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Abstract

Weakly supervised object localization (WSOL) aims to

localize objects with only image-level labels. Previous

methods often try to utilize feature maps and classification

weights to localize objects using image level annotations

indirectly. In this paper, we demonstrate that weakly super-

vised object localization should be divided into two parts:

the class-agnostic object localization and the object classi-

fication. For class-agnostic object localization, we should

use class-agnostic methods to generate noisy pseudo anno-

tations and then perform bounding box regression on them

without class labels. We propose the pseudo supervised

object localization (PSOL) method as a new way to solve

WSOL. Our PSOL models have good transferability across

different datasets without fine-tuning. With the generated

pseudo bounding boxes, we achieve 58.00% localization ac-

curacy on ImageNet and 74.97% localization accuracy on

CUB-200, which have a large edge over previous models.

1. Introduction

Deep convolutional neural networks have achieved enor-

mous success in various computer vision tasks, such as

classification, localization and detection. However, current

deep learning models need a large number of accurate an-

notations, including image-level labels, location-level la-

bels (bounding boxes and key points) and pixel-level la-

bels (per pixel class labels for semantic segmentation).

Many large-scale datasets are proposed to solve this prob-

lem [15, 10, 3]. However, models pre-trained on these large-

scale datasets cannot be directly applied to a different task

due to the differences between source and target domains.

To relax these restrictions, weakly supervised methods

are proposed. Weakly supervised methods try to perform

detection, localization and segmentation tasks with only

image-level labels, which are relatively easy and cheap to
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obtain. Among these tasks, weakly supervised object lo-

calization (WSOL) is the most practical task since it only

needs to locate the object with a given class label. Most of

these WSOL methods try to enhance the localization ability

of classification models to conduct WSOL tasks [19, 28, 29,

2, 27] using the class activation map (CAM) [30].

However, in this paper, through ablation studies and

experiments, we demonstrate that the localization part of

WSOL should be class-agnostic, which is not related to

classification labels. Based on these observations, we ad-

vocate a paradigm shift which divides WSOL into two

independent sub-tasks: the class-agnostic object localiza-

tion and the object classification. The overall pipeline of

our method is in Fig. 1. We name this novel pipeline

as Pseudo Supervised Object Localization (PSOL). We

first generate pseudo groundtruth bounding boxes based

on the class-agnostic method deep descriptor transforma-

tion (DDT) [26]. By performing bounding box regression

on these generated bounding boxes, our method removes re-

strictions on most WSOL models, including the restrictions

of allowing only one fully connected layer as classification

weights [30] and the dilemma between classification and lo-

calization [19, 2].

We achieve state-of-the-art performances on ImageNet-

1k [15] and CUB-200 [25] combining the results of these

two independent sub-tasks, obtaining a large edge over pre-

vious WSOL models (especially on CUB-200). With clas-

sification results of the recent EfficientNet [22] model, we

achieve 58.00% Top-1 localization accuracy on ImageNet-

1k, which significantly outperforms previous methods.

We summarize our contributions as follows.

• We show that weakly supervised object localization

should be divided into two independent sub-tasks: the

class-agnostic object localization and the object clas-

sification. We propose PSOL to solve the drawbacks

and problems in previous WSOL methods.

• Though generated bounding boxes are noisy, we argue

that we should directly optimize on them without us-

ing class labels. With the proposed PSOL, we achieve
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Figure 1: Overall pipeline of previous WSOL methods (top) and our proposed PSOL (bottom). Previous WSOL methods

need the final feature map to generate bounding boxes implicitly. However, PSOL first generates inaccurate bounding boxes

using class-agnostic methods, then perform bounding box regression to predict the bounding box explicitly.

58.00% Top-1 localization accuracy on ImageNet-1k

and 74.97% Top-1 localization accuracy on CUB-200,

which is far beyond previous state-of-the-art.

• Our PSOL method has good localization transferabil-

ity across different datasets without any fine-tuning,

which is significantly better than previous WSOL

models.

2. Related Works

Convolutional neural networks (CNN), since the success

of AlexNet [8], have been widely applied in many areas

of computer vision, including object localization and ob-

ject detection tasks. We will briefly review detection and

localization with full supervision and weak supervision in

this section.

2.1. Fully Supervised Methods

After the success of AlexNet [8], researchers tried to

adopt CNN to conduct object localization and detection.

The pioneering work OverFeat [17] tried to use sliding win-

dow and multi-scale techniques to conduct classification,

localization and detection within a single network. VGG-

Net [18] adds a per-class regression and model ensemble to

enhance the prediction result of localization.

Object detection is another task that can generate bound-

ing boxes and labels simultaneously. R-CNN [5] and Fast-

RCNN [4] use the selective search [24] to generate candi-

date regions and then use CNN to classify them. Faster-

RCNN [14] proposes a two-stage network: the region

proposal network (RPN) for generating regions of inter-

est (ROI), then the R-CNN module to classify them and lo-

calize the object in the region. These popular two-stage de-

tectors are widely used in detection tasks. YOLO [13] and

SSD [11] are one stage detectors with carefully designed

network structures and anchors. Recently, some anchor-free

detectors are proposed to mitigate the anchor problem in

common detectors like CornerNet [9] and CenterNet [31].

However, all these methods need massive, detailed and

accurate annotations. Annotations in real-world tasks are

expensive and sometimes even hard to get. So we need

some other methods to perform object localization tasks

without requiring many exact labels.

2.2. Weakly Supervised Methods

Weakly supervised object localization (WSOL) learns

to localize the object with only image-level labels. It is

more attractive since image-level labels are much easier and

cheaper to obtain than object level labels. Weakly super-

vised detection (WSOD) tries to give the object location and

category simultaneously when training images only have

image-level labels.

WSOL has the assumption that there is only one object of

the specific category in the whole image. Based on this as-

sumption, many methods are proposed to push the limit of

WSOL. [30] first generates class activation maps with the

global average pooling layer and the final fully connected

layer (weights of the classifier). Grad-CAM [16] uses gra-

dients rather than output features to generate more accurate

class response maps. Besides these methods which focus
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on improving class response maps, some other methods try

to make the classification model more suitable for localiza-

tion tasks. HaS [19] tries to randomly erase some regions

in the input image to force the network to be meticulous

for WSOL. ACoL [28] uses two parallel classifiers with dy-

namic erasing and adversarial learning to discover comple-

mentary object regions more effectively. SPG [29] gener-

ates Self-Produced Guidance masks to localize the whole

object. ADL [2] proposes the importance map and the drop

mask, with a random selection mechanism to achieve a bal-

ance between classification and localization.

WSOD does not have the one object in one class re-

striction. However, WSOD often needs methods to gen-

erate region proposals like selective search [24] and edge

boxes [32], which will cost much computation resources

and time. Furthermore, current WSOD detectors use high

resolution inputs to output the bounding boxes, leading to

heavy computational burdens. Thus, most WSOD methods

are difficult to be applied to large-scale datasets.

3. Methodology

In this section, we will mainly discuss the drawbacks of

the current WSOL pipeline and propose our pseudo super-

vised object localization (PSOL).

3.1. A paradigm shift from WSOL to PSOL

Current WSOL nethods can generate the bounding box

with a given class label. However, the community have

identified serious drawbacks of this pipeline.

• The learning objective is indirect, which will hurt the

model’s performance on localization tasks. HaS [19]

and ADL [2] show that localization is not compati-

ble with classification when only having a single CNN

model. Localization tries to localize the whole object

while classification tries to classify the object. The

classification model often tries to localize only the

most discriminative part of the object in an image.

• Offline CAM [30] has the thresholding parameter and

needs to store the three-dimensional feature map for

further computation. The thresholding value is tricky

and hard to determine.

Those drawbacks make WSOL hard to apply to real-

world applications.

Encouraged by the class-agnostic process that gener-

ats regions of interest (ROI) in selective search [24] and

Faster-RCNN [14], we divide WSOL into two sub-tasks:

the class-agnostic object localization and the object classifi-

cation. Based on these two sub-tasks, we propose our PSOL

method. PSOL directly optimizes the localization model on

explicitly generated pseudo ground-truth bounding boxes.

Hence, it removes the restrictions and drawbacks illustrated

Algorithm 1 Pseudo Supervised Object Localization

Input: Training images Itr with class label Ltr

Output: Predicted bounding boxes bte and class labels

Lte on testing images Ite
1: Generate pseudo bounding boxes b̃tr on Itr
2: Train a localization CNN Floc on Itr with b̃tr
3: Train a classification CNN Fcls on Itr with Ltr

4: Use Floc to predict bte on Ite
5: Use Fcls to predict Lte on Ite
6: Return: bte, Lte

in previous WSOL methods, and it is a paradigm shift for

WSOL.

3.2. The PSOL Method

The general framework of our PSOL is in Algorithm 1.

We will introduce our PSOL step by step. We will dis-

cuss the details of generating pseudo groundtruth bounding

boxes in Sec 3.2.1, then the localization method used in our

model in Sec 3.2.2. For the classification method, we use

pre-trained models in the computer vision community di-

rectly.

3.2.1 Bounding Box Generation

The critical difference between WSOL and our PSOL is

the generation of pseudo bounding boxes for training im-

ages. Detection is a natural choice for this task since de-

tection models can provide bounding boxes and classes di-

rectly. However, the largest dataset in detection only has

80 classes [10], and it cannot provide a general object lo-

calizer for datasets with many classes such as ImageNet-

1k. Furthermore, current detectors like Faster-RCNN [14]

need substantial computation resources and large input im-

age sizes (like shorter side=600 when testing). These is-

sues prevent detection models from being applied to gener-

ate bounding boxes on large-scale datasets.

Without detection models, we can try some localization

methods to output bounding boxes for training images di-

rectly. Some weakly and co-supervised methods can gener-

ate noisy bounding boxes, and we will give a brief introduc-

tion to them.

WSOL methods. Existing WSOL methods often follow

this pipeline to generate the bounding box for an image.

First the image I is feed into the network F , then the final

feature map (often the output of the last convolutional layer)

G is generated: G ∈ R
h×w×d = F (I), where h,w, d are

the height, width and depth of the final feature map. Then,

after global average pooling and the final fully connected

layer, the label Lpred is produced. According to the pre-

dicted label Lpred or the ground truth label Lgt, we can get

the class specific weights in the final fully connected layer
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W ∈ R
d. Then each spatial location of G is channel-wise

weighed and summed to get the final heat map H for the

specific class: Hi,j =
∑d

k=1
Gi,j,kWk. Finally, H is up-

sampled to the original input size, and thresholding is ap-

plied to generate the final bounding box.

DDT recap. Some co-supervised methods can also have

good performances on localization tasks. DDT has good

performance and little computational resource requirement

among these co-supervised methods. So we use DDT [26]

as an example. Here is a brief recap of DDT. Given a set

of images S with n images, where each image I ∈ S has

the same label, or contains the same object in the image.

With a pre-trained model F , the final feature map is also

generated: G ∈ R
h×w×d = R

hw×d = F (I). Then these

feature maps are gathered together into a large feature set:

Gall ∈ R
n×hw×d = R

nhw×d. Principal component analy-

sis (PCA) [12] is applied along the depth dimension. Af-

ter the PCA process, we can get the eigenvector P with

the largest eigenvalue. Then, each spatial location of G is

channel-wise weighed and summed to get the final heat map

H: Hi,j =
∑d

k=1
Gi,j,kPk. Then H is upsampled to the

original input size. Zero thresholding and max connected

component analysis is applied to generate the final bound-

ing box.

We will generate pseudo bounding boxes using both

WSOL methods and the DDT method, and evaluate their

suitability.

3.2.2 Localization Methods

After generating bounding boxes, we have (pseudo) bound-

ing box annotations for each training image. Then it is natu-

ral to perform object localization with these generate boxes.

As shown before, detection models are too heavy to handle

this task. Thus, it is natural to perform bounding box regres-

sion. Previous fully supervised works [18, 17] suggest two

methods of bounding box regression: single-class regres-

sion (SCR) and per-class regression (PCR). PCR is strongly

related to the class label. Since we advocate that localiza-

tion is a class-agnostic rather than a class-aware task, we

choose SCR for all our experiments.

We follow previous work to perform bounding box re-

gression [18]. Suppose the bounding box is in the x, y, w, h

format, where x, y are the top-left coordinates of the bound-

ing box and w, h are the width and height of the bound-

ing box, respectively. We first transfer x, y, w, h into

x∗, y∗, w∗, h∗ where x∗ = x
wi

, y∗ = y

hi

, w∗ = w
wi

, h∗ =
h
hi

, and wi and hi are the width and height of the input

image, respectively. We use a sub-network with two fully

connected layers and corresponding ReLU layers for regres-

sion. Finally, the outputs are sigmoid activated. We use the

mean squared error loss (ℓ2 loss) for the regression task.

Step 2 and step 3 in Algorithm 1 may be combined, i.e.,

Fcls and Floc can be integrated into a single model, which

is jointly trained with classification labels and generated

bounding boxes. However, we will show empirically that

localization and classification models should be separated.

4. Experiments

4.1. Experimental Setups

Datasets. We evaluate our proposed method on two

common WSOL datasets: ImageNet-1k [15] and CUB-

200 [25]. The ImageNet-1k dataset is a large dataset with

1000 classes, containing 1,281,197 training images and

50,000 validation images. For training images, bounding

box annotations are incomplete, and bounding box labels

are complete for validation images. In this paper, we do

not use any accurate training bounding box annotations. In

our experiments, we generate pseudo bounding boxes on

training images by previous methods. The detailed ablation

studies will be in Sec 5.1. We train all models on the gener-

ated bounding box annotations and classification labels and

test them on the validation dataset.

For the CUB-200 dataset, it contains 200 categories of

birds with 5,994 training images and 5,794 testing images.

Each image in the dataset has an accurate bounding box an-

notation. We follow the strategies on ImageNet-1k to train

and test models.

Metrics. We use three metrics for evaluating our models:

Top-1/Top-5 localization accuracy (Top-1/Top-5 Loc) and

localization accuracy with known ground truth class (GT-

Known Loc). They are following previous state-of-the-art

methods [30, 2]: GT-Known Loc is correct when given the

ground truth class to the model, the intersection over union

(IoU) between the ground truth bounding box and the pre-

dicted box is 50% or more. Top-1 Loc is correct when the

Top-1 classification result and GT-Known Loc are both cor-

rect. Top-5 Loc is correct when given the Top-5 predictions

of groundtruth labels and bounding boxes, there is one pre-

diction which the classification result and localization result

are both correct.

Base Models. We prepare several baseline models for

evaluating our method on localization tasks: VGG16 [18],

InceptionV3 [21], ResNet50 [6] and DenseNet161 [7]. Pre-

vious methods try to enlarge the spatial resolution of the

feature map [28, 29, 2], we do not use this technology in

our PSOL models. Previous WSOL methods need the clas-

sification weights to turn a 3D feature map into a 2D spa-

tial heat map. However, in PSOL, we do not need the fea-

ture map for localization, our model will directly output the

bounding box for object localization. For a fair compar-

ison, we modified VGG16 into two versions: VGG-GAP

and VGG16. VGG-GAP replaces all fully connected lay-

ers in VGG16 with GAP and a single fully connected layer,

and VGG16 keeps the original structures in VGG16. For
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other models, we keep the original structure of each model.

For regression, we use a two-layer fully connected network

with corresponding ReLU layers to replace the last layer in

original networks, as illustrated in Sec 3.2.2.

Joint and Separate Optimization In the previous sec-

tion, we discussed the problem of joint optimization of clas-

sification and localization tasks. For ablating this issue, we

prepare several models for each base model. For joint op-

timization models, we add a new bounding box regression

branch to the model (-Joint models), and then train this

model with both generated bounding boxes and class labels

simultaneously. For separate optimization models, we re-

place the classification part with the regression part (-Sep

models), then train these two models separately, i.e., local-

ization models are trained with only generated bounding

boxes while classification models are trained with only class

labels. The hyperparameters are kept same for all models.

4.2. Implementation Details

We use the PyTorch framework with TitanX Pascal

GPUs support. For all models, we use pre-trained classi-

fication weights on ImageNet-1k and fine-tune on target lo-

calization and classification tasks.

For experiments on ImageNet-1k, the hyperparameters

are set the same for all models: batch size 256, 0.0005

weight decay and 0.9 momentum. We will fine-tune all

models with a start learning rate of 0.001. Added compo-

nents (like the regression sub-network) will have a larger

learning rates due to the random initialization. We train 6

epochs on ImageNet and 30 epochs on CUB-200. For lo-

calization only tasks, we keep the learning rate fixed among

all eppochs. The reason is that DDT generated bounding

boxes are noisy, which contain many inaccurate or even to-

tally wrong bounding boxes. The conclusion in [23] shows

that for noisy data, we should retain large learning rates. For

classification related tasks (including single classification

and joint classification and localization tasks), we divide the

learning rate by 10 every 2/10 epochs on ImageNet/CUB-

200.

For testing models, we use ten crop augmentations on

ImageNet to output results of the final classification follow-

ing [28] and [29] on ImageNet and single crop classifica-

tion results on CUB200, and use single image inputs for all

our localization results. We use the center crop techniques

to get the image input, e.g., resize to 256×256 then center

crop to 224×224 for most models except InceptionV3 (re-

size to 320x320 then center crop to 299×299), following

the setup in [2, 27]. For state-of-the-art classification mod-

els, we also follow the input size in their paper, e.g., 600 for

EfficientNet-B7.

Previous WSOL methods can provide multiple boxes

for a single image with different labels. However, our

SCR model can only provide one bounding box output for

Table 1: The GT-Known Loc accuracy on the ImageNet-

1k validation dataset of various weakly and co-supervised

localization (DDT) methods.

Model ImageNet-1k CUB-200

VGG16-CAM [30] 59.00 57.96

VGG16-ACoL [28] 62.96 59.30

SPG [29] 64.69 60.50

DDT-ResNet50 [26] 59.92 72.39

DDT-VGG16 [26] 61.41 84.55

DDT-InceptionV3 [26] 51.87 51.80

DDT-DenseNet161 [26] 61.92 78.09

each image. Thus, we combine the output bounding box

with Top-1/Top-5 classification outputs of baseline mod-

els (-Sep models) or with outputs of the classification

branch (-Joint models) to get the final output to evalu-

ate on test images.

For experiments on CUB-200, we change the batch size

from 256 to 64, and keep other hyperparameters the same

as ImageNet-1k.

5. Results and Analyses

In this section, we will provide empirical results, and

perform detailed analyses on them.

5.1. Ablation Studies on How to Generate Pseudo
Bounding Boxes

Previous WSOL methods can generate bounding boxes

with given ground truth labels. Some co-localization meth-

ods can also provide bounding boxes with a given class la-

bel. Since some annotations are missing in ImageNet-1k

training images, we test these methods on the validation/test

set of ImageNet-1k and CUB-200 to choose a better method

to generate pseudo bounding boxes for PSOL. For the DDT

method, we first resize the training images to the resolution

size of 448 × 448, then perform DDT on training images.

According to the statistics collected on training images, we

generate bounding boxes on test images with the correct

class label. For other WSOL methods, we follow original

instructions in their papers and use pre-trained models to

generate bounding boxes on validation/test images with the

correct class label.

We list the GT-Known Loc of DDT and weakly super-

vised localization methods in Table 1. As shown in Ta-

ble 1, DDT achieves comparable results with WSOL meth-

ods on ImageNet-1k, but achieves better performance than

all WSOL methods on CUB-200. DDT results on CUB-

200 indicate that object localization should not be related

to classification labels. Furthermore, these WSOL methods

need large computational resources, e.g., storing the feature

map of each image, then perform off-line CAM operation to
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Table 2: Empirical localization accuracy results on CUB-200 and ImageNet-1k. The first column of the paper shows the

model name, and the second column shows the backbone network for each model. Parameter number and FLOPs are shown

in the third and fourth column. Then Top-1/Top-5 Loc accuracy of CUB-200 and ImageNet-1k are shown in the next four

columns. The last column illustrates the GT-Known Loc accuracy on ImageNet-1k. For separate models like DDT and our

-Sep models, we combine their localization results with classification results of baseline models. For FLOPs calculation,

we only calculate convolutional operations as FLOPs and using networks on ImageNet as counting examples. Results with

bold are best among the same backbone networks.

Model Backbone Parameters FLOPs
CUB-200 ImageNet-1k

Top-1 Loc Top-5 Loc Top-1 Loc Top-5 Loc GT-Known Loc

VGG16-CAM [30] VGG-GAP 14.82M 15.35G 36.13 - 42.80 54.86 59.00

VGG16-ACoL [28] VGG-GAP 45.08M 43.32G 45.92 56.51 45.83 59.43 62.96

ADL [2] VGG-GAP 14.82M 15.35G 52.36 - 44.92 - -

VGG16-Grad-CAM [16] VGG16 138.36M 15.42G - - 43.49 53.59 -

CutMix [27] VGG-GAP 138.36M 15.35G 52.53 - 43.45 - -

DDT-VGG16 [26] VGG16 138.36M 15.42G 62.30 78.15 47.31 58.23 61.41

PSOL-VGG16-Sep VGG16 274.72M 30.83G 66.30 84.05 50.89 60.90 64.03

PSOL-VGG16-Joint VGG16 140.46M 15.42G 60.07 75.35 48.83 59.00 62.1

PSOL-VGG-GAP-Sep VGG-GAP 29.64M 30.70G 59.29 74.88 48.36 58.75 63.72

PSOL-VGG-GAP-Joint VGG-GAP 15.08M 15.35G 58.39 72.64 47.37 58.41 62.25

SPG [29] InceptionV3 38.45M 66.59G 46.64 57.72 48.60 60.00 64.69

ADL [2] InceptionV3 38.45M 66.59G 53.04 - 48.71 - -

PSOL-InceptionV3-Sep InceptionV3 53.32M 11.42G 65.51 83.44 54.82 63.25 65.21

PSOL-InceptionV3-Joint InceptionV3 29.21M 5.71G 60.32 78.98 52.76 61.10 62.83

ResNet50-CAM [30] ResNet50 25.56M 4.10G 29.58 37.25 38.99 49.47 51.86

ADL [2] ResNet50-SE 28.09M 6.10G 62.29 - 48.53 - -

CutMix [27] ResNet50 26.61M 4.10G 54.81 - 47.25 - -

PSOL-ResNet50-Sep ResNet50 50.12M 8.18G 70.68 86.64 53.98 63.08 65.44

PSOL-ResNet50-Joint ResNet50 26.61M 4.10G 68.17 83.69 52.82 62.00 64.30

DenseNet161-CAM DenseNet161 29.81M 7.80G 29.81 39.85 39.61 50.40 52.54

PSOL-DenseNet161-Sep DenseNet161 56.29M 15.46G 74.97 89.12 55.31 64.18 66.28

PSOL-DenseNet161-Joint DenseNet161 29.81M 7.80G 74.24 87.03 54.48 63.41 65.39

get the final bounding boxes. Compared to these methods,

DDT has little computation requirements and achieves com-

parable results. For the base model choice of DDT, though

DDT-DenseNet161 has higher accuracy than DDT-VGG16

on ImageNet-1k, it runs much slower due to the dense

connections and has lower accuracy than DDT-VGG16 on

CUB-200. Based on these observations, we choose DDT

with VGG16 to generate our bounding boxes on training

images in PSOL.

5.2. Comparison with State­of­the­art Methods

In this section, we will compare our PSOL models with

state-of-the-art WSOL methods: CAM [30], HaS [19],

ACoL [28], SPG [29] and ADL [2] on CUB-200 and

ImageNet-1k.

We list experimental results in Table 2. Furthermore,

we visualize bounding boxes generated by CAM [30],

DDT [26] and our methods in Fig. 2. According to these

results, we have the following findings.

• Without any training, DDT already performs well on

both CUB-200 and ImageNet. DDT-VGG16 achieves

47.31% Top-1 Loc accuracy, which has a 2∼3% edge

over WSOL models based on VGG16. Since DDT is a

class-agnostic method, it suggests that WSOL should

be divided into two independent sub-tasks: class-

agnostic object localization and object classification.

• All PSOL models with separate training perform better

than PSOL models with joint training. In all five base-

line models, -Sep models consistently perform better

than -Joint models by large margins. These results

indicate that learning with joint classification and lo-

calization is not suitable.

• All our PSOL models enjoy a large edge (mostly

> 5%) on CUB-200 compared with state-of-the-art

WSOL methods, including the DDT-VGG16 method.

CUB-200 is a fine-grained dataset which contains

many categories of birds. The within-class varia-
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(a) CUB-200-2011 (b) ImageNet-1k

Figure 2: Comparison of our methods with CAM and DDT. Please note that in CAM figures, yellow boxes are CAM predicted

boxes and red boxes are groundtruth boxes. In figures of our methods, blue boxes are DDT generated boxes, green boxes are

predicted boxes by our regression model and red boxes are groundtruth boxes. We use the DenseNet161-Sep model to output

DDT and predict boxes. This figure is best viewed in color and zoomed in.

tion is much larger than the between-class variation in

most fine-grained datasets [25]. The exact label may

not help the process of localization. Hence, the co-

localization method DDT will perform better than pre-

vious WSOL methods.

• CNN has the ability to tolerate some incorrect annota-

tions, and retain high accuracy on validation sets. For

all separate localization models, the GT-Known Loc is

higher than DDT-VGG16. This phenomenon indicates

that CNN can tolerate some annotation errors and learn

robust patterns from noisy data.

• Some restrictions and rules-of-thumb in WSOL do

not carry over to PSOL. In previous WSOL papers,

only one final fully connected layer is allowed, and

large spatial size of the output feature map is recom-

mended. Many methods try to remove the stride of

the last downsample convolution layer, which will re-

sult in large FLOPs (such as SPG and VGG16-ACoL).

Besides this, three fully connected layers in VGG16

are all removed, which will directly affect the accu-

racy. However, in our experiments, VGG-Full per-

forms significantly better than VGG-GAP. Since CAM

requires GAP and only one FC layer, when this restric-

tion is removed, VGG16 can get better performance.

Another restriction is the inference path of the net-

work. WSOL needs the output of the last convolutional

layer in the model, and often uses simple forward net-

works (VGG16, GoogLeNet, and InceptionV3). Com-

plex network structures like DenseNet are not recom-

mended and do not perform well in the WSOL prob-

lem [30]. As we show in Table 2, CAM achieves

poor performance with DenseNet161. DenseNet will

use features of every block, not just the last feature to

conduct classification. Thus, the semantic meaning of

the last feature may not as clear as the last feature of

sequential networks like ResNet and VGG. However,

PSOL-DenseNet models are directly trained on noisy

bounding boxes, which can avoid this problem. More-

over, DenseNet161 achieves the best performance.

5.3. Transfer Ability on Localization

In this section, we will discuss the transferability of dif-

ferent localization models.

Previous weakly supervised localization models need the

exact label to generate bounding boxes, regardless of the

correctness of the label. However, our proposed method

does not need the label and directly generate the bounding

box. So we are interested in that: Is single object localiza-

tion task transferable? Does the model trained directly on

object localization tasks like trained on image recognition

tasks, have good generalization ability?

We perform the following experiment. We take object

localization models trained on ImageNet-1k, then predict

on CUB-200 test images directly, i.e., without any training

or fine-tuning process. We add previous WSOL methods

for a fair comparison. Since they need exact labels, we

fine-tune all these models. For all models marked with *,

they are only fine-tuned with classification parts (the last

fully connected layer), i.e., features learned on ImageNet-

1k are directly transferred to CUB-200. For models marked

without *, they are fine-tuned on CUB-200 with all layers.

We take our VGG-GAP-Sep model for fair comparison and

DenseNet161-Sep model for better results. Results are in

Table 3.

It is surprising that without any supervision, PSOL ob-

ject localization models can transfer well from ImageNet-1k

to CUB-200, which performs significantly better than previ-

ous WSOL methods, including models which only fine-tune

the classification weight (models marked with *), and mod-

els which fine-tune the whole weights. It further indicates

that objection localization is not dependent on classifica-
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Table 3: Transfer results of our models on CUB-200 and

ImageNet-1k. For a fair comparison, we add VGG-GAP

with CAM, VGG16-ACoL [28] and SPG [29] for transfer

experiments. VGG-GAP is fine-tuned with all layers while

VGG-GAP* only fine-tunes the final fully connected layer.

Please note that PSOL models trained on ImageNet-1k do

not have any training or fine-tuning process on CUB-200.

Model Trained Target GT-Known Loc

VGG-GAP + CAM CUB-200 CUB-200 57.96

VGG-GAP* + CAM ImageNet CUB-200 57.53

VGG16-ACoL + CAM CUB-200 CUB-200 59.30

VGG16-ACoL* + CAM ImageNet CUB-200 58.70

SPG + CAM CUB-200 CUB-200 60.50

SPG* + CAM ImageNet CUB-200 59.70

PSOL-VGG-GAP-Sep CUB-200 CUB-200 80.45

PSOL-VGG-GAP-Sep ImageNet CUB-200 89.11

PSOL-DenseNet161-Sep CUB-200 CUB-200 92.54

PSOL-DenseNet161-Sep ImageNet CUB-200 92.07

Table 4: Top-1 and Top-5 Loc results by combining local-

ization of our models with more state-of-the-art classifica-

tion models on ImageNet-1k.

Model Top-1 Top-5

VGG16-ACoL+DPN131 53.94 61.15

VGG16-ACoL+DPN-ensemble 54.86 61.45

SPG + DPN131 55.19 62.76

SPG + DPN-ensemble 56.17 63.22

PSOL-InceptionV3-Sep + DPN131 55.72 63.64

PSOL-DenseNet161-Sep + DPN131 56.59 64.63

PSOL-InceptionV3-Sep + EfficientNet-B7 57.25 64.04

PSOL-DenseNet161-Sep + EfficientNet-B7 58.00 65.02

tion, and it is inessential to perform object localization with

the class label. Furthermore, it proves the advantage of our

PSOL method.

5.4. Combining with State­of­the­art Classification

Previous methods try to combine localization outputs

with state-of-the-art classification outputs to achieve bet-

ter localization results. SPG [29] and ACoL [28] com-

bine with DPN networks including DPN-98, DPN-131 and

DPN-ensemble [1]. For a fair comparison, we also com-

bine other models’ (InceptionV3 and DenseNet161) results

with DPN-131. Moreover, EfficientNet [22] achieves better

results on ImageNet-1k recently. We combine our localiza-

tion outputs with EfficientNet-B7’s classification outputs.

Results are in Table 4.

From the table we can see that our model achieves bet-

ter localization accuracy on ImageNet-1k compared with

SPG [29] and ACoL [28] when combining the same classi-

fication results from DPN131 [1]. Furthermore, when com-

bining with EfficientNet-B7 [22], we can achieve 58.00%

Table 5: Compare our method with state-of-the-art fully su-

pervised methods on ImageNet-1k validation datasets.

Model supervision Top-5 Loc

GoogLeNet-GAP [30] weak 57.1

GoogLeNet-GAP (heuristics) [30] weak 62.9

VGG16-Sep weak 60.9

DenseNet161-Sep weak 64.2

GoogLeNet [20] full 73.3

OverFeat [17] full 70.1

AlexNet [8] full 65.8

VGG16 [18] full 70.5

VGGNet-ensemble [18] full 73.1

ResNet + Faster-RCNN-ensemble [14] full 90.0

Top-1 localization accuracy.

5.5. Comparison with fully supervised methods

We also compare our PSOL with fully supervised local-

ization methods on ImageNet-1k. Fully supervised methods

use training images with accurate bounding box annotations

in ImageNet-1k to train their models. Results are in Table 5.

With the bounding box regression sub-network, our

DenseNet161-Sep model can roughly match fully super-

vised AlexNet with Top-5 Loc accuracy. However, our per-

formances are still worse than fully supervised OverFeat,

GoogLeNet and VGGNet. It is noticeable that ResNet +

Faster-RCNN-ensemble [14] achieves the best Top-5 Loc

accuracy. They transfer region proposal networks trained

on ILSVRC detection track, which has 200 classes of fully

labeled images, to the 1000-class localization tasks directly.

The region proposal network shows good generalization

ability among different classes without fine-tuning, which

indicates that localization is separated with classification.

6. Discussions and Conclusions

In this paper, we proposed the pseudo supervised ob-

ject localization (PSOL) to solve the drawbacks in previous

weakly supervised object localization methods. Various ex-

periments show that our methods obtain a significant edge

over previous methods. Furthermore, our PSOL methods

have good transfer ability across different datasets without

any training or fine-tuning.

For future works, we will try to dive deep into the joint

classification and localization problem: We will try to inte-

grate both tasks into a single CNN model with less local-

ization accuracy drop. Another direction is trying to im-

prove the quality of generating bounding boxes with class-

agnostic methods. Finally, novel network structures or al-

gorithms on localization problems should be found, which

should prevent the high input resolution and computational

resources in the current detection framework to apply to

large-scale datasets.
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