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Abstract

Recent emerged quantization technique (i.e., using low

bit-width fixed-point data instead of high bit-width floating-

point data) has been applied to inference of deep neural

networks for fast and efficient execution. However, directly

applying quantization in training can cause significant ac-

curacy loss, thus remaining an open challenge. In this pa-

per, we propose a novel training approach, which applies

a layer-wise precision-adaptive quantization in deep neural

networks. The new training approach leverages our key in-

sight that the degradation of training accuracy is attributed

to the dramatic change of data distribution. Therefore, by

keeping the data distribution stable through a layer-wise

precision-adaptive quantization, we are able to directly

train deep neural networks using low bit-width fixed-point

data and achieve guaranteed accuracy, without changing

hyper parameters. Experimental results on a wide variety of

network architectures (e.g., convolution and recurrent net-

works) and applications (e.g., image classification, object

detection, segmentation and machine translation) show that

the proposed approach can train these neural networks with

negligible accuracy losses (-1.40%∼1.3%, 0.02% on aver-

age), and speed up training by 252% on a state-of-the-art

Intel CPU.

1. Introduction

While deep neural networks have become state-of-the-

art techniques for a wide range of machine learning applica-

tions, such as image recognition [14], object detection [21],

machine translation [32, 8], the computation costs of deep

neural networks are continuously increasing, which greatly

hampers the development and deployment of deep neural
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Figure 1: AlexNet fc2 layer activation gradient distribution

(base-2 logarithm) and training convergence.

networks. For example, 10,000 GPU hours are used to per-

form neural architecture search on ImageNet [2]. Quanti-

zation is a promising technique to reduce the computation

cost of neural network training, which can replace high-cost

floating-point numbers (e.g., float32) with low-cost fixed-

point numbers (e.g., int8/int16). Recently, both the soft-

ware society [6, 12, 16, 19, 27, 35] and the hardware soci-

ety [11, 24, 23, 31] have carried out extensive researches on

quantization of deep neural network for inference tasks.

Though various investigations have demonstrated that

deep learning inference can be accurately performed

with low bit-width fixed-point numbers through quantiza-

tion [16, 17, 6, 33, 35, 35, 37], the quantified training

remains an open challenge. Some existing approaches

quantify the backward-pass to low-bit (e.g., int8) but in-

cur significant accuracy drop, for examples, 3˜7% loss for

AlexNet [38, 36]. [7] uses int16 for both forward-pass
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and backward-pass to ensure accuracy. However, there

is no guarantee that unified int16 precision works for all

the tasks and networks. Compared to efficiency, accu-

racy is the primary pursuit in most practical training-from-

scratch scenarios, so activation gradients in back prop-

agation are still kept as float32 for most quantification

work [16, 17, 6, 35, 39, 37]. Our aim is to study the corre-

lation between training accuracy and calculation bit-width

(efficiency) in back-propagation.

Most previous investigations on quantified training use

unified precision (i.e., bit-width) for all network layers. In-

tuitively, using mixed precisions for different layers will

promote the network performance. However, it is hard to

find the most appropriate precisions for so many layers in

so many training iterations. Considering a widely used

ResNet50 model, with 4 candidate quantization bit-widths

(e.g., 8, 16, 24, 32 for weights, activations and activation

gradients), the size of quantization precision combination

search space for 450,000 training iterations can achieve

43∗50∗450,000.

To avoid prohibitively long space searching of quanti-

zation bit-width combinations, we propose an efficient and

adaptive technique to determine the bit-width layer by layer

separately, which is based on our observation about the re-

lationship between the layer-wise bit-width and the training

convergence. Take AlexNet as an example, Figure. 1(a-c)

depicts the distributions of activation gradients on AlexNet

last layer when quantified with different bit-widths. Com-

pared with the original float32, int8 introduces a significant

change in data distribution, int12 introduces slightly change

of data mean, and int16 shows almost the same distribution

with float32. Figure. 1(d) depicts the corresponding train-

ing loss, which shows int8 quantization does not converge

at beginning, int12 convergences slower than float32 and

int16 behaves similar as float32. The above experimental

results suggest if a quantization resolution does not change

the data distribution of a layer (e.g., int16 for the last layer

of AlexNet), quantified training with this resolution for the

corresponding layer will almost keep the training accuracy.

Based on the above observation, one can train large-

scale deep neural network using fixed-point numbers, with

no change of hyper parameters and no accuracy degrada-

tion. For each layer in training, our approach automati-

cally finds the best quantization resolution (i.e., the small-

est bit-width which does not significantly change the data

mean) for weights, activations and activation gradients re-

spectively. Concretely, we first calculate the mean of the

data before quantization. Then, we quantify the data us-

ing int8 and calculate the quantization error. If the ratio of

quantization error exceeds a threshold (e.g., 3%), the quan-

tization bit-width is increased. The above process is looped

until the quantization error ratio is below the threshold.

We evaluate our approach on a wide variety of network

architectures (e.g. convolution and recurrent networks)

and applications (e.g. image classification, object detec-

tion, segmentation and machine translation). Our approach

quantifies all weights and activations to int8. On aver-

age, 12.56%, 87.43% and 0.07% of activation gradients are

quantified to int8, int16, and int24 respectively. Experimen-

tal results show that the proposed adaptive fixed-point train-

ing approach can achieve comparable accuracy with float32

for training from scratch. The accuracy loss is only 0.02%

on average (-1.40%∼1.3%). Results on Intel Xeon Gold

6154 shows that the proposed approach can achieve 2.52

times speedup over float32 training for AlexNet.

We highlight three major contributions of the proposed

adaptive fixed-point training:

1. Flexibility: The quantization precisions for different

layers of different networks are automatically adapted

to guarantee the network accuracy.

2. Efficiency: We quantify both the backward-pass and

forward-pass with fixed-point numbers in training,

which can accelerate training on real hardware. Af-

ter training, int8 weights can be directly deployed, so

no further quantification is needed.

3. Generalization: Evaluations on various networks and

applications demonstrate the proposed adaptive fixed-

point training is effective and practical.

2. Related Works

Using reduced precision for deep learning has been

an active research topic. Prior efforts explore floating-

points(e.g., 8-bit and 16-bit) for training [34, 22] and main-

tain accuracy on a spectrum of deep learning models and

datasets. However, as floating-point is more resource-

intensive than fixed-point, the deployments always rely on

quantization techniques.

There are recent attempts quantifying weight and acti-

vation on different layers with different bit-widths. For the

inference of a trained network, there are some techniques

that heuristically search the space of quantization bit-width

combinations [35, 33, 37]. However, these inference tech-

niques only need to consider single iteration, whose search

space is much smaller than training. Hence, they are unsuit-

able for training. For training, there are some differentiable

quantization methods [4, 30, 37], introducing extra calcu-

lations to learn the quantization parameters (e.g., quantiza-

tion resolution, range and bit-width) with gradient descent.

However, the quantization parameters for backward propa-

gation are hard to learn using differentiable methods. [26]

quantifies the backward propagation. Different from their

method, which assigns layer-wise bit-width before train-

ing, our approach dynamically changes the bit-width during

training and we evaluate on widely used networks.
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(a) Activation gradient distribution.
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(c) Training curve of AlexNet.

Figure 2: Observations on AlexNet.

Researchers have shown that 16-bit is sufficient for

back propagation in most vision training tasks [7]. How-

ever, further quantization to 8-bit results in severe degrada-

tion [38, 38, 36, 7, 1]. WAGE [36] claims that first and last

layers require higher precision. TBP [1] shows weight gra-

dient computation (WTGRAD) needs more bits than gradi-

ent back propagation (BPROP).

Our approach is different from others in three as-

pects. First, fixed-point is used in both forward-pass and

backward-pass for training. Second, the quantization pa-

rameters for different layers are dynamically adapted to

guarantee the accuracy. Lastly, we train a variety of vision

and natural language processing applications on large scale

dataset.

3. Observation

The key of fixed-point training is to find proper quanti-

zation parameters that ensure the training accuracy. There-

fore, we study the relationship between the ever-changing

data distribution of different layers and the training conver-

gence.

Observation 1. Data distribution varies greatly be-

tween layers. Figure. 2a depicts the distributions of activa-

tion gradients of different layers on AlexNet. The majority

of activation gradients concentrate in areas close to zero,

and have long tail distributions. Compared to convolution

layers, the fully connected layers have larger variances. Fig-

ure. 2b shows the base-2 logarithm of max absolute value of

activation gradients on AlexNet, the max value on bottom

layers (e.g., conv0, conv1, conv2) is smaller than the max

value on upper layers(e.g., fc0, fc1, fc2). Intuitively, for

those layers whose range of data is wide and distribution is

centralized, higher quantization resolutions are demanded.

Observation 2. Data range of each layer changes dur-

ing training. Figure. 2b shows the max absolute value of

activation gradient evolution during training. At the early

stage of training (less than 10,000 iterations, as shown on

the left side of the red line), the data range changes rapidly,

and after one or two epochs, the data range tends to be sta-

ble. This phenomenon suggests that when training from

scratch, the quantization range should also be changed fre-

quently within the initial epochs .

Observation 3. Data with large variance requires

large bit-width. Figure. 2c shows the convergence curves

using different bit-width of different layers. Float32 is the

training convergence curve of using float32 for all the con-

volution and fully connected layers. After 5,000,000 itera-

tions, the network’s top1 accuracy on ImageNet is 58.00%.

Then, we quantify the activation gradients of conv1 to int8

and keep other layers float32. The training curve of conv1-

int8 is the same as float32 and the final top1 accuracy is

58.01%. However, when we quantify the activation gradi-

ents of fc2 to int8 and keep other layers float32 unchanged,

the training convergence speed is significantly slower than

float32, and within the first 5,000 iterations the training does

not converge. The final top1 accuracy of fc2-int8 is only

48.27%. When quantifying the activation gradients of fc2

to int12, the training convergence speed is faster than int8

but still slower than float32. The final top1 accuracy of fc2-

int12 is only 50.30%. Using int16 for the activation gradi-

ents of fc2, finally the training curve is the same as float32

with 58.28% top1 accuracy. In conclusion, int8 is enough

to quantify the activation gradient of conv2, however, fc2

requires int16 to maintain the training accuracy. Together

with the observation1, we find that data with large variance

requires large bit-width, thus the quantization parameters

should be dynamically determined by the data distribution.

According to network initialization principle [10, 13], all

network parameters are initialized as Gaussian distribution

with variance relating to the hyper-parameters of layers.

Similar network initialization principle and similar SGD

learning algorithm ensure that various network architectures

should have similar observations.(More observations are in

Appendix C.)
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Figure 3: Adaptive fixed-point training for one iteration one

layer. The green nodes and blocks indicate fixed-point data

and calculations. Only 0.01%∼2% of the iterations activate

the QEM and QPA components.

4. Adaptive Fixed-Point Training

In this section, we introduce the adaptive fixed-point

training approach as shown in Figure. 3. In training,

the main three computing units of single iteration include

forward-pass (FPROP), backward-pass for gradient prop-

agation (BPROP) and backward-pass for weight gradient

computation (WTGRAD). The inputs of these three units

include weight Wl, activation Xl and top layers’ activation

gradient ∆Xl+1 of linear layer l. In adaptive fixed-point

training, we quantify these three inputs to fixed-point num-

bers1. The quantification parameters, such as bit-width n
and quantization resolution r are automatically determined

by the proposed Quantization Error Measurement (QEM)

and Quantification Parameter Adjustment (QPA) .

In the following part of this section, we will introduce

two main components QEM and QPA of our training ap-

proach. Algorithm. 1 describes the entire adaptive fixed-

point training algorithm. The output of QEM (denoted as

Diff ) serves as an explicit indicator for insufficiency of

quantization resolution according to data distribution. QPA

performs quantization parameter update and determines up-

date frequency (denoted as Itv) according to the output of

QEM.

4.1. Quantization Error Measurement

Based on the observation 1 and observation 3, we pro-

pose to adjust quantization parameters according to data

distribution. The difference of mean before and after quan-

tization is a good quantization error measurement, which

indicates the change of data distribution and suggests the

need for adjusting quantization resolution.

Intuitively, as shown in Figure. 4, the orange line and

blue line represent two different data distributions. The

quantization resolution is shown as the distance between

a and b, and the data in between is quantified to a. Us-

ing certain quantization parameters (reflected by quantiza-

tion resolution in figure), the distribution difference can be

reflected by the difference of shadow areas. Specifically,

1The quantification method is described in Appendix B

Algorithm 1 Adaptive fixed-point training. Data such as

weights Wl, activations Xl and top layers’ activation gra-

dients ∆Xl+1 of the linear layer l are quantified to fixed-

point numbers with different bit-widths n and quantization

resolution r. The output Diff of QEM indicates the in-

sufficiency of quantization resolution, and the output Itv of

QPA determines quantization parameter update frequency.

Initial all update iter = 1
while i < max iterations do

//Forward Propagation

while l in layers do

if i == update iterwl
then

Diff = QEM(Wl)
Itv,nwl

,rwl
=QPA(Wl, Diff)

update iterwl
= i+ Itv

end if

Ŵl=Quantifiy(Wl, nwl
, rwl

)

if i == update iterxl
then

Diff = QEM(Xl)
Itv,nxl

,rxl
=QPA(Xl, Diff)

update iterxl
= i+ Itv

end if

X̂l=Quantifiy(Xl, nxl
, rxl

)

Forward:Xl+1 = X̂l ∗ Ŵl//FPROP

end while

//Backward Propagation

while l in layers do

if i == update iter∆xl+1
then

Diff = QEM(∆Xl+1)
Itv,n∆xl+1

,r∆xl+1
=QPA(∆Xl+1, Diff)

update iter∆xl+1
= i+ Itv

end if
ˆ∆Xl+1=Quantifiy(∆Xl+1, n∆xl+1

, r∆xl+1
)

Backward:∆Xl = ˆ∆Xl+1 ∗ ŴT

l
//BPROP

Backward: ∆Wl = X̂T

l
∗

ˆ∆Xl+1 //WTGRAD

//Weight Update

Wl = Wl + f(∆Wl)
end while

end while

the shadow area S1 is approximately equal to S2 for orange

distribution, but S3 is much larger than S4 for blue distribu-

tion, which means far more amount of data is quantified to

a under the blue distribution. Therefore, for blue one, the

mean value after quantization m
d̂

is much smaller than the

original mean value md. As the distance between a and b
reduces, the area difference between S3 and S4 will also be

reduced. Therefore, the difference of mean value before and

after quantization reflects the connection between quantiza-

tion resolution and data distribution.

Mathematically, assuming that the data is under Gaus-

sian distribution P (x) ∼ G(0, σ), and data x ∈ Rp is

quantified to x̂. Considering the positive x, the mean be-

tween [a, b] is mx =
∫

b

a
P (x)xdx

∫
b

a
P (x)dx

, and after quantification the
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Figure 4: Data distribution and quantization resolution.

mean is mx̂ =
a
∫

c

a
P (x)dx+b

∫
b

c
P (x)dx

∫
b

a
P (x)dx

. The difference of

mean before and after quantization is represented as mx

mx̂
=

∫
b

a
P (x)xdx

a
∫

c

a
P (x)dx+b

∫
b

c
P (x)dx

. There is no elementary indefinite

integral for Gaussian function, so we resort to numerical

integration algorithms. We use P (x) = kx + o to approx-

imate the local value between [a, b] with b < − o
k
, k < 0,

and assign C = 1
4k(a+ b)2 + o(a+b)

2 , then we have:

mx

mx̂

= 1 +
1/24

C
(b−a)2(−k) − 1/8

(1)

It is demonstrated that mx

mx̂
> 1 and C > 0 (see Appendix

A for details), so we have mx

mx̂
∝ (b − a)2 ∗ (−k). When

decreasing b−a or increasing k, the difference of mean will

be reduced. Therefore, the difference of mean serves as an

explicit indicator for adjusting quantization resolution (rep-

resented by b−a) according to data distribution (represented

by σ ∝ (−k)).
Equation. 2 is used in determining quantization parame-

ters during training.

Diff = log2(|
mx −mx̂

mx

|+ 1)

= log2(|

∑p

i |xi| −
∑p

i |x̂i|∑p

i |xi|
|+ 1)

(2)

Diff is applied in training to adjust quantization resolu-

tion according to data distribution. Larger Diff indicates

the distribution has higher variance σ, so it is needed to de-

crease quantization resolution r.

4.2. Quantification Parameter Adjustment

According to observation 2, we propose to automatically

determine the quantization parameter based on the data evo-

lution. Under the circumstance of fixed-point representa-

tion, the quantization variables include data range, quanti-

zation resolution r and bit-width n. These three variables

are inter-dependent, as Range ≈ r × 2n. Therefore, we

use only two of them as quantization parameters (i.e., r and

n). The parameter adjustment process is triggered by insuf-

ficient quantization resolution and dramatic change of data

range.

For insufficient quantization resolution, we use Diff as

indicator. When Diff exceeds certain threshold Tdata, the

quantization resolution is reduced by increasing bit-width,

as nnew ← nold + n′ ,where n′ = 8 is the bit-width

growth step. We can either set the initial nold = 8 and

recursively adjust bit-width until proper nnew (denoted as

Mode1), or we can set the initial nold as the previous itera-

tion’s proper bit-width (denoted as Mode2). The quantiza-

tion resolution is adjusted according to the new bit-width n

as r = 2
ceil(log2(

Range

2n−1
−1

))
, where Range is the max abso-

lute value of data to be quantified.

For the change of data range, we propose another indica-

tor R for iteration i as:

Ri = α×Range+ (1− α)×Ri−1 (3)

where Ri is the moving average of data Range during sev-

eral iterations.

The quantization parameter adjustment interval Itv is

automatically determined by both Diff and R. In ini-

tialization phase (one-tenth of the first epoch), Itv is set

to 1. After initialization phase, the adjustment interval is

Itv = β
max(I1,I2)

− γ, as I1 = δ × Diff2 and I2 =

|Ri −Ri−1|. As shown in experiment, Itv increases during

training. Within Itv iterations, the quantization parameters

are kept the same, so there is no need to calculate Diff and

max absolute value of the data.

5. Experiment

We first evaluate the quantization error measurement,

and show the computational complexity introduced by

adaptive fixed-point. Then, we evaluate the proposed adap-

tive fixed-point training on a wide variety of deep learning

tasks including image classification, object detection, seg-

mentation and machine translation to demonstrate our ob-

servation and approach are widely applicable . At last, we

show the training acceleration on existing hardware.

5.1. Evaluation of Error Measurement

We use Pearson correlation coefficient in Equation. 4 to

show the correlation between network accuracy a and quan-

tization error metric M .

R2 =
(
∑

(M − M̄)(a− ā))2
∑

(M − M̄)2
∑

(a− ā)2
(4)

The evaluated quantization error metrics including the pro-

posed M1 =
|
∑

i
|xi|−

∑
i
|x̂i||∑

i
|xi|

and several variants: M2 =
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∑
i
|xi−x̂i|∑
i
|xi|

, M3 =
∑

i
|xi−x̂i|
|xi|

, M4 =
∑

j Pj log(
Pj

Qj
). M2

is similar as in [27, 39]. M4 is the Kullback-Leibler diver-

gence, with Pj and Qj are the discrete probability distri-

butions of original data and data after quantization. Specifi-

cally, we quantify each single layer of MobileNet-v2 and do

the forward propagation to get the corresponding network

accuracy. The quantization is done with different bit-width

(i.e., 6, 8), so various degrees of quantization error and the

corresponding network accuracy are generated.

Figure. 5 shows the linear correlation between network

accuracy and several error metrics. Our proposed quanti-

zation error measurement M1 has the highest correlation

score (0.84 for MobileNet and 0.85 for ResNet50 in Ap-

pendix D) with the network-level accuracy, which means

the proposed error measurement can serve as a reasonable

layer-wise accuracy indicator. MobileNet, as light-weight

network, is relatively hard to quantified, so it can exhibit

the most noticeable difference between different evaluation

metrics M1, M2, M3 and M4.

5.2. Computational Complexity

We evaluate the extra computations introduced by adap-

tive fixed-point quantification. The extra computations re-

fer to calculations in QEM, QPA and data quantification,

denoted as forward quantification and backward quan-

tification in Figure. 6 and Figure. 7. These two figures

show the operation percentages and running time for differ-

ent networks2. For light-weight network MobileNet, the ex-

tra computation is relatively large. For other networks, the

extra computation is within 1%. The speed of our method

is 1.7x to 2.8x of float32 speed on GPU.

During training, the adjustment frequency is calculated

as Adj Iter
Iter

, where Adj Iter is the number of iteration that

performs QEM and QPA, and Iter is the total number of

executed training iterations. As shown in Figure. 8a, at the

initial epochs, the adjustment frequency is near 100%. As

2https://github.com/tensorflow/models/tree/master/research/slim

the training progresses, the adjustment frequency is dramat-

ically decreasing to 0.1% at end.

Figure. 8b shows the percentage of activation gradients

quantified to int8 during training on VGG16. Mode1 allows

the bit-width both to increase and to decrease in the train-

ing, while Mode2 only allows the bit-width to increase. In

Mode1, on average 39.6% layers are kept int8 (final top1

accuracy: 70.2%). In Mode2. on average 18.8% of layers

are kept int8 (final top1 accuracy: 70.6%).

17.46% 24.78% 24.48% 21.53%
0.03%

0.14% 1.38% 0.03%

82.42% 74.61% 70.05% 78.31%
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Figure 6: Operation percentage of forward and backward

quantization for different models.
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Table 1: Classification, object detection and segmentation.

For all the networks, 100% weights and and 100% activa-

tions are quantified to int8.

Classification float32 Adaptive Activation Gradient

Network Acc Acc int8 int16

AlexNet 58.0 58.22 22.5% 77.5%

VGG16 71.0 70.6 31.3% 68.7%

Inception BN 73.0 72.8 4.5% 95.5%

ResNet50 76.4 76.2 0.8% 99.2%

ResNet152 78.8 78.2 1.7% 98.3%

MobileNet v2 71.8 70.5 0.7% 99.2%

SSD Detection float32 Adaptive Activation Gradient

Network mAP mAP int8 int16

COCO VGG 43.1 42.4 31.4% 68.6%

VOC VGG 77.3 77.2 34.3% 65.7%

IMG Res101 44.1 44.4 28.6% 71.4%

Segmentation float32 Adaptive Activation Gradient

Network meanIoU meanIoU int8 int16

deeplab-v1 70.1 69.9 1.0% 99.0%

5.3. Accuracy Results

Our proposed Adaptive Fixed-Point Training approach

uses all the same hyper-parameters (e.g., learning rate, max

training iterations and etc.) as the original float32 training

settings. For all the tasks, we fix the initial bit-width to

int8 3, with α = 0.04, β = 0.1, δ = 100, γ = 2, Tdata =
0.03, and Mode2 is used in QPA.

5.3.1 Computer Vision

We train several convolution neural networks with Ima-

geNet datasets using Tensorflow framework4. The net-

works include AlexNet [18], VGG [28], Inception BN [29],

ResNet [14] and MobileNet v2 [27]5. We train SSD ob-

ject detection networks [21]6 with VOC dataset [9], COCO

dataset [20] and Imagnet Detection dataset (IMG) [25] upon

two backbone networks VGG and ResNet101. We train

deeplab [3]7 segmentation network on VOC dataset. For

classification task, Top1 Accuracy (Acc) is used as evalua-

tion metric. For object detection task, Mean Average Preci-

sion (mAP) is used as evaluation metric. For segmentation

task, Mean Intersection over Union (meanIoU) is used as

evaluation metric.

As shown in Table. 1, Adaptive Fixed-Point Training

generates similar results as float32 baseline. The accuracy

drop on MobileNet-v2 is consistent with the quantization

results in Google’s work (Acc:70.8) [16]. However, using

3Appendix E shows results of adaptive lower bit-width (i.e., int4) for

these forward-pass.
4https://github.com/tensorpack/tensorpack/tree/master/examples/
5https://github.com/tensorflow/models/tree/master/research/slim
6https://github.com/weiliu89/caffe/tree/ssd
7https://github.com/msracver/Deformable-ConvNets
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Figure 9: Machine translation.

our adaptive precision fixed-point training, int8 weights can

be directly deployed and no further quantified fine-tuning is

needed. The proposed QEM and QPA automatically change

the bit-width used for different layers. During the whole

training, the percentages of different bit-width in quantiza-

tion are shown in Table. 18. For backward activation gra-

dient, int16 is needed for most layers and networks, but for

some layers of AlexNet and SSD, int8 is enough.

The use of same hyper-parameters in training indicates

that Adaptive Fixed-Point Training has the same conver-

gence speed as float32 training.(More loss curves are shown

in Appendix F.)

5.3.2 Machine Translation

We train two widely used machine translation models from

scratch with Adam optimizer. The first Sockeye [15]

is a sequence-to-sequence RNN model implemented with

MXNet [5]9, and trained on the WMT’17 news translation

dataset (50k sentence pairs). The word vocabularies contain

50K entries for English and German. The second is Trans-

former [32]10, utilizing self-attention mechanism. This net-

work is trained on the WMT’16 Multi30k dataset (3.9k sen-

tence pairs). Word-level accuracy and perplexity (PPL) are

used as evaluation metrics.

Training curve of Sockeye is shown in Figure. 9a. Adap-

tive Fixed-Point Training is compared with float32 baseline

and an int16 method, which employs int16 to quantified all

the layers of activation gradients without bit-width adap-

tion. At the end of Adaptive Fixed-Point Training, 0.8%

layers of activation gradients are quantified to int24, 10%

layers are int8, and others are int16. As shown in Figure. 9a,

the int16 method gradually results in 2% loss of accuracy,

while our Adaptive Fixed-Point generates the same accu-

racy (62.05%) as float 32 baseline (61.97%). This compar-

ison shows the proposed bit-width adaption is necessary to

8This is the results of Mode2, as Mode2 generates slightly better results

than Mode1, as shown in Figure. 8(b).
9https://github.com/awslabs/sockeye

10https://github.com/jadore801120/attention-is-all-you-need-pytorch
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Table 2: Comparison of network quantization methods.

Methods Backward Bit-width Adaptive Training Accuracy Degradation

Cited (WTGRAD/BPROP) Bit-width from Scratch CNN RNN

[34] float8, float16 no yes < 1%(ResNet50) n/a

[22] float16 no yes < 1%(ResNet50) < 1% (Translation)

[16] float32 no no 1.5% (ResNet50) n/a

[17] float32 no no < 1%(ResNet18) n/a

[6] float32 no yes < 1%(ResNet50) n/a

[35] float32 yes no < 1%(ResNet18) n/a

[39] float32 yes no < 1%(ResNet50) n/a

[37] float32 yes yes < 1%(ResNet50) n/a

[38] int8, float32 no yes 2.9%(AlexNet) n/a

[36] int8 no yes 4%(AlexNet) n/a

[1] int16, float32 no yes < 1%(ResNet50) n/a

[7] int16 no yes < 1%(ResNet50) 2% (Translation)

Adaptive Fixed-Point int8∼16 (CNN) int8∼24 (RNN) yes yes < 1%(ResNet50) < 1% (Translation)

guarantee training accuracy and reduces the total bit-width

in computation.

The training convergence curve of Transformer is shown

in Figure. 9b. We report the accuracy and PPL on validation

set. Adaptive Fixed-Point (Acc: 55.54%) is slightly better

than float32 (Acc: 54.13%). On average 2.28% of iterations

trigger quantization parameter adjustment.

5.3.3 Comparison to Others

Table. 2 shows the comparison to other quantization work.

We estimate the speeds of previous methods with a simple

rule widely used in [38, 7]: Int16/float16 and int8/float8

operations are 2x and 4x faster than float32 operations

respectively. Fig.10 compares the speeds and accuracies

of quantization methods with low bit-width back propaga-

tion [34, 22, 38, 36, 1, 7] . It shows that our method remark-

ably outperforms the pareto front of previous methods. Re-

garding accuracy, our method has the best accuracy among

all quantization methods, and is the only method having

similar accuracies with float32 across all networks; regard-

ing speed, our method is at least 21% faster than the most

accurate quantization method [7](whose VGG16 accuracy

is lower than ours for > 2%).

[34]

[22]

[38] [36]

[1]
[7]

float32

ours

AlexNet

[34]

[22]

[7]
float32

ours

ResNet50

[22]

[7]

float32

ours

VGG16

Figure 10: Accuracy (vertical axis) and estimated speed ra-

tio against float32 (horizontal axis) on ImageNet.

.

Table 3: Layer-wise training speedup of AlexNet

conv0 conv1 conv2 conv3 conv4

CPU Forward 2.03 3.89 6.2 4.44 4.28

CPU Backward 1.91 1.71 1.78 2.21 2.07

fc0 fc1 fc2 Overall

CPU Forward 4.09 6.42 4.41 3.98

CPU Backward 4.41 4.97 2.03 2.07

6. Training Acceleration

Intel Xeon Gold 6154 supports vector int8/int16 op-

erations with AXV2 instruction set. Table. 3 shows the

speedup of our method compared with float32 in training.

Specifically, we use 100 iterations’ average acceleration ra-

tio of each layer in forward-pass and backward-pass for

AlexNet with 256 batch size11. Our approach can achieve

2.52 times speedup over float32 training on CPU.

7. Conclusion and Future Work

With the novel training scheme presented in this paper,

AI processors no longer need to equip expensive floating-

point hardware units to support deep learning training tasks.

Instead, lightweight fixed-point hardware units, which con-

sumes much smaller chip area and power, have been suffi-

cient for training. Therefore, given the same budget of chip

area/power, training performance of an AI processor could

be made much higher than before, which is definitely a good

news for chip designers and users. Recent chip products

of Cambricon, including MLU220, MLU270 and the up-

coming MLU290, can efficiently support the adaptive fixed-

point training scheme proposed in this paper.

11Xeon Gold 6154 can only support multiplication between equal bit-

width fixed-point numbers, so in this experiment int16 × int8 is imple-

mented as int16 × int16.
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