approach
also achieves better performance than it.

4.3. Comparison to State-of-the-art

Performance on Cityscapes test set. Table 3 compares
our approach with state-of-the-art methods on Cityscapes.
Note that all methods are trained using only the fine annota-
tions and evaluated on the public evaluation server as test-set
annotations are withheld from the public. As shown in the
table, DGMN (ours) achieves an mloU of 81.6%, surpassing
all previous works. Among competing methods, GloRe [7],
Non-local [34], CCNet [16] and DANet [11] are the most
related to us as they all based on graph neural network mod-
ules. Note that we followed common practice and employed
several complementary strategies used in semantic segmen-
tation to boost performance, including Online Hard Example
Mining (OHEM) [1 1], Multi-Grid [6] and Multi-Scale (MS)
ensembling [41]. The contribution of each strategy on the

final performance is reported in the supplementary.

Performance on COCO 2017 test set. Table 4 presents
our results on the COCO test-dev set, where we inserted
our module on multiple backbones. By inserting DGMN
into all layers of C4 and CS5, we substantially improve the
performance of Mask R-CNN, observing a gain of of 3.0 and
2.2 points on the AP”°* and the AP™# of object detection
and instance segmentation respectively. We observe similar
improvements when using the ResNet-101 or ResNeXt-101
backbones as well, showing that our proposed DGMN mod-
ule generalises to multiple backbone architectures.

Note that the Mask-RCNN baseline with ResNet-101
has 63.1M parameters and 354 GFLOPs. Our DGMN (C4,
C5) model with ResNet-50 outperforms it whilst having
only 51.1M parameters and 297.1 GFLOPs. This further
shows that the improvements from our method are due to
the model design, and not only the increased parameters and
computation. Further comparisons to the state-of-the-art are
included in the supplementary.

5. Conclusion

We proposed Dynamic Graph Message Passing Networks,
a novel graph neural network module that dynamically deter-
mines the graph structure for each input. It learns dynamic
sampling of a small set of relevant neighbours for each node,
and also predicts the weights and affinities dependant on the
feature nodes to propagate information through this sampled
neighbourhood. This formulation significantly reduces the
computational cost of static, fully-connected graphs such as
Non-local [34] which contain many redundancies. This is
demonstrated by the fact that we are able to clearly improve
upon the accuracy of Non-local, and several state-of-art base-
lines, on three complex scene understanding problems.
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