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Abstract

One-Shot Neural Architecture Search (NAS) significantly

improves the computational efficiency through weight shar-

ing. However, this approach also introduces multi-model

forgetting during the supernet training (architecture search

phase), where the performance of previous architectures de-

grades when sequentially training new architectures with

partially-shared weights. To overcome such catastrophic

forgetting, the state-of-the-art method assumes that the

shared weights are optimal when jointly optimizing a poste-

rior probability. However, this strict assumption is not nec-

essarily held for One-Shot NAS in practice. In this paper,

we formulate the supernet training in the One-Shot NAS as a

constrained optimization problem of continual learning that

the learning of current architecture should not degrade the

performance of previous architectures. We propose a Nov-

elty Search based Architecture Selection (NSAS) loss func-

tion and demonstrate that the posterior probability could

be calculated without the strict assumption when maximiz-

ing the diversity of the selected constraints. A greedy nov-

elty search method is devised to find the most representative

subset to regularize the supernet training. We apply our

proposed approach to two One-Shot NAS baselines, ran-

dom sampling NAS (RandomNAS) and gradient-based sam-

pling NAS (GDAS). Extensive experiments demonstrate that

our method enhances the predictive ability of the supernet

in One-Shot NAS and achieves remarkable performance on

CIFAR-10, CIFAR-100, and PTB with efficiency.

1. Introduction

One-Shot Neural Architecture Search (NAS) recently at-

tracts massive interests in automating neural network ar-

chitecture design, since it can not only find state-of-the-

art architectures but also significantly reduce the search

hours through weight sharing. Early NAS methods adopt
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a nested approach to train numerous separate architectures

from scratch and utilize an Evolutionary Algorithm (EA)

or Reinforcement Learning (RL) to find the most promis-

ing architectures based on validation accuracy [12, 38, 29],

which are highly computational-expensive and impossi-

ble for most machine learning practitioners. Several ap-

proaches were proposed to address this efficiency concern

[3, 6, 34]. In particular, weight sharing, also called One-

Shot NAS [4, 28], is a promising direction. One-Shot NAS

defines the search space as a supernet which subsuming

all candidate architectures, and the candidate architectures

are evaluated through inheriting weights from the supernet.

Rather than training numerous separate architectures from

scratch, One-Shot NAS trains the supernet just once, thus it

significantly cuts down the search cost.

One-Shot NAS relies on a critical assumption that the

validation accuracy of architecture with inherited weights

should approximate to the test accuracy after retraining or

be highly predictive. Although Bender et al. [4] observed a

strong correlation between the validation accuracy and the

test accuracy when the supernet was trained through ran-

dom path dropout, Sciuto et al. [30] obtained contradict re-

sults when the weights of a single path (one architecture)

in the supernet were trained in each step in ENAS. This

single-path training method is also the most common strat-

egy adopted by state-of-the-art One-Shot NAS approaches

[10, 19, 13, 7] and also the scenario considered in this paper.

Adam et al. [1] showed that the RNN controller in One-Shot

NAS does not depend on past sampled architectures, which

makes its performance the same as random search. Simi-

larly, Singh et al. [31] found that there is no visible progress

in terms of the retrained performance for architectures gen-

erated by the controller during the architecture search phase

in ENAS, and architectures with more shared weights usu-

ally perform worse based on the trained supernet in ENAS.

Benyahia et al. [5] defined this phenomenon as multi-

model forgetting, which occurs when training multiple mod-

els with partially-shared weights for a single task. Suppose

we are given a large supernet containing multiple models

7809



0 20 40 60 80 100
Supernet Training Epoch

30

40

50

60

70

80

90

100

Va
lid

at
ion

 A
CC

GDAS 

Arch1
Arch2
Arch3
Arch4
Arch1-R
Arch2-R
Arch3-R
Arch4-R

40 60 80 100
40

60

80

Figure 1: Validation accuracy for 4 different architectures

during the supernet training for RandomNAS [19] and

GDAS [11]. The solid lines (“Arch”) are validation accu-

racy by inheriting weights from the supernet, and the dash

lines (“Arch-R”) are validation accuracy after retraining.

(architectures) with shared weights across them, and these

models are sequentially trained on a single task, then the

model with more shared weights dropped more accuracy

when training another model [5, 30]. The multi-model for-

getting problem is also illustrated in Fig.1, where the valida-

tion accuracy of four different architectures through inher-

iting weights during the supernet training is shown. It could

be observed that weight sharing presents massive fluctua-

tion in validation accuracy. Worse still, the performance of

architectures by inheriting weights gets worse during the su-

pernet training, which makes the architecture ranking based

on the supernet unreliable. Apparently, although weight

sharing reduces the computational hours greatly, it also in-

troduces the multi-model forgetting in the supernet training,

which will deteriorate the predictive ability of the supernet.

To overcome the multi-model forgetting in One-Shot

NAS and enhance the predictive ability of the supernet, we

formulate the supernet training as a constrained optimiza-

tion problem of continual learning, which avoids the per-

formance degradation of previous architectures when train-

ing a new architecture. Different from available works that

only consider the performance degradation of one last ar-

chitecture [5], or keep the shared parameters fixed [21], this

paper tries to find the most representative subset of previous

architectures to regularize the learning of current architec-

ture during the supernet training. We develop an efficient

greedy novelty search method for the constraints selection

with diversity maximization, and implement our approach

within two baselines, RandomNAS [19] and GDAS [11].

Experimental results demonstrates that our algorithm re-

duces the multi-model forgetting in their supernet training

significantly. Our contributions are summarized as follows.

• Firstly, we formulate the supernet training in the One-

Shot NAS as a constrained optimization problem of

continual learning, where the learning of current archi-

tecture should not degrade the performance of previous

architectures with partially-shared weights.

• Secondly, we devise an efficient greedy novelty search

method to select the most representative constraints

subset to approximate the feasible region formed by

all previous architectures.

• Thirdly, the proposed approach is applied to two One-

Shot NAS baselines, RandomNAS [19] and GDAS

[11], to reduce the multi-model forgetting in their su-

pernet training. Extensive experimental results illus-

trate the effectiveness of our method, which could re-

duce the multi-model forgetting and enhance the pre-

dictive ability of the supernet.

2. Background

2.1. Weight sharing Neural Architecture Search

One-Shot NAS is proposed by [28], which reduces the

search time greatly through weight sharing. Different from

training numerous separate architectures, One-shot NAS

encodes the search space A as a supernet WA, and the can-

didate neural architectures α directly inherit weights from

the supernet as WA(α). Since the One-Shot NAS only the

supernet once in the architecture search phase, so it could

greatly reduce the search time. One-Shot NAS searches for

the most promising architecture α∗ based the validation per-

formance with inheriting weights from the supernet:

min
α∈A

Lval(W
∗
A(α))

s.t. W∗
A(α) = argmin Ltrain(WA(α))

(1)

Eq. (1) is more than a challenging bilevel optimiza-

tion problem, and the discrete characteristic of architecture

space also makes it impossible to utilize a gradient-based

method to solve it directly, where ENAS [28] uses an LSTM

controller to sample architectures. Differently, [13] and [19]

train the supernet based on the uniform sampling strategy to

sample architectures, and a random search or an evolution-

ary method is adopted to find the best-performed architec-

ture from the trained supernet.

Several state-of-the-art One-Shot methods utilize contin-

uous relaxation to transform the discrete architecture into

continuous space Aθ with parameters θ to further improve

the efficiency [23, 11, 33, 26]. The supernet weights and

architecture parameters could be jointly optimized through:

(α∗
θ,WAθ

(α∗
θ)) = argmin

αθ,W

Ltrain(WAθ
(α∗

θ)) (2)

which makes it possible to apply continuous optimizing ap-

proaches on architecture search, and the best architecture

α∗ could be sampled from continuous architecture repre-

sentation α∗
θ .

Since Eq.(2) is supposed to train the whole supernet in

each step, which has a much higher memory requirement
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than ENAS, GDAS [11] further introduces a gradient-based

sampler to sample single path (an architecture) in each step

during the supernet training. The distribution of architec-

tures and the supernet weight can be jointly optimized while

the memory requirement equals to training a single archi-

tecture. Different from continuous relaxation, NAO [24]

utilizes the LSTM based autoencoder to transform the dis-

crete neural architectures to a continuous representations,

and then perform a gradient-based method in the continu-

ous space.

2.2. Multi-model Forgetting in One-Shot NAS

Catastrophic Forgetting is a common phenomenon in ar-

tificial general intelligence and multi-task learning, which

describes that the mode usually loses the information about

previous tasks after being trained on a new task [14, 18, 27].

Given a model with optimal parameters θ∗A on dataset

DA, its performance on DA declines dramatically after this

model being trained on another dataset DB . Methods to re-

solve such issues are defined as continual learning. Learn-

ing without forgetting (LwF) [22] adds the response of the

old task as a regularization term to prevent catastrophic

forgetting. Elastic weight consolidation (EWC) [17] pro-

poses to maximize the likelihood of conditional probability

p(θ | D), where D containing two independent data sets

DA and DB , and DA is not available when trained on DB .

Multi-model Forgetting presents when we train multiple

models in a single dataset. Different from sequentially

training a model on several tasks, One-Shot NAS is sup-

posed to apply different models, e.g., θa = (θpa, θ
s) and

θb = (θpb , θ
s), to a single dataset D, where θs is the shared

weight and θpa and θpb are private weights. Wang et al. [32]

showed that the single-modal network always outperformed

the multi-modal network when training them in a single

task, and the interactions between networks degraded the

performance of the whole network. It is also observed in

[30] and [20] that the catastrophic forgetting in the One-

Shot NAS would deteriorate the performance of previous ar-

chitectures after training a new architecture in the supernet.

Benyahia et al. [5] defined it as the problem of multi-model

forgetting and proposed a Weight Plasticity Loss (WPL) to

reduce this forgetting in One-Shot NAS, which tries to max-

imize the posterior probability p(θpa, θ
p
b , θ

s | D) as:

p(θ | D) =
p(θpa, θ

p
b , θ

s,D)

p(D)
=

p(θpa | θpb , θ
s,D)p(θpb , θ

s,D)

p(D)

=
p(θpa, θ

s | D)p(D | θpb , θ
s)p(θpb , θ

s)

p(θs,D)

=
p(θpa, θ

s | D)p(D | θpb , θ
s)p(θpb , θ

s)∫
p(D | θpa, θs)p(θ

p
a, θs)dθ

p
a

=
p(θa | D)p(D | θb)p(θb)∫
p(D | θpa, θs)p(θ

p
a, θs)dθ

p
a

(3)

The loss function to maximize the likelihood of

p(θpa, θ
p
b , θ

s | D) is calculated as:

LWPL(θb) = Lc(θb) +
η

2
(‖θpb‖

2
+ ‖θs‖2) +

∑

θsi∈θs

ε

2
Fθsi

(θsi − θ∗si) (4)

where Lc is the cross-entropy loss function, Fθsi
is the diag-

onal element of the Fisher information matrix correspond-

ing to parameter θsi , and is estimated by presupposing pa-

rameters (θpa, θ
p
b ) are independent, and θ∗s are the shared pa-

rameters θs after the previous model being trained which

are assumed as in the optimal points. Detailed deviation of

Eq.(4) could be found in [5].

Limitations Weight Plasticity Loss (WPL) considers

only one previous architecture in each step of supernet train-

ing, and it assumes the shared weights are optimal. How-

ever, the two assumptions are hard to hold in the supernet

training of One-Shot NAS, since there are numerous archi-

tectures containing shared weights with current architecture

and the shared weights are usually far away from optimal

points. To handle these concerns, we formulate the super-

net training in One-Shot NAS as a constrained optimization

problem, where the learning of current architecture should

not degrade the performance of previously visited architec-

tures. We consider a subset of previous architectures as

constraints to regularize the learning of current architecture,

and demonstrate that the loss function of the posterior prob-

ability p(θpa, θ
p
b , θ

s | D) could be calculated without the as-

sumption that the shared weights are optimal when maxi-

mizing the diversity of the selected architectures.

3. Methodology

3.1. Problem Formulation

One-Shot NAS sequentially trains numerous architec-

tures and each of them is trained with few epochs. It in-

dicates that the model weights θa for previous architectures

are far away from optimal points, and the model weights

of the current architecture are usually shared by previous

architectures. Different from jointly optimizing the poste-

rior probability as WPL [5] under the assumption that θa is

near-optimal or keeping the shared weights fixed as Learn

to Grow [21], we formulate the supernet training in the One-

Shot NAS as a constrained optimization problem. In partic-

ular, we enforce the architectures inheriting weights from

the supernet in current step perform better than last step

with smaller training loss. Without loss of generality, we

consider the typical scenario that only one architecture in

the supernet is trained in each step, and the constrained op-

timization problem is defined as:

Wt
A = argmin

θ∈WA(αt)

Ltrain(WA(α
t))

s.t. Ltrain(W
t
A(α

i)) ≤ Ltrain(W
t−1
A

(αi)); ∀i ∈ {0...t− 1}
(5)

where αt is the current architecture in step t, Wt
A represents

the whole weights of the supernet in in step t, and WA(α
t)
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Algorithm 1 Greedy Novelty Search

Input: constraints archive M, recent architectures archive

C, selected architecture αm, n.

1: N(αm,M) ← calculate the novelty score of αm in M
based on Eq.(7);

2: for i = 1, 2, ..., n do

3: randomly sample an architecture αr from C;

4: if N(αr,M) > N(αm,M) then

5: replace αm with αr;

6: end if

7: end for

is the weights of architecture αt inherited from the supernet,

and only WA(α
t) is optimized in each step t.

3.2. Constraints Selection based on Novelty Search

The constraints in Eq.(5) prevent the learning of current

architecture degrading the performance of previous archi-

tectures to overcome the multi-model forgetting in One-

Shot NAS. However, the number of constraints in Eq.(5)

increases linearly with the step, which makes it intractable

to consider all constraints in the optimization. In practice,

we try to select a subset with M constraints from previous

architectures that the feasible region formed by the subset

is as close to the original feasible region as possible. Intu-

itively, maximizing the diversity of the subset is an efficient

way to find the most representative samples from the previ-

ous architectures. Based on this observation and motivated

by [2], we propose a surrogate for constraint selection:

maximizeM

∑

αi,αj∈M

dis(αi, αj)

s.t. M ⊂ {α1...αt−1}; |M| = M

(6)

where dis(αi, αj) is to calculate the distance between ar-

chitectures. Solving Eq.(6) is an NP problem, while we

could use an alternative heuristic method to achieve the

same goal [2]. In this paper, we proposed a greedy nov-

elty search method to maximize the diversity of the subset.

Before the archive is full, we add all newcome architectures

into the subset. Once it is full, we choose the one that is

most similar to the current architecture to be replaced with

the one that maximizes the novelty score of the archive. We

adopt a simple and standard method to measure the novelty

of architectures, defined as N(α,M), which calculates the

mean distance of its k-nearest neighbors in M from it:

N(α,M) =
1

|S|

∑

αj∈S

dis(α, αj)

S = kNN(α,M) = {α1, α2, ..., αk}

(7)

In this paper, we only measure the difference of input edges

for each node in an architecture, since the order of nodes is

Private param of current arch
NSAS: based on 

Shared param with const 1

Private param of const 1

Shared param with const 2
Private param of const 1
Shared param of const 1

Shared param of const 1

Low error for current arch
Low error for const 1
Low error for  const 2

Figure 2: NSAS loss function ensures that the learning of

current architecture will not deteriorate the performance of

previous architectures in the constraint subset.

fixed. We consider the input edges of the same node for two

architectures are the same only when the two edges have

same input node and same operations.

Practically, we select M constraint architectures from |C|
recent architectures rather than all previous architectures.

After obtaining M most representative constraints, we need

to force the learning of the current architecture to be op-

timized in the feasible region formed by these constraints,

and a common approach is to convert the constraints to a

soft regularization loss or apply a replay buffer [2]. Algo-

rithm 1 describes a simple implementation of our greedy

novelty search method.

3.3. Novelty Search based Architecture Selection
Loss Function

It is intractable to consider all previously visited archi-

tectures in each step of supernet training, and we select a

subset of constraints {α1, ..., αM} with diversity maximiza-

tion to regularize the supernet training. The weights of these

architectures in the subset are described as {θ1, ..., θM}.

The loss function for the constrained optimization problem

in Eq. (5) could be described as Eq.(8) when the selected

constraints are converted to a soft regularization loss:

LN (WA(α
t)) = Lc(WA(α

t)) + λR(WA(α
t))

+β
∑

i=1:M

Lc(WA(α
i)) + λR(WA(α

i)) (8)

where Ltrain(WA(α)) = Lc(WA(α)) + λR(WA(α)), Lc

is the cross-entropy loss function, R is the ℓ2 regularization

term, β and λ are trade-offs. Here we term LN (WA(α
t)) as

Novelty Search based Architecture Selection (NSAS) loss

function. While learning current architecture αt, NSAS

protects the performance of those architectures in the con-

straint subset by keeping these shared parameters staying

in a region of low error for these constraints, as shown

schematically in Fig. 2.
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From Weight Plasticity Loss (WPL) to NSAS. WPL [5]

regularizes the learning of current architecture by maxi-

mizing the posterior probability p(θpa, θ
p
b , θ

s | D), where

θa = {θpa, θ
s} is the weights of the last architecture, θb =

{θpb , θ
s} is the weights of current architecture, and θs is

their shared weights. Different from WPL which only con-

siders one previous architecture, we consider a subset of

previously visited architectures that θa = {θ1, ..., θM} =
{(θp1 , θ

s
1), ..., (θ

p
M , θsM )}, where θpi is the private weights,

and θsi is the shared weights with the current architecture.

When we maximize the diversity of the subset, the follow-

ing two assumptions should hold true: (1) The architectures

in this subset should cover all operations in the search space;

(2) There are no shared weights between these architectures.

Therefore, θpb = ∅ as all weights in the current architecture

are shared by previous architectures, and θi and θj should

be independent as we train different architecture indepen-

dently. Now the posterior probability is written as:

p(θ | D) =
p(θp1 ...θ

p
M , θs1...θ

s
M ,D)

p(D)
=

p(θ1...θM ,D)

p(D)

=
p(θ1 | θ2...θM ,D)p(θ2...θM ,D)

p(D)

=
∏

i=1:M

p(θi | D) ∝
∏

i=1:M

p(D | θi)p(θi)

= p(θ)
∏

i=1:M

p(D | θi) = p(θt)
∏

i=1:M

p(D | θi)

(9)

where θi is the weights of architecture αi in constraints. As

only architecture αt is trained, p(θ) = p(θt), where θt is

the weights of the current architecture αt and θ is the all

considered weights. Eq.(9) obtains the posterior probability

without the assumption that θs in the previous step is op-

timal. Now the Weight Plasticity Loss could be calculated

without the assumption that the shared weights are optimal

when considering a subset of previously visited architec-

tures with diversity maximization as:

LWPL(WA(α
t)) = ǫR(WA(α

t)) +
∑

i=1:M

Lc(WA(αi)) (10)

where ǫ is also the trade-off. And the proposed NSAS loss

function could be also described with the Weight Plasticity

Loss in Eq.(10) as:

LN (WA(α
t)) = Lc(WA(α

t)) + λR(WA(α
t))

+ β
∑

i=1:M

Lc(WA(α
i)) + λR(WA(α

i))

= Lc(WA(α
t)) + βLWPL(WA(α

t))

(11)

From Eq.(11), we can find that our proposed loss func-

tion is attempted to not only optimize the WPL but also op-

timize the learning of current architecture (also the shared

weights). That is because the shared weights are usually far

from the optimal point in One-Shot NAS, and we should not

only overcome the forgetting, but also optimize the shared

weights towards the optimal point.

Algorithm 2 One-Shot NAS-NSAS

Input: Dtrain, Dval, W , constraints archive M = ∅, M ,

batch size b, supernet training iteration T

for t = 1, 2, ..., (T ∗ size(Dtrain)/b) do

2: if size(M) < M then

sample αt based on gradient search or random

search, and update the weights WA(α) by normal

loss function, and add architecture α into M;

4: else

sample αt based on gradient search or random

search, select the architecture αm that is most

similar to αt from M, and replace αm with αr

to maximize the diversity of M based on Algo-

rithm 1. Update the weights WA(α) by our pro-

posed loss function in Eq.(8) or a replay buffer;

6: end if

end for

8: Obtain α∗ based on Eq.(1) (RandomNAS-NASA) or

Eq.(2) (GDAS-NASA).

3.4. One-Shot NAS with Novelty Search based Ar-
chitecture Selection

Our loss function is applied to two popular One-Shot

NAS: RandomNAS [19] and GDAS [11]. Same as the

most common weight sharing NAS, we only train a sin-

gle path in each step in the architecture search phase. It

is easy to incorporate our proposed loss function to ran-

dom sampling based NAS (RandomNAS) as it also trains

a single path in each step. However, most gradient-based

NAS methods, like DARTS [23] and SNAS [33], train the

whole supernet in each step during the supernet training,

which violates the assumption in this paper. In this paper,

we adopt GDAS [11] as the gradient-based sampling NAS

baseline, which utilizes the Gumbel-Max trick [15, 25, 33]

to relax the discrete architecture distribution to be contin-

uous and differentiable. The argmax function is applied

to the re-parameterized architecture distribution, to sample

an architecture in each step of the supernet training during

the forward pass. The softmax function is adopted during

the backward pass for architecture learning. Algorithm 2

presents the One-Shot NAS with our proposed NSAS loss

function, termed as One-Shot NAS-NSAS.

4. Experiments and Results

To evaluate the effectiveness of our proposed algorithm,

we apply our method to both RandomNAS [19] and GDAS

[11] on datasets CIFAR-10, CIFAR-100, and Penn Tree-

bank (PTB). All experimental designs are following the set-

tings in [19, 23] for a fair comparison. Our new meth-

ods are denoted as RandomNAS-NSAS and GDAS-NSAS.

We compare our methods with the state-of-the-art One-Shot
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Method
Test Error (%) Parameters Search Cost Memory Supernet

CIFAR-10 CIFAR-100 (M) (GPU Days) Consumption Optimization

NAO-WS [24] 3.53 - 2.5 - Single path Gradient

ENAS [28] 2.89 18.91† [11] 4.6 0.5 Single path RL

SNAS [33] 2.85±0.02 20.09* 2.8 1.5 Whole Supernet Gradient

PARSEC [8] 2.86±0.06 - 3.6 0.6 Single path Gradient

BayesNAS [37] 2.81±0.04 - 3.40 0.2 Whole Supernet Gradient

RENAS [9] 2.88±0.02 - 3.5 6 - RL&EA

MdeNAS [36] 2.40 - 4.06 0.16 Single path MDL

MdeNAS* [36] 2.87* 17.61* 3.78* 0.16 Single path MDL

DSO-NAS [35] 2.84±0.07 - 3.0 1 Whole Superne Gradient

WPL [5] 3.81 - - - Single path RL

Random baseline [23] 3.29±0.15 - 3.2 4 - Random

DARTS (1st) [23] 2.94 - 2.9 1.5 Whole Supernet Gradient

DARTS (2nd) [23] 2.76±0.09 17.54 †[11] 3.4 4 Whole Supernet Gradient

RandomNAS [19] 2.85±0.08 17.63* 4.3* 2.7 Single path Random

RandomNAS-NSAS 2.64(2.50) 17.56(16.85) 3.08 0.7 Single path Random

GDAS [11] 2.93 18.38 3.4 0.21 Single path Gradient

GDAS-NSAS 2.73 18.02 3.54 0.4 Single path Gradient

Table 1: Test errors on CIFAR-10, compared with state-of-the-art NAS approaches. “*” indicates the results reproduced

based on the best reported cell structures with the same experimental setting as ours. “†” indicates the results are reported

in the [11]. We do not reproduce those methods with “-” in CIFAR-100 experiment since they are with different search

spaces or do not report their best structures. All models are trained with 600 epochs, and we also train our best found model

(RandomNAS-NSAS) with more epochs (1000 training epochs) to get the state-of-the-art results. The best models obtained

by all One-Shot NAS methods are trained with cutout.

NAS methods and evaluate the supernet predictive ability of

our approach compared with baselines.

4.1. Architecture Search for Convolutional Cells

We conduct comparative experiments for convolutional

neural architecture search on CIFAR-10. The search space

and hyperparameters setting are following the settings in

[23, 19] for a fair comparison. This search space searches

for micro-cell structures, which are stacked in series to form

the final structure. In the supernet training (architecture

search) stage, we only stack 8 cells to build the supernet

with 16 initial channels and 64 batch size. After supernet

training and obtaining the promising cells, we stack 20 cells

to form the final architecture, and train it with 96 batch size.

The comparison results are demonstrated in Table 1, which

can be summarized as follows:

• Compared with RandomNAS and GDAS which both

employ normal cross-entropy loss function, our pro-

posed NSAS loss function could greatly enhance the

search results, where RandomNAS obtains 5.6% im-

provement and 4.8% improvement for GDAS. These

results also demonstrate that the effectiveness of the

proposed loss function, which could relieve the rank

disorder incurred by weight sharing and improve the

supernet predictive ability.

• Compared with other NAS methods, our

RandomNAS-NSAS achieves a competitive re-

sult with a 2.64% test error on CIFAR-10, and a

2.50% test error with 1000 training epochs. This is an

inspiring result to validate our design to overcoming

multi-model forgetting.

• Since the proposed method needs to evaluate more ar-

chitectures during the supernet training, it has a little

bit higher search cost than the baselines. However, the

proposed method is still very efficient that the super-

net training only costs 0.7 GPU day for RandomNAS-

NSAS and 0.4 GPU day for GDAS-NSAS. We fur-

ther transfer the found architecture on CIFAR-10 to

CIFAR-100 to evaluate its transferability.

The architecture evaluation setting on CIFAR-100 is the

same as CIFAR-10, and all results are reported in Table 1.

We also increase the number of initial filters to 50 (and the

parameters increase to 5.8 M) before transfer our best found

structure to CIFAR-100 to enhance its performance, and we

could observe that our network achieves state-of-the-art re-

sults (a test error of 16.85%) among all compared methods.
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Method
Perplexity Paras Search

Valid Test (M) Cost

ENAS* [19] 60.8 58.6 24 0.5

NAO-WS [24] - 56.6 27 0.4

WPL [5] - 61.9 - -

Random baseline [23] 61.8 59.4 23 2

DARTS (1st) [23] 60.2 57.6 23 0.5

DARTS (2nd) [23] 58.8 56.6 23 1

DARTS (2nd)* [23] 59.21* 56.71* 23 1

RandomNAS [19] 57.8 55.5 23 0.25

RandomNAS* [19] 59.7* 57.16* 23 0.25

RandomNAS-NSAS 59.22 56.84 23 0.62

GDAS [11] 59.8 57.5 23 0.4

GDAS* [11] 60.23* 57.69* 23 0.4

GDAS-NSAS 59.74 57.24 23 0.50

Table 2: Comparison results with One-Shot NAS methods

on PTB. “*” indicates the results reproduced with the same

experimental setting as ours.

4.2. Architecture Search for Recurrent Cells

We also conduct experiments for the RNN cell structure

search on the PTB dataset, and the search space and hy-

perparameters setting are following settings in [19, 23] for

fair comparison. In the RNN supernet training, the hidden

and the embedding sizes are set as 300, and the supernet is

trained for 300 epochs with batch size 128. After supernet

training and obtaining the promising cells, we change the

hidden and the embedding sizes to 850, and train the net-

work for 3600 epochs with 64 batch size. The comparison

results on PTB with other baselines are presented in Table

2. The model discovered by our Random-NSAS achieves a

validation perplexity of 59.22 and a test perplexity of 56.84,

which is on par with the state-of-the-art approaches. A fur-

ther observation on our proposed loss function shows the

effectiveness of our NSAS loss function when it is applied

to two baselines. RandomNAS-NSAS and GDAS-NSAS

both surpass the original baselines with normal loss func-

tion. These results again show that the NSAS loss function

could enhance the supernet predictive ability, as evidenced

by the fact that our RandomNAS-NSA and GDAS-NSAS

both beat the two baselines with the normal loss function.

4.3. Supernet Predictive Ability Comparison

Multi-model Forgetting in One-Shot NAS To demon-

strate catastrophic forgetting in neural architecture search,

we conduct experiments on convolutional cell search to

present the differences between weight sharing and retrain-

ing based architecture ranking for two baselines, Random-

NAS and GDAS. We tracked the validation accuracy of

Figure 3: Kendall Tau metric (τ ) of architecture ranking

based on weight sharing and retraining .

inheriting weights for several fixed sampled architectures

with 8 stacked cells, and also plot the validation accuracy

for 100 epochs when retraining these separate architectures

from scratch in Figure 1. We could observe that architec-

tures directly inherit weights from the supernet present mas-

sive fluctuation in their validation accuracy, which makes

it hard to identify the quality of architecture according to

this accuracy. What is worse, the architecture ranking re-

sults completely violate the primary hypothesis in weight

sharing NAS that architectures with higher validation per-

formance based on weight sharing should achieve better re-

training performance. It should be noticed from Fig. 1 (b)

that, the performance of architectures by inheriting weights

even gets worse during the supernet training in GDAS.

Supernet Predictive Ability Comparison To verify the

effectiveness of our approach in relieving the rank disorder

in weight sharing neural architecture search, we incorporate

our proposed loss function into the RandomNAS and GDAS

frameworks, and conduct more experiments on the archi-

tecture ranking prediction. The validation accuracy through

inheriting supernet weights is usually different from retrain-

ing, while it should at least be highly predictive, especially

for those architectures with excellent performance. We

sample 4 excellent architectures in 4 rounds based on Ran-

domNAS and RandomNAS-NSAS, respectively. We indi-

vidually train these 12 architectures from scratch (4 from

RandomNAS, 4 from RandomNAS-NSAS, and 4 randomly

sampled in the previous experiment), and calculate the cor-

relation of architecture ranking between the validation ac-

curacy through weight sharing and retraining. Figure 3

presents the Kendall Tau (τ ) metric [16, 36] of architec-

ture ranking based on weight sharing and retraining during

the supernet training, which depicts the rank difference of

normal cross-entropy loss function and our proposed loss

function. Figure 4 (a) gives the final Kendall Tau (τ ) met-

ric values for RandomNAS and GDAS with different loss

functions after supernet training. It could be observed that

the normal loss function presents poor supernet predictive

ability, which obtains τ = 0.0909 and τ = −0.1818 for
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(a) Architectures ranking difference af-

ter supernet training

(b) Retraining validation accuracy

Figure 4: (a) Architectures ranking difference between

the retraining and inheriting weights from trained supernet

for RandomNAS, RandomNAS-NSAS, GDAS, and GDAS-

NSAS, respectively. (b) The mean retraining validation ac-

curacy for architectures obtained through different methods.

RandomNAS and GDAS, respectively. Although the super-

net trained by NSAS is not able to obtain the precisely iden-

tical architecture rank, our proposed loss function achieves

a positive correlation with much better Kendall Tau metric

(τ = 0.4242 and τ = 0.3030 for RandomNAS-NSAS and

GDAS-NSAS, respectively). A supernet with better predic-

tive ability tends to obtain architectures with better retrain-

ing performance, and Fig.4 (b) plots the mean retraining

validation accuracy of sampled architectures through dif-

ferent methods. We could find that RandomNAS-NSAS

achieves better results than normal RandomNAS, which fur-

ther verifies the effectiveness of our proposed method.

4.4. Discussion

We conduct a series of architecture search experiments

with two One-Shot baselines, and RandomNAS tends to

achieve better performance than GDAS (in both the nor-

mal and the proposed loss function). One underlying reason

may be the gradient-based methods usually obtain the local

optimal solution once the supernet is trained, while Ran-

domNAS further conducts the model selection (using ran-

dom search or EA) to find the global optimal solution from

the trained supernet. Since RandomNAS needs to evaluate

numerous architectures base on the trained supernet, it usu-

ally has a higher search cost than GDAS.

Fig. 5 visualizes the best-found cells by the proposed

approach for CNN and RNN models, and the codes and

trained models could be found here 1. After revisiting the

experimental results in previous subsections, it is clear that

the proposed loss function could greatly enhance the pre-

dictive ability of the supernet, which greatly improves the

performance of the found architectures for two NAS base-

lines, RandomNAS and GDAS. The supernet training in

1https://github.com/MiaoZhang0525/NSAS FOR CVPR.
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Figure 5: The best cells discovered on CIFAR-10 and PTB.

One-Shot NAS is definitely a multi-task problem, and de-

vising a more appropriate loss function rather than using

the normal one is a promising direction to improve the per-

formance of One-Shot NAS methods.

5. Conclusion and Future Works

This paper originally formulates the supernet training

as a constrained optimization problem to relieve the multi-

model forgetting in One-Shot neural architecture search. A

greedy novelty search method is adopted to select a rep-

resentative subset of constraints to regularize the supernet

training in the feasible region, and a Novelty Search based

Architecture Selection (NSAS) loss function is accordingly

devised to overcome the multi-model forgetting. We incor-

porate the proposed loss function into two One-Shot NAS

baselines. Experimental results on the neural architecture

search show the effectiveness of the proposed method. In

particular, our method improves supernet predictive abil-

ity and achieves excellent results in both convolutional cell

search and recurrent cell search. In the future work, we will

focus on searching on a latent space through transforming

the discrete architectures into continuous representations,

and also leveraging human knowledge on DNN design to

search for architectures with better transferable ability.
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